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L'évaluation du risque de défaillance des
entreprises: réseau de neurones ou analyse
discriminante multivariée?

Thierry KENEL

Unité d'Enseignement et de

Recherche en Comptabilité et Controle
Ecole des HEC, Université de Lausanne

Les grandes institutions financiéres ainsi que les grandes entreprises
accordant un volume important de crédits clients ont développé et introduit des
outils modernes d'analyse du risque client. Alors que la Banque de France', le
Crédit Suisse’, EIf Aquitaine® et Creditreform* complétent leurs méthodes
d'analyse du risque client par les réseaux de neurones, d'autres, comme
I'Association francaise des credit managers et conseils’, Baden-Wiirtem-
bergischen Bank AG® ou Allgemeinen Kreditversicherung AG’ y intégrent
l'analyse discriminante multivariée.

L'analyse par le réseau de neurones et l'analyse discriminante
multivariée complétent ou remplacent les méthodes d'analyse du risque client
tels que l'analyse par un systéme expert par exemple. Alors que le systéme
expert est bien connu des utilisateurs, il n'en est pas de méme pour l'analyse
discriminante multivariée et le réseau de neurones. L'objectif de cet article est
de rendre attentif les utilisateurs aux limites de ces deux outils modernes® dans
le cadre de l'analyse financiére de la prévision de défaillance et d'indiquer dans
quelles directions les recherches actuelles se dirigent.

Des outils adaptés ou dépassés?

Le systéme expert appartient aux années soixante-dix, 1'analyse discri-
minante multivariée aux années quatre-vingt et le réseau de neurones aux
années quatre-vingt-dix. Ces différentes méthodes d'analyses discriminantes ne
sont cependant pas dépassées et elles font aujourd'hui toutes partie des outils
utilisés par des institutions financiéres pour 1'évaluation du risque de défaillance
des entreprises.
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Contrairement a ce que les adeptes des réseaux de neurones ou
d'analyse discriminante pensent, le systeme expert est toujours et encore
employé dans la plupart des institutions financieres. Le systéme expert n'est rien
d'autre qu'une transcription mécanique pour l'établissement d'un outil
informatique de la procédure de diagnostic et de décision utilisée par les
analystes financiers experts. Par sa construction, cet outil propose une aide a la
décision tout a fait transparente ce qui explique son succes durable. Ce genre
d'outil n'est pas non plus abandonné par les chercheurs, comme le montre la
thése de Hottinger (1995) dans laquelle les intéréts d'un systéme d'expert
moderne sont démontrés.

Avec la vulgarisation de la fonction Z-Score de Altman (1968) et de ses
dérivés consécutifs pour 1'évaluation du risque de défaillance des entreprises
cotées ou non cotées en bourse, l'analyse discriminante multivariée connait un
intérét considérable, comme en témoignent les innombrables recherches de ces
dernicres décennies que les banques centrales et les grandes institutions
financiéres ont menées. A cause des intéréts financiers en jeu et de leur coit tres
¢levé pour parvenir a produire une fonction discriminante, ces recherches n'ont
souvent été publiées que partiellement afin d'assurer 1'exclusivité de la formule
développée. Typiquement, les recherches de Altman (1977), de Feidicker (1992)
et de Hiils (1995) entrent dans cette catégorie. Ceci explique en partie la raison
pour laquelle l'analyse discriminante multivariée n'a pas pu, du moins pour
l'instant, trouver davantage d'utilisateurs.

La modélisation du risque de défaillance des entreprises par le réseau de
neurones, Odom et Sharda (1990), n'a qu'une dizaine d'années et les recherches
dans ce domaine comme par exemple Erxleben (1992), Krause (1993), Altman
et al. (1994) et Bardos et al. (1997) sont toutes liées aux intéréts de grandes
institutions financieres. Bien que la modélisation par réseau de neurones soit
récente et encore assez peu explorée dans le domaine de l'analyse financiére,
elle a déja trouvé ses partisans.

Le réseau de neurones
Un réseau de neurones est un systéeme d'analyse de données non
paramétrique flexible qui permet de traiter des problemes d'analyse typologique,

de classification et de prévision par exemple. Un tel systéme est composé d'un
réseau de noeuds (appelés neurones et qui sont des processeurs de fonctions
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mathématiques) reliés par des interconnections qui transmettent les
informations retraitées d'un noeud a un autre.

Cette définition souligne la premiére propriété trés importante d'un
réseau de neurones: n'importe quelle architecture est imaginable. Un premier
choix rencontré par le chercheur est de définir une architecture adaptée au
probléme a traiter. Pour se faire, il doit se référer aux articles et recherches
spécialisées. Dans le cadre des recherches faites dans le domaine de 1'évaluation
du risque de défaillance des entreprises, les chercheurs ne se sont concentrés
jusqu'a présent, a tort ou a raison, que sur le type de réseau le plus utilisé a
savoir le MLP - Multi-Layer Perceptron. Ce dernier est un systéme de neurones
multi-couches a un flux d'information unidirectionnel (feed forward) comme le
montre 1'exemple de la figure 1 ci-aprés.

Le fonctionnement

Le réseau de neurones

présenté par la figure 1 est une MLP - Muiti-Layer Perceptron
construction du type MLP 4-4- couche initiale couches cachées couche finale
3-1 ce qui définit le nombre de e o rdton eyory gt vy
couches et de noeuds par Indicateur

couche. Le fonctionnement de

ce type de réseau est le suivant: Ichogteur 2

Introduction des Résultat

chaque noeud de la couche omations
initiale regoit une information Indicateur 3
d'un indicateur financier par
exemple. Cette information est
traitée mathématiquement par le
processeur et transmis a chaque
neurone de la couche suivante. Le neurone de la premiére couche cachée regoit
de chaque neurone précédent I'information de sortie. Ces informations cumulées
sont alors pondérées par la fonction nodale et retransmises a tous les neurones
de la couche suivante. Cette procédure est répétée jusqu'a la couche finale qui
n'est représentée dans le cas présent que par un seul neurone. Dans I'exemple de
I'évaluation du risque de défaillance, le systéme sera codé de maniere a dégager
une valeur de 0 lorsqu'une entreprise doit étre classée parmi les entreprises
défaillantes et prendre une valeur de 1 si elle est assimilée a une entreprise non
défaillante. Pour que le systéme puisse fonctionner comme décrit, il est

Indicateur 4
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nécessaire de déterminer auparavant les pondérations pertinentes entre les
neurones par ce que 1'on appelle I'entrainement du systéme.

L'entrainement du réseau de neurones

Par entrainement du réseau de neurones, on entend la phase
d'apprentissage qui est nécessaire au systéme pour reconnaitre, a partir des
indicateurs initiaux, le classement des observations. Dans le cas du MLP, la
phase d'apprentissage est supervisée, c'est-a-dire que le systeme est contraint de
comparer le résultat attendu avec le résultat calculé. La différence entre ces
deux résultats est déterminée par I'algorithme de la régle delta généralisée qui se
base sur le critére des moindres carrées. L'algorithme proceéde en deux étapes.

Dans la premiére étape, l'algorithme calcule avec des pondérations
arbitraires les coefficients nodaux X; en aval (forward propagation) et
détermine la différence entre le résultat attendu et le résultat calculé.

Dans la deuxiéme étape, l'algorithme procéde a un calcul en amont
(back propagation). En partant de l'erreur calculée précédemment, il détermine
la correction nécessaire des pondérations pour diminuer l'erreur en question.
Ces itérations sont répétées jusqu'a ce que l'erreur atteigne un minimum. Mais
l'algorithme procéde mécaniquement a des itérations et ne peut pas se rendre
compte lorsque le systétme commence a apprendre "par coeur" les résultats
attendus. Dans ce dernier cas, le systeme est "surentrainé" (overtrained) et
présente une précision quasi parfaite par rapport a I'échantillon de construction,
mais est rendu trés instable, voir inefficace, par rapport au classement de
nouvelles observations.

Pour éviter ce genre d'inconvénient, la précision de classement’ est
aussi déterminée apreés chaque itération d'apprentissage sur la base d'un
échantillon dit de wvalidation, différent de 1'échantillon de construction.
L'évolution de la précision sur 1'échantillon de validation et de construction est
observée en fonction des itérations. Tant que la précision de classement
mesurée a partir de 1'échantillon de validation s'améliore parallélement a
I'échantillon de construction, une itération complémentaire augmente 1'efficacité
du réseau de neurones. En revanche, dés que la précision de classement mesurée
a partir de I'échantillon de validation se détériore, alors que celle déterminée sur
la base de l'échantillon de construction continue a s'améliorer, les itérations
doivent étre arrétées, faute de quoi le réseau de neurones finit par étre
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"surentrainé". Les itérations peuvent aussi étre arrétées en tout temps. Par
exemple si l'optimum global ou une certaine précision prédéterminée a été
atteinte. Les dernieres pondérations qui représentent le réseau de neurones au
niveau d'entrainement optimal seront gelées et le systéme est prét pour traiter le
classement d'une nouvelle observation.

Le MLP posséde la propriété avantageuse de converger toujours vers la
méme imputation de pondérations, donc vers un méme résultat. En revanche,
les réseaux de neurones avec des intégrations rétroactives (feedback) peuvent
converger vers des solutions différentes pour un méme échantillon de
construction.

Une deuxieme propriété, valable pour tous les réseaux de neurones, est
que le chercheur n'est jamais certain que le systéme converge vers une solution
optimale locale ou générale. Il doit alors procéder par essais a plusieurs
entrainements d'un réseau en changeant les pondérations de départ et vérifier les
résultats obtenus.

La fonction de transfert

Chaque neurone re-

présente un processeur ma- Commande d’un neurone
‘Ehémathl.’le qul ICQOIt leS Information a traiter
informations (X;.;;) des X

Neurone

neurones (;) de la couche ()
précédente. Ces informations
sont dans une premiere étape
pondérées selon les poids
(W3) calculés, si le réseau est Xorj
en phase d'apprentissage, et

selon les poids gelés, si le

réseau est opérationnel.

Résultat

Figure 2

Dans une deuxiéme étape, le cumul des informations pondérées est
transformé par une fonction nodale (f) qui définit la valeur (X;;) dégagée pour
commander tous les neurones de la couche suivante (figure 2). La fonction de
transfert (f) généralement utilisée pour la détermination de la valeur de
commande est une fonction sigmoide (ou logistique) car cette derniere possede
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la propriété de dégager des valeurs entre 0 et 1 avec une tres faible élasticité aux
valeurs extrémes et une forte élasticité aux valeurs moyennes.

La fonction de transfert constitue la troisiéme propriété¢ importante d'un
réseau de neurones. En optant pour une fonction de tangente hyperbolique,
plutdt que pour une fonction linéaire par exemple, le comportement du systeme
sera profondément modifié¢. Le chercheur doit apporter alors un soin tout
particulier quant au choix de la fonction de transfert a considérer.

Les propriétés inhérentes d'un réseau de neurones

Le choix pratiquement illimité de l'architecture d'un réseau de neurones
et les paramétres a retenir rendent cet outil particulierement flexible. Mais avec
'augmentation de la complexité de construction, l'utilisateur doit étre conscient
de deux propriétés.

La premiére est que la stabilité et l'aptitude a la généralisation du
modéle diminuent fortement. Cet effet indésirable est directement li¢ au
surentrainement et peut étre explicité de la maniere suivante:

Pour la construction d'un modéle d'évaluation du risque de défaillance,
un échantillon de cent entreprises défaillantes et non défaillantes est a
disposition. Le nombre d'indicateurs a disposition définit la couche initiale du
MLP et la couche finale ne nécessite qu'un neurone si le résultat attendu est
binaire, c'est-a-dire un classement défaillant et non défaillant par exemple. Si le
modéliste choisit une centaine de neurones pour constituer la couche inter-
médiaire (couche cachée) de son réseau, alors le systéme pourrait associer dés
les premiéres itérations d'apprentissage un neurone a chaque entreprise. Le
réseau de neurone classera parfaitement I'échantillon de construction, mais sera
inefficace en tant que modéle général.

La deuxieme propriété non négligeable est le temps d'entrainement trés
long et I'augmentation de l'incertitude de trouver un optimum global lorsque la
complexité du réseau est trop importante.

Un autre avantage de la modélisation par le réseau de neurone réside
dans le fait que les indicateurs peuvent étre des variables explicatives de toute
nature et n'ont pas besoin de présenter certaines conditions statistiques comme
c'est par exemple le cas dans l'analyse discriminante multivariée. Le modéliste

158



doit simplement prendre le soin de normaliser les variables (centrées réduites
par exemple) pour éviter que le systéme s'optimise sur l'étendue et I'échelle de
ces derni¢res au lieu de s'optimiser sur leurs informations.

Malgré la puissance des modéles de classifications ou de prévisions, un
réseau de neurones a un inconvénient capital. Celui de ne pas permettre a
l'utilisateur de comprendre les relations entre les indicateurs et le résultat. Le
réseau de neurones doit étre assimilé a une boite noire (black box) dont seules les
informations a l'entrée et a la sortie sont observables. L'utilisateur n'a pas la
possibilité, comme dans le cas de l'analyse discriminante linéaire, de
comprendre l'influence des variables inépendantes sur le classement des
observations. Pour contourner cet inconvénient, Baetge et al. (1999) préconisent
d'utiliser I'analyse de sensibilité. Par cette derniére, l'utilisateur peut explorer la
sensibilité de l'information a la sortie en variant une ou plusieurs informations a
l'entrée. 1l va sans dire que l'analyse de la sensibilité est complexe et limitée a la
représentation en trois dimensions.

La modélisation quasiment illimitée

Comme déja mentionné plus haut, les réseaux de neurones donnent aux
chercheurs des possibilités de modélisation quasiment illimitées. Le réseau
MLP, Multi-Layer Perceptron, est un réseau de neurones classique décrit par
Rosenblatt'® (1962). Par sa construction unidirectionnelle et son algorithme
d'apprentissage, le MLP reste une méthode de modélisation relativement simple
ce qui explique son succés auprés des utilisateurs. Mais a c6t¢ du MLP, les
chercheurs ont développé plusieurs autres types de réseaux de neurones et
d'algorithmes qui sont présentés dans la littérature spécialisée: réseau de
Kohonen, réseau ART (Adaptive Resonance Theory), réseau de Hopfield,
réseau de Boltzmann, Cascor pour ne citer que quelques exemples. A priori,
certains auraient des propriétés trés intéressantes pour traiter les problémes
d'évaluation de défaillance des entreprises. C'est le cas du réseau a fonction
radiale (RBF, Radial Basis Function) et du réseau de neurones probabiliste (ou
bayesien) développés par Wasserman (1993) et Zell (1994). Par rapport au
MLP, le premier présente 1'avantage d'une phase d'apprentissage sans itération.
Cette procédure diminue le temps d'apprentissage et €vite de converger vers un
minima local. Le second présente un avantage par rapport au MLP et au RBF
car l'algorithme utilisé empéche un surentrainement du systéme. Dans ce cas,
'échantillon de validation n'est pas nécessaire et peut étre attribué a la
construction. Ceci est un avantage important dans le domaine de 1'analyse des
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entreprises défaillantes ou il est difficile de constituer un échantillon
d'entreprises défaillantes assez grand. Les outils informatiques modernes'' a
disposition des chercheurs permettent une combinaison (en parallele, en série ou
en cascade) des différents types de réseaux. Par la création de ces nouveaux
types de réseaux de neurones, les chercheurs, dans le domaine du risque de
défaillance des entreprises, ont de nouvelles opportunités de recherches.

Avant de traiter la modélisation par l'analyse discriminante multivariée,
il est important de résumer les décisions qu'un modéliste de réseau de neurones
doit prendre: le type de réseau, éventuellement la combinaison de réseaux, le
nombre de couches, le nombre de neurones, la fonction de transfert, les
pondérations initiales, l'algorithme d'apprentissage a retenir et le nombre
d'essais a conduire. Dans cette énumération, les paramétres secondaires, comme
le parameétre pour la précision de la mesure d'erreur ou le nombre d'itérations a
courir n'y figurent pas.

On doit bien admettre finalement que la construction d'un réseau de
neurones optimal est difficile.

L'analyse discriminante multivariée

L'analyse discriminante est une Différentes méthodes d'analyses
méthode de classement par laquelle discriminantes

les éléments d'un ensemble peuvent e

étre attribués a différents groupes discriminante

bien distincts selon une fonction ]

d'identification définie. Dans
I'analyse discriminante multi- st RO S— “mm,m
variée, la fonction d'identi- dichotomiqus i de diegrbudon tolde dighutien
fication (ou fonction discrimi- (o] [KendiiE]  Fusdeign] [[iniers |
nante) est déterminée par au moins sveeun e Clasaiication avec phusieurs incices
deux indicateurs. Sourcn: . Bamge 1985 Figure 3

Il est important de rappeler qu'il existe plusieurs types d'analyses
discriminantes multivariées que nous pouvons classer selon le schéma de la
figure 3. Mais si les utilisateurs parlent généralement d'analyse discriminante
multivariée, ils sous-entendent souvent l'analyse discriminante multivariée
linéaire car cette derniére reste de loin la plus traitée dans la littérature et la plus
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utilisée dans le domaine de I'évaluation du risque de défaillance des entreprises.
Dans le développement qui suit, nous allons nous référer tout d'abord a la
méthode linéaire et ensuite a la méthode quadratique.

Le fonctionnement

La fonction discriminante est une fonction linéaire dont les variables
indépendantes (X;) représentent les indicateurs pertinents pour la description de
I'observation. Le résultat obtenu de cette fonction linéaire est un score (Z) qui
détermine le classement de l'observation. En prenant l'exemple de Altman"
(1968), la fonction discriminante est construite a partir de ratios financiers (.X;)
représentant le financement, la stabilité, le rendement, le levier et la rentabilité
de l'entreprise:

Z =0,012X, +0,014X, +0,033.X, +0,006X, +0,999.X,

Si le score, calculé a partir de cette fonction discriminante, est inférieur
a une valeur de 1,81, alors I'observation sera classée dans le groupe des sociétés
défaillantes. Si un score de plus de 2,99 est atteint, alors l'observation sera
classée dans le groupe des sociétés non défaillantes. Altman a défini une zone
d'incertitude de classement lorsque le score calculé prend une valeur entre 1,81
et 2,99. Alors que l'application de la fonction discriminante est trés simple, sa
construction demande une trés bonne connaissance des techniques statistiques.

La construction d'une fonction discriminante

Comme pour I'établissement d'un réseau de neurones, le constructeur
doit tout d'abord définir un échantillon de construction. Ce dernier sera
constitué d'un premier groupe d'entreprises défaillantes et d'un second groupe
d'entreprises non défaillantes. Ensuite, le constructeur définit une batterie
d'indicateurs particuliérement apte a discriminer les deux groupes d'entreprises
de I'échantillon de construction. Mais par rapport au réseau de neurones, ces
indicateurs doivent présenter des conditions supplémentaires. Ils doivent €tre
indépendants entre eux, suivre une distribution normale et présenter une matrice
variance-covariance identique pour les deux groupes. Ces conditions limitent
fortement le choix des indicateurs et la détermination de ces derniers devient
une procédure fastidieuse. En revanche, 1'établissement de la fonction
discriminante a partir des données de base est une méthode directe” qui se base
sur le calcul de l'inertie statistique des observations. Cette méthode revient a
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maximiser l'explication de la différence entre les deux groupes (inertie between
SSB) sur la base des in-

dicateurs retenus dans le Le critére discriminant ' (gamma)
modele et en méme temps a

minimiser la variance inex- ¢ hy _p,y “VTSsw T DéW — Minimiser Finertie Within
pliquée (inertie within SSW). el
Le critére discriminant gam-
ma, qui est le rapport entre la
variance expliquée et la va-
riance inexpliquée, est maxi-
misé, d'ou les coefficients de
pondération de la fonction . x|
discriminante (Z dans la Z=agra, X +a, Xt 4, X,
figure 4) peuvent étre cal- o Sanaa e e
culées.

G % v A
ro_ede@e= D" SSB _DétB — Maximiser Iinertie Between

La fonction discriminante est alors celle qui explique, a travers les
indicateurs, au mieux la différence entre les deux groupes. L'inertie est une
mesure statistique qui est définie par le produit de la masse statistique et la
distance au carré de cette derniére par rapport au centre de gravité. Cette
distance statistique peut étre mesurée selon plusieurs méthodes, la distance
Euclidienne'* ou la distance de Mahalanobis'® par exemple. Les coefficients de
pondération de la fonction discriminante varient suivant la distance statistique
retenue. Généralement, la distance de Mahalanobis est retenue pour déterminer
la fonction discriminante.

Lorsque la fonction discriminante est établie, le constructeur détermine
la valeur de séparation (point de séparation ou cut off point) de la fonction
discriminante. Cette valeur représente le score limite pour le classement d'une
observation dans un groupe. Ainsi, dépassant ce score limite, une entreprise sera
classée parmi le groupe des entreprises défaillantes et en dessous de ce score,
elle sera classée parmi le groupe des entreprises non défaillantes. Comme
présenté plus haut dans l'exemple de la fonction Z-score de Altman (1968),
plusieurs zones distinctes selon le niveau du risque de défaillance peuvent étre
déterminées.
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Les caractéristiques d'une analyse discriminante multivariée linéaire

La détermination de la fonction discriminante ne nécessite que le calcul
de la maximisation du critére discriminant gamma. C'est une procédure stable,
le méme résultat est obtenu a chaque calcul. De plus, la fonction discriminante
est une fonction linéaire facilement interprétable et applicable car le calcul du
score, la sommation des indicateurs pondérés, est transparent. Ces
caractéristiques font que l'acceptation de l'analyse discriminante multivariée
linéaire est trés grande et présente un avantage certain par rapport au réseau de
neurones.

La fonction discriminante présente cependant aussi quelques
inconvénients.

Le premier inconvénient vient des conditions statistiques €énumeérées
plus haut limitant le libre choix des indicateurs. Les tests statistiques demandent
du temps et les indicateurs ne remplissant pas les conditions statistiques doivent
étre abandonnés.

Le critere mathématique est une deuxieéme difficulté. L'information
utilisée dans l'analyse discriminante est basée sur des indicateurs qui sont pour
la plupart du temps des ratios. Ces derniers n'ont une valeur informative que si
le dénominateur ne tend pas vers zéro ou si le rapport d'un numérateur et d'un
dénominateur négatif ne peut pas étre confondu avec le rapport entre deux
valeurs positives. Dans un réseau de neurones de tels problémes sont évités a
l'aide d'un codage spécifique des indicateurs.

Une troisiéme difficulté réside dans le choix de la méthode a utiliser
pour 1'établissement de la valeur de séparation. Suivant la méthode utilisée, la
précision de classement du modele est sensiblement modifiée.

Un quatriéme inconvénient non négligeable est la discussion de
I'hypothése de linéarité entre les deux poles, c'est-a-dire entre les entreprises
défaillantes et les entreprises non défaillantes. Si une telle linéarité est
acceptable, alors une échelle linéaire représentant les différents niveaux de
risques de défaillance peut étre établie. Ainsi un systéme de score'®, classant les
observations dans des niveaux de risques analogues a ceux définis par Standard
& Poor's ou Moody's par exemple, peut en étre dérivé. Mais I'hypothése de la
linéarité'” entre les deux péles n'a jamais été démontrée. Dés lors, une telle
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maniere d'établir un systéme de mesure des différents niveaux de risques de
défaillance est critiquable.

Finalement, on peut signaler qu'une fonction discriminante doit
présenter des coefficients de pondérations significatifs avec une contribution
relative équilibrée. Ces deux derniéres conditions ne sont vérifiables que ex
PoOSt.

Ajoutons que l'analyse discriminante multivariée linéaire et le réseau de
neurones sont les deux des méthodes de traitement de données qui ne
fonctionnent pas dans le cas de données manquantes. Cette limitation technique
induit la suppression des observations dont les données sont incomplétes, ce qui
signifie une perte d'information par rapport a I'échantillon de base.

L'analyse discriminante multivariée quadratique

Comme le nom l'indique, la fonction discriminante multivariée
quadratique n'est plus du type linéaire mais du type quadratique et se présente,
dans le cas de deux indicateurs, X; et X, de la maniére suivante:

Z=a,+a X, +a, X, +a,X. X, +a, X, X, +a”X12 +022X22

La complexité de la structure de cette formule quadratique augmente
avec le nombre d'indicateurs retenus. Pour cette raison, la formule est
généralement présentée sous forme matricielle dans la littérature'®. Dés que des
méthodes quadratiques sont utilisées, I'avantage de la transparence se perd et le
modele devient, comme dans le cas du réseau de neurones, une approche par la
"boite noire". Une autre observation concernant la méthode quadratique a été
apportée par les recherches de Diamond (1976) et de Altman (1977). En
comparant la méthode linéaire avec la méthode quadratique, les deux études
concluent a la supériorité du point de vue précision de classification de la
méthode linéaire.

Un modele d'analyse discriminante a niveaux multiples
Pour éviter les inconvénients d'une analyse discriminante quadratique,

mais tout en gardant un modéle non linéaire a l'esprit, la Banque de France” a
construit un modéle discriminant a plusieurs niveaux. Ce dernier est semblable
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a l'algorithme de classification de Kendall®® et suit la logique d'un arbre de
décision. La procédure est la suivante:

A un premier niveau, une fonction discriminante définit si une
entreprise est considérée dans une situation normale ou incertaine’’. Si
l'entreprise est classée dans le deuxiéme groupe, alors la prochaine étape
discriminante consiste a déterminer si l'entreprise étudiée se classe dans le
groupe des entreprises vulnérables ou dans le groupe des entreprises
défaillantes. Ainsi, il est possible d'ajouter plusieurs niveaux discriminants pour
affiner le modéle. Pour des raisons de confidentialité, les indicateurs utilisés et
la performance de cette technique ne sont pas divulgués par la Banque de
France.

Quel modéle choisir: le réseau de neurones ou l'analyse
discriminante multivariée?

Les caractéristiques présentées du réseau de neurones et de l'analyse
discriminante linéaire permettent de comparer les avantages et inconvénients
des deux méthodes. Dans les grandes lignes, le chercheur qui choisit le réseau
de neurones, opte pour une construction flexible du point de vue architecture du
modele et indicateurs a retenir alors que celui qui opte pour l'analyse
discriminante linéaire choisit une méthode directe et transparente. Ces criteres
de choix restent trés subjectifs. Il serait utile de déterminer le choix a partir d'un

critére plus objectif celui de la précision de classement du modéle discriminant
utilisé.

Les études comparatives basées sur la précision de classement mettant
au concours la méthode discriminante multivariée linéaire et le réseau de
neurones sont plus que contradictoires. Dans les recherches de Odom et Sharda
(1990), Zhang et al. (1999) et John et al. (2000), la précision du réseau de
neurones est plus élevée que celle de 1'analyse discriminante multivariée linéaire
alors que les recherches de Krause (1993) et Altman et al. (1994) disent le
contraire. D'autres études, comme celle de Erxleben (1992) et West (2000) par
exemple, concluent une précision identique des deux méthodes discriminantes.
Le critere de la précision de classement d'un modele discriminant ne peut €tre
pris en considération que sous certaines conditions et il dépend fortement de la
méthodologie utilisée.
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La précision de classement d'un modele discriminant

L'objectif d'un modeéle discriminant, dans le cas présent dans le domaine
de l'évaluation du risque de défaillance des entreprises par un réseau de
neurones ou par l'analyse discriminante multivariée linéaire, est le classement
des entreprises selon les deux groupes, entreprises défaillantes et entreprises
non défaillantes. La précision de classement d'un mod¢le discriminant peut étre
déterminée en comparant le classement effectué par le modele discriminant avec
la situation réelle de l'entreprise, il y a quatre cas de figures possibles.

Premier cas: une entreprise réellement non défaillante est classée par le
modele discriminant parmi les entreprises non défaillantes.

Deuxiéme cas: une entreprise réellement défaillante est classée par le
modéle discriminant parmi les entreprises défaillantes.

Dans ces deux premiers cas, le modele classe correctement les
observations.

Troisiéme cas: une entreprise réellement défaillante est classée par le
modele discriminant parmi les entreprises non défaillantes.

Ce troisiéme cas représente un classement incorrect par le modele que
l'on appelle erreur du type I (ou alpha).

Quatriéme cas: une entreprise réellement non défaillante est classée par
le modele parmi les entreprises défaillantes.

Ce classement incorrecte représente l'erreur du type II (ou béta).

Le nombre total d'entreprises incorrectement classées peut €tre
représenté par la somme des erreurs du type [ et II. La précision de classement
d'un modele discriminant est mesurée a l'aide de l'erreur de classement. Plus
cette derniere diminue, plus la précision de classement du modele discriminant
augmente ce qui augmente en méme temps la signification statistique®™ du
modele discriminant utilisé.

L'intérét de la précision de classement, donc la minimisation de 'erreur
de classement d'un modéle discriminant, est double. D'une part, la précision de
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classement peut étre utilisée pour la construction d'un modéle discriminant par
des algorithmes minimisant cette erreur, et d'autre part, elle permet des études
comparatives. Minimiser l'erreur de classement souléve pourtant une premieére
question importante: "Quel type d'erreur faudrait-il minimiser?". A ce sujet, il
n'existe pas une unité¢ de doctrine dans les recherches publiées, mais il y a une
tendance a retenir la minimisation de I'erreur du type II pour un niveau de
l'erreur du type I prédéfini®.

Le critére de l'erreur totale ne devrait en tout cas pas étre retenu si le
nombre d'observations des deux groupes, entreprises défaillantes et entreprises
non défaillantes, ne sont pas identiques. Au lieu de minimiser l'erreur de
classement, certains auteurs™ proposent de minimiser le cofit occasionné par
une erreur de classement. Le colit occasionné par le classement d'une entreprise
défaillante dans le groupe des entreprises non défaillante (type d'erreur I) n'est
pas identique au coit induit par l'erreur du type II.

La deuxieéme question se rapporte au type d'échantillon a utiliser pour
mesurer la précision de classement. Si l'erreur de classement est estimée sur
I'échantillon de construction du modéle discriminant, alors la précision de ce
dernier sera fortement biaisée. Pour éviter une telle surévaluation de la précision
de classement, le modéle discriminant doit étre testé sur un échantillon
indépendant a 1'échantillon de construction mais présentant les mémes
caractéristiques que ce dernier. De telles conditions ne peuvent étre réunies que
dans des études comparatives spécifiques, ce qui signifie que des modeles issus
de différentes recherches ne sont pratiquement pas comparables.

Le choix du modéle discriminant dépend de l'objectif

Le réseau de neurones et l'analyse discriminante multivariée linéaire
sont les deux des méthodes discriminantes modernes et performantes qui
atteignent une précision de classement autour de 80% (taux d'erreur total
environ de 20%), mesuré sur un échantillon indépendant. Si le choix est porté
sur l'une ou l'autre de ces deux techniques, celui-ci est défini par 1'objectif que
vise l'utilisateur. Si ce dernier désire par exemple baser sa politique de crédit sur
un outil discriminant, alors l'analyse discriminante multivariée linéaire devrait
étre retenue en raison de sa transparence. Si en revanche l'utilisateur désire
automatiser un traitement préliminaire des dossiers de crédit en utilisant un
mixte d'indicateurs sous forme de variables continues et qualitatives et / ou
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désire assurer la confidentialité quant au traitement des données, alors le réseau
de neurones serait considéré.

Le choix des indicateurs; une difficulté au-dela des techniques
discriminantes

Le réseau de neurones et I'analyse discriminante multivariée linéaire ne
sont que deux exemples de méthodes discriminantes possibles par lesquelles,
comme pour toute autre méthode discriminante, la meilleure séparation possible
des groupes, entreprises défaillantes et entreprises non défaillantes, est
recherchée en minimisant l'erreur de classement. Ce que I'on oublie dans cette
définition, c'est le fait qu'une méthode discriminante ne minimise l'erreur de
classement que par rapport aux indicateurs que le chercheur ou l'utilisateur a
bien voulu retenir. Le plus souvent, le choix de ces indicateurs reste trés
subjectif.

Sur 17 recherches™ concernant l'analyse discriminante, 14 fois les
chercheurs ont choisi les indicateurs retenus sur des criteres telles que les
statistiques (le cas de l'analyse discriminante multivariée linéaire), les
mathématiques, la fréquence d'utilisation d'un ratio par des analystes financiers
et l'utilisation des ratios dans une étude précédente ou par rapport & une famille
de ratios.

Dans la recherche représentative et récente de Hiils (1995), 259 ratios
¢taient définis initialement selon le critére de l'importance financiere, la
fréquence d'utilisation dans les rapports annuels, le pouvoir discriminant par
rapport aux études précédentes et I'intérét des auteurs de la recherche. Apres une
¢bauche par rapport aux conditions statistiques et mathématiques, 75 des 259
indicateurs devaient étre €liminés. Les 181 indicateurs restants étaient alors
soumis a une analyse typologique et pouvaient étre classés selon 7 familles
d'indicateurs distincts. A partir de ces indicateurs de base, 27 fonctions
discriminantes ont été construites dont deux avec une précision de classement
d'environ 80%. Avec 181 indicateurs au départ, le nombre de combinaisons®®
possibles pour la construction d'un modéle discriminant est de 3.06%*10°°!
Trouver parmi ce nombre de modéles possibles ceux qui minimisent l'erreur de
classement est tout simplement une tdche impossible. Les 27 fonctions traitées
dans la recherche de Hiils (1995) ne représentent qu'une partie infinitésimale.
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Jusqu'a présent, les recherches ne répondent pas a la question des
indicateurs a retenir dans un modeéle discriminant, méme s'il est possible de
dégager quelques tendances. Par exemple, les ratios de flux sont des indicateurs
bien plus discriminants que les ratios de stock et les indicateurs basés sur des
indices ou représentant une croissance n'apportent que peu de contribution dans
un modele discriminant. A défaut d'indications plus précises sur le choix des
indicateurs, des chercheurs comme Beaver (1966) et Blum (1974) se fondent
sur le mod¢le théorique du flux de trésorerie en liant ce dernier avec la
défaillance d'une entreprise. Mais ces premiers modéles se basant sur des
concepts théoriques n'ont pas une précision de classement supérieure aux
modeles qui se construisent sur un grand nombre d'indicateurs.

La défaillance de l'entreprise

Une théorie générale de la défaillance de l'entreprise, qui pourrait
indiquer les variables pertinentes a retenir dans un modele discriminant, n'existe
pas. Cette lacune est directement liée au critére méme de la défaillance puisque
ce dernier n'est pas défini universellement. Le plus souvent, il est assimilé a la
faillite ou au redressement judiciaire. Mais ces derniers sont des mesures
juridiques et ne peuvent pas étre liés objectivement a une défaillance
¢conomique d'une entreprise. Cette derniére reste encore a définir.

Conclusion

Dans le domaine de 1'évaluation du risque de défaillance de 1'entreprise,
le réseau de neurones comme l'analyse discriminante multivariée linéaire sont
des outils modernes et performants utilisés par les plus grandes institutions
financiéres. Mais faute d'une théorie générale de défaillance des entreprises et
I'impossibilité de traitement de toutes les combinaisons possibles de modéeles
discriminants, les utilisateurs doivent se contenter de solutions particuliéres.

Les recherches dans les domaines du réseau de neurones se dirigent vers
l'application des nouveaux types de réseaux (RBF, bayesien, etc.) ou vers le
codage plus spécifique des indicateurs de défaillance. Dans le domaine de
I'analyse discriminante multivariée linéaire, les recherches se concentrent plutot
sur des modeles a plusieurs niveaux ou a plusieurs segments industriels.
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Indépendamment des méthodes discriminantes, les recherches autour
des indicateurs et d'une théorie spécialisée sont primordiales. Par exemple, des
modéles acceptant des indicateurs qualitatifs” sont actuellement étudiées.
Suivant la méthode discriminante utilisée, un modéle mixte pourrait étre
imagin€. Dans le cadre de 'UERCC de I'Ecole des HEC a Lausanne, nous nous
concentrons plus particulierement sur la question du choix des indicateurs par
rapport a une modélisation théorique de I'évaluation économique d'une
entreprise. Ces indicateurs peuvent étre traités par les deux méthodes présentées
dans cet article ainsi que par un outil qui serait apte a traiter le probléme des
données manquantes, le PLS 2 (Multivariate Partial Least Square Regression).
Cette approche ouvrira de nouvelles dimensions dans la modélisation de
I'évaluation du risque de défaillance des entreprises.
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