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L'évaluation du risque de défaillance des

entreprises: réseau de neurones ou analyse
discriminante multivariée?

Thierry KENEL
Unité d'Enseignement et de

Recherche en Comptabilité et Contrôle
Ecole des HEC, Université de Lausanne

Les grandes institutions financières ainsi que les grandes entreprises
accordant un volume important de crédits clients ont développé et introduit des

outils modernes d'analyse du risque client. Alors que la Banque de France1, le
Crédit Suisse2, Elf Aquitaine3 et Creditreform4 complètent leurs méthodes
d'analyse du risque client par les réseaux de neurones, d'autres, comme
l'Association française des credit managers et conseils5, Baden-Würtem-
bergischen Bank AG6 ou Allgemeinen Kreditversicherung AG7 y intègrent
l'analyse discriminante multivariée.

L'analyse par le réseau de neurones et l'analyse discriminante
multivariée complètent ou remplacent les méthodes d'analyse du risque client
tels que l'analyse par un système expert par exemple. Alors que le système
expert est bien connu des utilisateurs, il n'en est pas de même pour l'analyse
discriminante multivariée et le réseau de neurones. L'objectif de cet article est
de rendre attentif les utilisateurs aux limites de ces deux outils modernes8 dans
le cadre de l'analyse financière de la prévision de défaillance et d'indiquer dans

quelles directions les recherches actuelles se dirigent.

Des outils adaptés ou dépassés?

Le système expert appartient aux années soixante-dix, l'analyse
discriminante multivariée aux années quatre-vingt et le réseau de neurones aux
années quatre-vingt-dix. Ces différentes méthodes d'analyses discriminantes ne
sont cependant pas dépassées et elles font aujourd'hui toutes partie des outils
utilisés par des institutions financières pour l'évaluation du risque de défaillance
des entreprises.
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Contrairement à ce que les adeptes des réseaux de neurones ou
d'analyse discriminante pensent, le système expert est toujours et encore
employé dans la plupart des institutions financières. Le système expert n'est rien
d'autre qu'une transcription mécanique pour l'établissement d'un outil
informatique de la procédure de diagnostic et de décision utilisée par les

analystes financiers experts. Par sa construction, cet outil propose une aide à la
décision tout à fait transparente ce qui explique son succès durable. Ce genre
d'outil n'est pas non plus abandonné par les chercheurs, comme le montre la
thèse de Hottinger (1995) dans laquelle les intérêts d'un système d'expert
moderne sont démontrés.

Avec la vulgarisation de la fonction Z-Score de Altman (1968) et de ses

dérivés consécutifs pour l'évaluation du risque de défaillance des entreprises
cotées ou non cotées en bourse, l'analyse discriminante multivariée connaît un
intérêt considérable, comme en témoignent les innombrables recherches de ces
dernières décennies que les banques centrales et les grandes institutions
financières ont menées. A cause des intérêts financiers en jeu et de leur coût très
élevé pour parvenir à produire une fonction discriminante, ces recherches n'ont
souvent été publiées que partiellement afin d'assurer l'exclusivité de la formule
développée. Typiquement, les recherches de Altman (1977), de Feidicker (1992)
et de Hüls (1995) entrent dans cette catégorie. Ceci explique en partie la raison

pour laquelle l'analyse discriminante multivariée n'a pas pu, du moins pour
l'instant, trouver davantage d'utilisateurs.

La modélisation du risque de défaillance des entreprises par le réseau de

neurones, Odom et Sharda (1990), n'a qu'une dizaine d'années et les recherches
dans ce domaine comme par exemple Erxleben (1992), Krause (1993), Altman
et al. (1994) et Bardos et al. (1997) sont toutes liées aux intérêts de grandes
institutions financières. Bien que la modélisation par réseau de neurones soit
récente et encore assez peu explorée dans le domaine de l'analyse financière,
elle a déjà trouvé ses partisans.

Le réseau de neurones

Un réseau de neurones est un système d'analyse de données non
paramétrique flexible qui permet de traiter des problèmes d'analyse typologique,
de classification et de prévision par exemple. Un tel système est composé d'un
réseau de noeuds (appelés neurones et qui sont des processeurs de fonctions
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mathématiques) reliés par des interconnections qui transmettent les
informations retraitées d'un noeud à un autre.

Cette définition souligne la première propriété très importante d'un
réseau de neurones: n'importe quelle architecture est imaginable. Un premier
choix rencontré par le chercheur est de définir une architecture adaptée au
problème à traiter. Pour se faire, il doit se référer aux articles et recherches
spécialisées. Dans le cadre des recherches faites dans le domaine de l'évaluation
du risque de défaillance des entreprises, les chercheurs ne se sont concentrés

jusqu'à présent, à tort ou à raison, que sur le type de réseau le plus utilisé à

savoir le MLP - Multi-Layer Perceptron. Ce dernier est un système de neurones
multi-couches à un flux d'information unidirectionnel (feed forward) comme le

montre l'exemple de la figure 1 ci-après.

Le fonctionnement

MLP - Multi-Layer Perceptron
couche initiale
de neurones

(input layer)

couches cachées
de neurones
(hidden layers)

couche finale
de neurones
(output byer)

ndicateur 2

N12

Indicateur 3

Introduction des
informations

Résultat

Le réseau de neurones
présenté par la figure 1 est une
construction du type MLP 4-4-
3-1 ce qui définit le nombre de

couches et de noeuds par
couche. Le fonctionnement de

ce type de réseau est le suivant:
chaque noeud de la couche
initiale reçoit une information
d'un indicateur financier par
exemple. Cette information est
traitée mathématiquement par le

processeur et transmis à chaque
neurone de la couche suivante. Le neurone de la première couche cachée reçoit
de chaque neurone précédent l'information de sortie. Ces informations cumulées
sont alors pondérées par la fonction nodale et retransmises à tous les neurones
de la couche suivante. Cette procédure est répétée jusqu'à la couche finale qui
n'est représentée dans le cas présent que par un seul neurone. Dans l'exemple de

l'évaluation du risque de défaillance, le système sera codé de manière à dégager
une valeur de 0 lorsqu'une entreprise doit être classée parmi les entreprises
défaillantes et prendre une valeur de 1 si elle est assimilée à une entreprise non
défaillante. Pour que le système puisse fonctionner comme décrit, il est
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nécessaire de déterminer auparavant les pondérations pertinentes entre les

neurones par ce que l'on appelle l'entraînement du système.

L'entraînement du réseau de neurones

Par entraînement du réseau de neurones, on entend la phase
d'apprentissage qui est nécessaire au système pour reconnaître, à partir des

indicateurs initiaux, le classement des observations. Dans le cas du MLP, la

phase d'apprentissage est supervisée, c'est-à-dire que le système est contraint de

comparer le résultat attendu avec le résultat calculé. La différence entre ces
deux résultats est déterminée par l'algorithme de la règle delta généralisée qui se

base sur le critère des moindres carrées. L'algorithme procède en deux étapes.

Dans la première étape, l'algorithme calcule avec des pondérations
arbitraires les coefficients nodaux Xt en aval {forward propagation) et
détermine la différence entre le résultat attendu et le résultat calculé.

Dans la deuxième étape, l'algorithme procède à un calcul en amont
{back propagation). En partant de l'erreur calculée précédemment, il détermine
la correction nécessaire des pondérations pour diminuer l'erreur en question.
Ces itérations sont répétées jusqu'à ce que l'erreur atteigne un minimum. Mais
l'algorithme procède mécaniquement à des itérations et ne peut pas se rendre

compte lorsque le système commence à apprendre "par coeur" les résultats
attendus. Dans ce dernier cas, le système est "surentraîné" {overtrained) et

présente une précision quasi parfaite par rapport à l'échantillon de construction,
mais est rendu très instable, voir inefficace, par rapport au classement de

nouvelles observations.

Pour éviter ce genre d'inconvénient, la précision de classement est
aussi déterminée après chaque itération d'apprentissage sur la base d'un
échantillon dit de validation, différent de l'échantillon de construction.
L'évolution de la précision sur l'échantillon de validation et de construction est

observée en fonction des itérations. Tant que la précision de classement
mesurée à partir de l'échantillon de validation s'améliore parallèlement à

l'échantillon de construction, une itération complémentaire augmente l'efficacité
du réseau de neurones. En revanche, dès que la précision de classement mesurée
à partir de l'échantillon de validation se détériore, alors que celle déterminée sur
la base de l'échantillon de construction continue à s'améliorer, les itérations
doivent être arrêtées, faute de quoi le réseau de neurones finit par être
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"surentraîné". Les itérations peuvent aussi être arrêtées en tout temps. Par

exemple si l'optimum global ou une certaine précision prédéterminée a été
atteinte. Les dernières pondérations qui représentent le réseau de neurones au
niveau d'entraînement optimal seront gelées et le système est prêt pour traiter le
classement d'une nouvelle observation.

Le MLP possède la propriété avantageuse de converger toujours vers la
même imputation de pondérations, donc vers un même résultat. En revanche,
les réseaux de neurones avec des intégrations rétroactives {feedback) peuvent
converger vers des solutions différentes pour un même échantillon de
construction.

Une deuxième propriété, valable pour tous les réseaux de neurones, est

que le chercheur n'est jamais certain que le système converge vers une solution
optimale locale ou générale. Il doit alors procéder par essais à plusieurs
entraînements d'un réseau en changeant les pondérations de départ et vérifier les

résultats obtenus.

Lafonction de transfert

Chaque neurone
représente un processeur
mathématique qui reçoit les
informations (Xj.ij) des
neurones de la couche (,-)

précédente. Ces informations
sont dans une première étape
pondérées selon les poids
{Wf) calculés, si le réseau est

en phase d'apprentissage, et
selon les poids gelés, si le
réseau est opérationnel.

Commande d'un neurone

Information à traiter

Neurone

Resultat

X.,

Dans une deuxième étape, le cumul des informations pondérées est

transformé par une fonction nodale (f) qui définit la valeur (XiJ) dégagée pour
commander tous les neurones de la couche suivante (figure 2). La fonction de

transfert (f) généralement utilisée pour la détermination de la valeur de

commande est une fonction sigmoide (ou logistique) car cette dernière possède
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la propriété de dégager des valeurs entre 0 et 1 avec une très faible élasticité aux
valeurs extrêmes et une forte élasticité aux valeurs moyennes.

La fonction de transfert constime la troisième propriété importante d'un
réseau de neurones. En optant pour une fonction de tangente hyperbolique,
plutôt que pour une fonction linéaire par exemple, le comportement du système
sera profondément modifié. Le chercheur doit apporter alors un soin tout
particulier quant au choix de la fonction de transfert à considérer.

Les propriétés inhérentes d'un réseau de neurones

Le choix pratiquement illimité de l'architecture d'un réseau de neurones
et les paramètres à retenir rendent cet outil particulièrement flexible. Mais avec
l'augmentation de la complexité de construction, l'utilisateur doit être conscient
de deux propriétés.

La première est que la stabilité et l'aptitude à la généralisation du
modèle diminuent fortement. Cet effet indésirable est directement lié au
surentraînement et peut être explicité de la manière suivante:

Pour la construction d'un modèle d'évaluation du risque de défaillance,
un échantillon de cent entreprises défaillantes et non défaillantes est à

disposition. Le nombre d'indicateurs à disposition définit la couche initiale du
MLP et la couche finale ne nécessite qu'un neurone si le résultat attendu est

binaire, c'est-à-dire un classement défaillant et non défaillant par exemple. Si le

modéliste choisit une centaine de neurones pour constituer la couche
intermédiaire (couche cachée) de son réseau, alors le système pourrait associer dès

les premières itérations d'apprentissage un neurone à chaque entreprise. Le
réseau de neurone classera parfaitement l'échantillon de construction, mais sera
inefficace en tant que modèle général.

La deuxième propriété non négligeable est le temps d'entraînement très

long et l'augmentation de l'incertitude de trouver un optimum global lorsque la

complexité du réseau est trop importante.

Un autre avantage de la modélisation par le réseau de neurone réside
dans le fait que les indicateurs peuvent être des variables explicatives de toute
nature et n'ont pas besoin de présenter certaines conditions statistiques comme
c'est par exemple le cas dans l'analyse discriminante multivariée. Le modéliste
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doit simplement prendre le soin de normaliser les variables (centrées réduites

par exemple) pour éviter que le système s'optimise sur l'étendue et l'échelle de

ces dernières au lieu de s'optimiser sur leurs informations.

Malgré la puissance des modèles de classifications ou de prévisions, un
réseau de neurones a un inconvénient capital. Celui de ne pas permettre à

l'utilisateur de comprendre les relations entre les indicateurs et le résultat. Le
réseau de neurones doit être assimilé à une boîte noire {black box) dont seules les

informations à l'entrée et à la sortie sont observables. L'utilisateur n'a pas la

possibilité, comme dans le cas de l'analyse discriminante linéaire, de

comprendre l'influence des variables inépendantes sur le classement des

observations. Pour contourner cet inconvénient, Baetge et al. (1999) préconisent
d'utiliser l'analyse de sensibilité. Par cette dernière, l'utilisateur peut explorer la

sensibilité de l'information à la sortie en variant une ou plusieurs informations à

l'entrée. Il va sans dire que l'analyse de la sensibilité est complexe et limitée à la

représentation en trois dimensions.

La modélisation quasiment illimitée

Comme déjà mentionné plus haut, les réseaux de neurones donnent aux
chercheurs des possibilités de modélisation quasiment illimitées. Le réseau

MLP, Multi-Layer Perceptron, est un réseau de neurones classique décrit par
Rosenblatt10 (1962). Par sa construction unidirectionnelle et son algorithme
d'apprentissage, le MLP reste une méthode de modélisation relativement simple
ce qui explique son succès auprès des utilisateurs. Mais à côté du MLP, les

chercheurs ont développé plusieurs autres types de réseaux de neurones et

d'algorithmes qui sont présentés dans la littérature spécialisée: réseau de

Kohonen, réseau ART {Adaptive Resonance Theory), réseau de Hopfield,
réseau de Boltzmann, Cascor pour ne citer que quelques exemples. A priori,
certains auraient des propriétés très intéressantes pour traiter les problèmes
d'évaluation de défaillance des entreprises. C'est le cas du réseau à fonction
radiale {RBF, Radial Basis Function) et du réseau de neurones probabiliste (ou
bayesien) développés par Wasserman (1993) et Zell (1994). Par rapport au

MLP, le premier présente l'avantage d'une phase d'apprentissage sans itération.
Cette procédure diminue le temps d'apprentissage et évite de converger vers un
minima local. Le second présente un avantage par rapport au MLP et au RBF
car l'algorithme utilisé empêche un surentraînement du système. Dans ce cas,
l'échantillon de validation n'est pas nécessaire et peut être attribué à la
construction. Ceci est un avantage important dans le domaine de l'analyse des
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entreprises défaillantes où il est difficile de constituer un échantillon
d'entreprises défaillantes assez grand. Les outils informatiques modernes11 à

disposition des chercheurs permettent une combinaison (en parallèle, en série ou
en cascade) des différents types de réseaux. Par la création de ces nouveaux
types de réseaux de neurones, les chercheurs, dans le domaine du risque de

défaillance des entreprises, ont de nouvelles opportunités de recherches.

Avant de traiter la modélisation par l'analyse discriminante multivariée,
il est important de résumer les décisions qu'un modéliste de réseau de neurones
doit prendre: le type de réseau, éventuellement la combinaison de réseaux, le
nombre de couches, le nombre de neurones, la fonction de transfert, les

pondérations initiales, l'algorithme d'apprentissage à retenir et le nombre
d'essais à conduire. Dans cette enumeration, les paramètres secondaires, comme
le paramètre pour la précision de la mesure d'erreur ou le nombre d'itérations à

courir n'y figurent pas.

On doit bien admettre finalement que la construction d'un réseau de

neurones optimal est difficile.

L'analyse discriminante multivariée

L'analyse discriminante est une
méthode de classement par laquelle
les éléments d'un ensemble peuvent
être attribués à différents groupes
bien distincts selon une fonction
d'identification définie. Dans
l'analyse discriminante
multivariée, la fonction d'identification

(ou fonction discriminante)

est déterminée par au moins
deux indicateurs.

Différentes méthodes d'analyses
discriminantes

Analyse
discriminante

i

l ~1
univariée multivariée

l i

Test de
classification
dichotomique

i i
(indépendante d'une
| loi de distribution j

| dépendante d'une
loi de distribution

1

J i 1 i
| Unhart | | Kendall jquadratique | | linéaire j

Classification
avec un indice Classification avec plusieurs indices

Source J Baetge 1!

Il est important de rappeler qu'il existe plusieurs types d'analyses
discriminantes multivariées que nous pouvons classer selon le schéma de la

figure 3. Mais si les utilisateurs parlent généralement d'analyse discriminante
multivariée, ils sous-entendent souvent l'analyse discriminante multivariée
linéaire car cette dernière reste de loin la plus traitée dans la littérature et la plus
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utilisée dans le domaine de l'évaluation du risque de défaillance des entreprises.
Dans le développement qui suit, nous allons nous référer tout d'abord à la
méthode linéaire et ensuite à la méthode quadratique.

Le fonctionnement

La fonction discriminante est une fonction linéaire dont les variables
indépendantes (X,) représentent les indicateurs pertinents pour la description de

l'observation. Le résultat obtenu de cette fonction linéaire est un score (Z) qui
détermine le classement de l'observation. En prenant l'exemple de Altman
(1968), la fonction discriminante est construite à partir de ratios financiers (Xi)
représentant le financement, la stabilité, le rendement, le levier et la rentabilité
de l'entreprise:

Z 0,012*, + 0,014X, + 0,033Z3 + 0,006X4 + 0,999Z5

Si le score, calculé à partir de cette fonction discriminante, est inférieur
à une valeur de 1,81, alors l'observation sera classée dans le groupe des sociétés

défaillantes. Si un score de plus de 2,99 est atteint, alors l'observation sera
classée dans le groupe des sociétés non défaillantes. Altman a défini une zone
d'incertitude de classement lorsque le score calculé prend une valeur entre 1,81

et 2,99. Alors que l'application de la fonction discriminante est très simple, sa

construction demande une très bonne connaissance des techniques statistiques.

La construction d'unefonction discriminante

Comme pour l'établissement d'un réseau de neurones, le constructeur
doit tout d'abord définir un échantillon de construction. Ce dernier sera
constitué d'un premier groupe d'entreprises défaillantes et d'un second groupe
d'entreprises non défaillantes. Ensuite, le constructeur définit une batterie
d'indicateurs particulièrement apte à discriminer les deux groupes d'entreprises
de l'échantillon de construction. Mais par rapport au réseau de neurones, ces
indicateurs doivent présenter des conditions supplémentaires. Ils doivent être

indépendants entre eux, suivre une distribution normale et présenter une matrice
variance-covariance identique pour les deux groupes. Ces conditions limitent
fortement le choix des indicateurs et la détermination de ces derniers devient
une procédure fastidieuse. En revanche, l'établissement de la fonction
discriminante à partir des données de base est une méthode directe qui se base

sur le calcul de l'inertie statistique des observations. Cette méthode revient à
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Maximiser l'inertie Between

Minimiser l'inertie Within

maximiser l'explication de la différence entre les deux groupes (inertie between
SSB) sur la base des

indicateurs retenus dans le Le critère discriminant T (gamma)
modèle et en même temps à

minimiser la variance
inexpliquée (inertie within SSW).
Le critère discriminant gamma,

qui est le rapport entre la
variance expliquée et la
variance inexpliquée, est maximisé,

d'où les coefficients de

pondération de la fonction
discriminante (Z dans la
figure 4) peuvent être
calculées.

t.(r.

ir..-r,)

SSB ¦

¦

v ri
:y Hantes

Groupe, des
entreprises
défaillantes

Z=a0+a,*X,+a2*X2+.. +an*X„

Source Backhaus 1996

G=cerrtre de gravite
C=centroïdes des groupes

Figure 4

La fonction discriminante est alors celle qui explique, à travers les

indicateurs, au mieux la différence entre les deux groupes. L'inertie est une
mesure statistique qui est définie par le produit de la masse statistique et la
distance au carré de cette dernière par rapport au centre de gravité. Cette
distance statistique peut être mesurée selon plusieurs méthodes, la distance
Euclidienne14 ou la distance de Mahalanobis15 par exemple. Les coefficients de

pondération de la fonction discriminante varient suivant la distance statistique
retenue. Généralement, la distance de Mahalanobis est retenue pour déterminer
la fonction discriminante.

Lorsque la fonction discriminante est établie, le constructeur détermine
la valeur de séparation (point de séparation ou cut offpoint) de la fonction
discriminante. Cette valeur représente le score limite pour le classement d'une
observation dans un groupe. Ainsi, dépassant ce score limite, une entreprise sera
classée parmi le groupe des entreprises défaillantes et en dessous de ce score,
elle sera classée parmi le groupe des entreprises non défaillantes. Comme
présenté plus haut dans l'exemple de la fonction Z-score de Altman (1968),
plusieurs zones distinctes selon le niveau du risque de défaillance peuvent être
déterminées.
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Les caractéristiques d'une analyse discriminante multivariée linéaire

La détermination de la fonction discriminante ne nécessite que le calcul
de la maximisation du critère discriminant gamma. C'est une procédure stable,
le même résultat est obtenu à chaque calcul. De plus, la fonction discriminante
est une fonction linéaire facilement interprétable et applicable car le calcul du

score, la sommation des indicateurs pondérés, est transparent. Ces

caractéristiques font que l'acceptation de l'analyse discriminante multivariée
linéaire est très grande et présente un avantage certain par rapport au réseau de

neurones.

La fonction discriminante présente cependant aussi quelques
inconvénients.

Le premier inconvénient vient des conditions statistiques énumérées

plus haut limitant le libre choix des indicateurs. Les tests statistiques demandent
du temps et les indicateurs ne remplissant pas les conditions statistiques doivent
être abandonnés.

Le critère mathématique est une deuxième difficulté. L'information
utilisée dans l'analyse discriminante est basée sur des indicateurs qui sont pour
la plupart du temps des ratios. Ces derniers n'ont une valeur informative que si

le dénominateur ne tend pas vers zéro ou si le rapport d'un numérateur et d'un
dénominateur négatif ne peut pas être confondu avec le rapport entre deux
valeurs positives. Dans un réseau de neurones de tels problèmes sont évités à

l'aide d'un codage spécifique des indicateurs.

Une troisième difficulté réside dans le choix de la méthode à utiliser
pour l'établissement de la valeur de séparation. Suivant la méthode utilisée, la

précision de classement du modèle est sensiblement modifiée.

Un quatrième inconvénient non négligeable est la discussion de

l'hypothèse de linéarité entre les deux pôles, c'est-à-dire entre les entreprises
défaillantes et les entreprises non défaillantes. Si une telle linéarité est

acceptable, alors une échelle linéaire représentant les différents niveaux de

risques de défaillance peut être établie. Ainsi un système de score classant les

observations dans des niveaux de risques analogues à ceux définis par Standard

& Poor's ou Moody's par exemple, peut en être dérivé. Mais l'hypothèse de la
linéarité17 entre les deux pôles n'a jamais été démontrée. Dès lors, une telle
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manière d'établir un système de mesure des différents niveaux de risques de

défaillance est critiquable.

Finalement, on peut signaler qu'une fonction discriminante doit
présenter des coefficients de pondérations significatifs avec une contribution
relative équilibrée. Ces deux dernières conditions ne sont vérifiables que ex
post.

Ajoutons que l'analyse discriminante multivariée linéaire et le réseau de

neurones sont les deux des méthodes de traitement de données qui ne
fonctionnent pas dans le cas de données manquantes. Cette limitation technique
induit la suppression des observations dont les données sont incomplètes, ce qui
signifie une perte d'information par rapport à l'échantillon de base.

L'analyse discriminante multivariée quadratique

Comme le nom l'indique, la fonction discriminante multivariée
quadratique n'est plus du type linéaire mais du type quadratique et se présente,
dans le cas de deux indicateurs, Xi &X2, de la manière suivante:

Z Ûq + QyX j +0(2-^2 ~^" ^12 1 2
~^~ ^21 2 1

~^~ ^\\X[ ~^~ 022-^2

La complexité de la structure de cette formule quadratique augmente
avec le nombre d'indicateurs retenus. Pour cette raison, la formule est
généralement présentée sous forme matricielle dans la littérature18. Dès que des

méthodes quadratiques sont utilisées, l'avantage de la transparence se perd et le
modèle devient, comme dans le cas du réseau de neurones, une approche par la
"boîte noire". Une autre observation concernant la méthode quadratique a été

apportée par les recherches de Diamond (1976) et de Altman (1977). En
comparant la méthode linéaire avec la méthode quadratique, les deux études
concluent à la supériorité du point de vue précision de classification de la
méthode linéaire.

Un modèle d'analyse discriminante à niveaux multiples

Pour éviter les inconvénients d'une analyse discriminante quadratique,
mais tout en gardant un modèle non linéaire à l'esprit, la Banque de France19 a

construit un modèle discriminant à plusieurs niveaux. Ce dernier est semblable
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à l'algorithme de classification de Kendall20 et suit la logique d'un arbre de

décision. La procédure est la suivante:

A un premier niveau, une fonction discriminante définit si une
entreprise est considérée dans une situation normale ou incertaine Si

l'entreprise est classée dans le deuxième groupe, alors la prochaine étape
discriminante consiste à déterminer si l'entreprise étudiée se classe dans le

groupe des entreprises vulnérables ou dans le groupe des entreprises
défaillantes. Ainsi, il est possible d'ajouter plusieurs niveaux discriminants pour
affiner le modèle. Pour des raisons de confidentialité, les indicateurs utilisés et

la performance de cette technique ne sont pas divulgués par la Banque de

France.

Quel modèle choisir: le réseau de neurones ou l'analyse
discriminante multivariée?

Les caractéristiques présentées du réseau de neurones et de l'analyse
discriminante linéaire permettent de comparer les avantages et inconvénients
des deux méthodes. Dans les grandes lignes, le chercheur qui choisit le réseau
de neurones, opte pour une construction flexible du point de vue architecture du

modèle et indicateurs à retenir alors que celui qui opte pour l'analyse
discriminante linéaire choisit une méthode directe et transparente. Ces critères
de choix restent très subjectifs. Il serait utile de déterminer le choix à partir d'un
critère plus objectif celui de la précision de classement du modèle discriminant
utilisé.

Les études comparatives basées sur la précision de classement mettant
au concours la méthode discriminante multivariée linéaire et le réseau de

neurones sont plus que contradictoires. Dans les recherches de Odom et Sharda

(1990), Zhang et al. (1999) et John et al. (2000), la précision du réseau de

neurones est plus élevée que celle de l'analyse discriminante multivariée linéaire
alors que les recherches de Krause (1993) et Altman et al. (1994) disent le
contraire. D'autres études, comme celle de Erxleben (1992) et West (2000) par
exemple, concluent une précision identique des deux méthodes discriminantes.
Le critère de la précision de classement d'un modèle discriminant ne peut être

pris en considération que sous certaines conditions et il dépend fortement de la

méthodologie utilisée.
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La précision de classement d'un modèle discriminant

L'objectif d'un modèle discriminant, dans le cas présent dans le domaine
de l'évaluation du risque de défaillance des entreprises par un réseau de

neurones ou par l'analyse discriminante multivariée linéaire, est le classement
des entreprises selon les deux groupes, entreprises défaillantes et entreprises
non défaillantes. La précision de classement d'un modèle discriminant peut être
déterminée en comparant le classement effectué par le modèle discriminant avec
la situation réelle de l'entreprise, il y a quatre cas de figures possibles.

Premier cas: une entreprise réellement non défaillante est classée par le
modèle discriminant parmi les entreprises non défaillantes.

Deuxième cas: une entreprise réellement défaillante est classée par le
modèle discriminant parmi les entreprises défaillantes.

Dans ces deux premiers cas, le modèle classe correctement les
observations.

Troisième cas: une entreprise réellement défaillante est classée par le

modèle discriminant parmi les entreprises non défaillantes.

Ce troisième cas représente un classement incorrect par le modèle que
l'on appelle erreur du type I (ou alpha).

Quatrième cas: une entreprise réellement non défaillante est classée par
le modèle parmi les entreprises défaillantes.

Ce classement incorrecte représente l'erreur du type II (ou bêta).

Le nombre total d'entreprises incorrectement classées peut être
représenté par la somme des erreurs du type I et II. La précision de classement
d'un modèle discriminant est mesurée à l'aide de l'erreur de classement. Plus

cette dernière diminue, plus la précision de classement du modèle discriminant
augmente ce qui augmente en même temps la signification statistique du
modèle discriminant utilisé.

L'intérêt de la précision de classement, donc la minimisation de l'erreur
de classement d'un modèle discriminant, est double. D'une part, la précision de
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classement peut être utilisée pour la construction d'un modèle discriminant par
des algorithmes minimisant cette erreur, et d'autre part, elle permet des études

comparatives. Minimiser l'erreur de classement soulève pourtant une première
question importante: "Quel type d'erreur faudrait-il minimiser?". A ce sujet, il
n'existe pas une unité de doctrine dans les recherches publiées, mais il y a une
tendance à retenir la minimisation de l'erreur du type II pour un niveau de

l'erreur du type I prédéfini23.

Le critère de l'erreur totale ne devrait en tout cas pas être retenu si le
nombre d'observations des deux groupes, entreprises défaillantes et entreprises
non défaillantes, ne sont pas identiques. Au lieu de minimiser l'erreur de

classement, certains auteurs24 proposent de minimiser le coût occasionné par
une erreur de classement. Le coût occasionné par le classement d'une entreprise
défaillante dans le groupe des entreprises non défaillante (type d'erreur I) n'est

pas identique au coût induit par l'erreur du type IL

La deuxième question se rapporte au type d'échantillon à utiliser pour
mesurer la précision de classement. Si l'erreur de classement est estimée sur
l'échantillon de construction du modèle discriminant, alors la précision de ce
dernier sera fortement biaisée. Pour éviter une telle surévaluation de la précision
de classement, le modèle discriminant doit être testé sur un échantillon
indépendant à l'échantillon de construction mais présentant les mêmes

caractéristiques que ce dernier. De telles conditions ne peuvent être réunies que
dans des études comparatives spécifiques, ce qui signifie que des modèles issus
de différentes recherches ne sont pratiquement pas comparables.

Le choix du modèle discriminant dépend de l'objectif

Le réseau de neurones et l'analyse discriminante multivariée linéaire
sont les deux des méthodes discriminantes modernes et performantes qui
atteignent une précision de classement autour de 80% (taux d'erreur total
environ de 20%), mesuré sur un échantillon indépendant. Si le choix est porté
sur l'une ou l'autre de ces deux techniques, celui-ci est défini par l'objectif que
vise l'utilisateur. Si ce dernier désire par exemple baser sa politique de crédit sur
un outil discriminant, alors l'analyse discriminante multivariée linéaire devrait
être retenue en raison de sa transparence. Si en revanche l'utilisateur désire
automatiser un traitement préliminaire des dossiers de crédit en utilisant un
mixte d'indicateurs sous forme de variables continues et qualitatives et / ou
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désire assurer la confidentialité quant au traitement des données, alors le réseau
de neurones serait considéré.

Le choix des indicateurs; une difficulté au-delà des techniques
discriminantes

Le réseau de neurones et l'analyse discriminante multivariée linéaire ne
sont que deux exemples de méthodes discriminantes possibles par lesquelles,
comme pour toute autre méthode discriminante, la meilleure séparation possible
des groupes, entreprises défaillantes et entreprises non défaillantes, est
recherchée en minimisant l'erreur de classement. Ce que l'on oublie dans cette
définition, c'est le fait qu'une méthode discriminante ne minimise l'erreur de
classement que par rapport aux indicateurs que le chercheur ou l'utilisateur a

bien voulu retenir. Le plus souvent, le choix de ces indicateurs reste très
subjectif.

Sur 17 recherches25 concernant l'analyse discriminante, 14 fois les
chercheurs ont choisi les indicateurs retenus sur des critères telles que les

statistiques (le cas de l'analyse discriminante multivariée linéaire), les

mathématiques, la fréquence d'utilisation d'un ratio par des analystes financiers
et l'utilisation des ratios dans une étude précédente ou par rapport à une famille
de ratios.

Dans la recherche représentative et récente de Hüls (1995), 259 ratios
étaient définis initialement selon le critère de l'importance financière, la
fréquence d'utilisation dans les rapports annuels, le pouvoir discriminant par
rapport aux études précédentes et l'intérêt des auteurs de la recherche. Après une
ébauche par rapport aux conditions statistiques et mathématiques, 75 des 259
indicateurs devaient être éliminés. Les 181 indicateurs restants étaient alors
soumis à une analyse typologique et pouvaient être classés selon 7 familles
d'indicateurs distincts. A partir de ces indicateurs de base, 27 fonctions
discriminantes ont été construites dont deux avec une précision de classement
d'environ 80%. Avec 181 indicateurs au départ, le nombre de combinaisons26

possibles pour la construction d'un modèle discriminant est de 3.06* 1056!

Trouver parmi ce nombre de modèles possibles ceux qui minimisent l'erreur de

classement est tout simplement une tâche impossible. Les 27 fonctions traitées
dans la recherche de Hüls (1995) ne représentent qu'une partie infinitésimale.
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Jusqu'à présent, les recherches ne répondent pas à la question des

indicateurs à retenir dans un modèle discriminant, même s'il est possible de

dégager quelques tendances. Par exemple, les ratios de flux sont des indicateurs
bien plus discriminants que les ratios de stock et les indicateurs basés sur des

indices ou représentant une croissance n'apportent que peu de contribution dans

un modèle discriminant. A défaut d'indications plus précises sur le choix des

indicateurs, des chercheurs comme Beaver (1966) et Blum (1974) se fondent
sur le modèle théorique du flux de trésorerie en liant ce dernier avec la
défaillance d'une entreprise. Mais ces premiers modèles se basant sur des

concepts théoriques n'ont pas une précision de classement supérieure aux
modèles qui se construisent sur un grand nombre d'indicateurs.

La défaillance de l'entreprise

Une théorie générale de la défaillance de l'entreprise, qui pourrait
indiquer les variables pertinentes à retenir dans un modèle discriminant, n'existe

pas. Cette lacune est directement liée au critère même de la défaillance puisque
ce dernier n'est pas défini universellement. Le plus souvent, il est assimilé à la

faillite ou au redressement judiciaire. Mais ces derniers sont des mesures
juridiques et ne peuvent pas être liés objectivement à une défaillance
économique d'une entreprise. Cette dernière reste encore à définir.

Conclusion

Dans le domaine de l'évaluation du risque de défaillance de l'entreprise,
le réseau de neurones comme l'analyse discriminante multivariée linéaire sont
des outils modernes et performants utilisés par les plus grandes institutions
financières. Mais faute d'une théorie générale de défaillance des entreprises et

l'impossibilité de traitement de toutes les combinaisons possibles de modèles
discriminants, les utilisateurs doivent se contenter de solutions particulières.

Les recherches dans les domaines du réseau de neurones se dirigent vers
l'application des nouveaux types de réseaux (RBF, bayesien, etc.) ou vers le

codage plus spécifique des indicateurs de défaillance. Dans le domaine de

l'analyse discriminante multivariée linéaire, les recherches se concentrent plutôt
sur des modèles à plusieurs niveaux ou à plusieurs segments industriels.
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Indépendamment des méthodes discriminantes, les recherches autour
des indicateurs et d'une théorie spécialisée sont primordiales. Par exemple, des

modèles acceptant des indicateurs qualitatifs27 sont actuellement étudiées.
Suivant la méthode discriminante utilisée, un modèle mixte pourrait être
imaginé. Dans le cadre de l'UERCC de l'Ecole des HEC à Lausanne, nous nous
concentrons plus particulièrement sur la question du choix des indicateurs par
rapport à une modélisation théorique de l'évaluation économique d'une
entreprise. Ces indicateurs peuvent être traités par les deux méthodes présentées
dans cet article ainsi que par un outil qui serait apte à traiter le problème des

données manquantes, le PLS 2 (Multivariate Partial Least Square Regression).
Cette approche ouvrira de nouvelles dimensions dans la modélisation de

l'évaluation du risque de défaillance des entreprises.
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