Zeitschrift: Revue suisse de photographie

Herausgeber: Société des photographes suisses

Band: 14 (1902)

Artikel: Über die Lage und die Grösse der photographischen Bilder

Autor: Scheffler-Schoenenberg, Hugo

DOI: https://doi.org/10.5169/seals-527085

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 28.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Über die Lage und die Grosse

photographischen Bilder

von Hugo Scheffler-Schenenberg.

Die Güte und Anwendbarkeit der photographtschen Objektive ist wesentlich bedingt durch die zweckmässige Wahl der Linsenkrümmungen, Linsendicken, Luftabstände und Glassorten. Immerhin haben die hiermit hinzielenden Rechnungen nur den Zweck, Abweichungen zu beheben, welche sich durch die Notwendigkeit ergeben, weitgeöffnete Lichtbündel und sehr schief gegen die optische Achse einfallende Lichtstrahlen zu verwenden. Die ersten führen zur Konstruktion der lichtstarken Objektive, die letzten zu den Weitwinkeln. Beschränkt man sich aber auf die Abbildung von Achsenpunkten und von Punkten von unmittelbarer Achsennähe und lässt man als abbildende Strahlen nur solche zu, die mit der Achse sehr geringe Winkel bilden oder praktisch gesprochen: hat man Objekte, welche unter sehr geringem Gesichtswinkel vom Objektiv aus erscheinen und blendet man die Lichtstrahlen durch eine Zentralblende bezw. durch die Linsenränder selbst sehr stark ab, dann wird durch jede beliebige Zusammenstellung von Linsen, deren Krümmungsmittelpunkte

auf derselben Geraden, der optischen Achse, sich befinden, eine scharfe, eindeutige Abbildung bewirkt. Das Nähere wird den Gegenstand dieses Aufsatzes bilden; es möge von vorn herein nochmals betont werden, dass die Aufhebung der angegebenen Einschränkungen, welche in den praktisch verwertbaren Objektiven notwendig wird, nichts an den Ergebnissen ändert, welche wir hier finden werden, soweit die Lage und die Grösse der Bilder in Frage kommt. Daher hat die Betrachtung, welcher wir folgen wollen, nicht nur ein theoretisches, sondern ein hervorragendes praktisches Interesse.

Wie Gauss in seinen "Dieptrischen Untersuchungen" gezeigt hat, werden bei unseren Einschränkungen, alle von einem Punkte ausgehenden Lichtstrahlen nach den Brechungen an den einzelnen Linsenflächen immer wieder in einem Punkt vereinigt und somit der gesamte Objektraum eindeutig in dem Bildraum abgebildet, so dass jedem Objektpunkte ein und nur ein Bildpunkt entspricht. Um zu einem beliebigen Objektpunkte den Bildpunkt zu finden, ist nicht die Kenntnis aller einzelnen brechenden Flächen und aller Glasarten, aus welchen die Linsen bestehen, ebenso wenig die Kenntnis aller Linsendicken und Luftabstände nötig, sondern die ganze Wirkungsweise lässt sich angeben, wenn vier Elemente festsstehen. Sie schrumpfen in unserem Falle sogar zu drei Elementen zusammen, weil beim photographischen Objektiv die Lichtstrahlen aus der Luft herkommen und nach Durchsetzung des Apparats wieder in die Luft austreten. Allerdings würde die rechnerische Ermittlung der Lage dieser Elemente die Kenntnis sämtlicher Einzeldaten voraussetzen, aber sie lassen sich auch durch praktische Messungen auffinden, die für den praktischen Photographen sich noch zu einem bequemen, später näher anzugebenden Verfahren noch vereinfachen lassen.

Jedes zentrierte Linsensystem besitzt zwei Ebenen H₁ und H₂, die senkrecht zur optischen Achse stehen, die beiden Hauptebenen, welche sich folgendermassen entsprechen! Betrachtet man einen Punkt von H₁ als Objecktpunkt, so liegt der zugehörige Bildpunkt in H₂ gleichweit von der Achse entfernt. Objektpunkt und Bildpunkt liegen ausserdem stets — nicht nur in diesem Falle — in derselben durch die optische Achse gelegten Ebene, so dass die Konstruktion immer in diesem ebenen Schnitte ausgeführt werden kann.

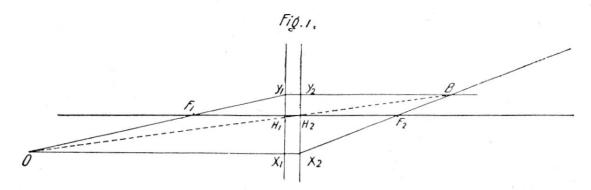
Dem Objektpunkte X in H₁ entspricht daher der Bildpunkt X₂ in H₂ (Fig. 1); H₁ und H₂ sind die ersten beiden Elemente, welche nach ihrer Lage bekannt sein müssen. Ausserdem ist noch nötig die Kenntnis des Bildpunktes, zu welchem die parallel zur Achse ins Objektiv eintretenden Lichtstrahlen vereinigt werden. Dieser Punkt auf der Achse heisst der zweite Brennpunkt und wird mit F₂ bezeichnet: Er entspricht als Bildpunkt dem unentlich fernen Objektpunkte auf der Achse. In dem Falle, welchen das photographische Objektiv darstellt, liegt F₂ stets — im Sinne der Lichtbewegung gerechnet — hinter H₂.

Die Bekanntschaft mit der Lage der drei Elemente H_1 , H_2 und F_2 genügt in unserem Falle vollständig, um zu jedem Objektpunkte den zugehörigen Bildpunkt aufzusuchen. Es existiert nämlich noch ein zweiter Punkt F_1 , der erste Brennpunkt, welcher ebenso weit vor H_1 als F_2 hinter H_2 liegt. Seine Lage ist also aus H_1 , H_2 und F_2 von selbst gegeben und seine Bedeutung ist gewissermassen die entgegengesetzte von der Bedeutung des zweiten Brennpunktes: alle Lichtstrahlen, welche durch F_1 ins Objektiv eintreten, verlassen es parallel zur optischen Achse. Wir haben demnach die folgende Konstruktion des Bildpunktes zu einem gegebenen Objektpunkte (Fig. 1): Wir ziehen von O eine Linie parallel zur Achse, welche H_1 in X_1 , H_2 in X_2 schnei-

APRÈS LA PLUIE

Phot. Ph. et E. Link, Zurich.

det und ziehen X_2F_2 . Ausserdem ziehen wir OF_1Y_1 und parallel zur Achse Y_1Y_2 . Der Schnittpunkt von X_2F_2 und Y_1Y_2 , der Punkt B, ist der gesuchte Bildpunkt, wie sich aus dem Vorangehenden sofort ergiebt. Dem parallel zur Achse eintretenden Strahl entspricht ein durch F_2 austretender und weil er H_1 in X_1 schneidet, muss der austretende H_2 in X_2 treffen. Für den zweiten Strahl, welchen wir von O ausgehend uns vorstellen, ist ebenso leicht zu zeigen, dass Y_1Y_2 der austretende Strahl ist. Da nun auf X grund der Gaussischen Untersuchungen *alle* von einem Objektpunkte ausgehenden Lichtstrahlen sich in einem Bildpunkte vereinigen, so muss B dieser Punkt sein.



Die Punkte H₁ und H₂, in welchen die Hauptebenen die optische Achse schneiden, haben in unserem Falle noch eine andere Bedeutung, welche wir erkennen, wenn wir die Linien OH₁ und BH₂ ziehen, die sich als Strahlen offenbar entsprechen, da H₁ und H₂ entsprechende Achsenpunkte sind. Es verhält sich

$$F_1 H_1 : OX_1 = Y_1 H_1 : Y_1 X_1 \text{ und}$$

 $F_2 H_2 : BY_2 = X_2 H_2 : X_2 Y_2.$

Die erste Proportion ergiebt die Produktengleichung:

$$F_1 H_1 \times Y_1 X_1 = OX_1 \times Y_1 H_1$$
; die zweite:
 $F_2 H_2 \times X_2 Y_2 = BY_2 \times X_2 H_2$.

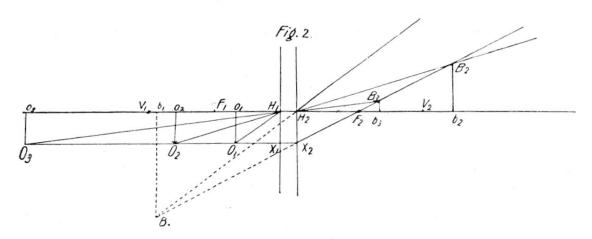
Da nun aber $F_1 H_1 = F_2 H_2$ und $Y_1 X_1 = Y_2 X_2$ ist, so ist daher $OX_1 \times Y_1 H_1 = BY_2 \times X_2 H_2$ oder als Proportion

geschrieben $OX_1: X_2 H_2 = BY_2: Y_1 H_1$. Nach Einsetzung der gleichgrossen Strecken ergiebt sich hieraus:

 $OX_1: X_1H_1 = BY_2: Y_2H_2$, ferner die Aehnlichkeit der Dreiecke OX_1H_1 und BY_2H_2 und schliesslich die Parallelität der Linien OH_1 und BH_2 .

Optisch gesprochen heisst dies: dem eintretenden Strahle OH₁ eutpricht der parallele Austrittsstrahl durch den Punkt H₂. Man kann daher für die Konstruktion des Bildpunktes B, welcher dem Objektpunkte O entspricht, auch die Strahlen OH₁ und BH₂ bequem mit heranziehen.

Betrachten wir jetzt die Aenderung der Lage des Bildpunktes, wenn der Objektpunkt O seine Lage ändert (Fig. 2).

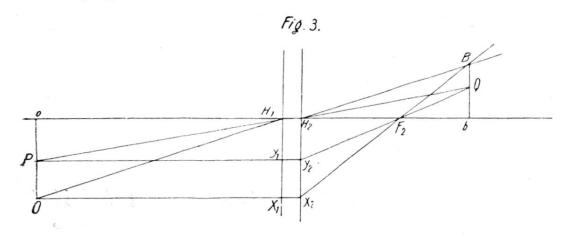


Wir betrachten drei Objektpunkte O_1 , O_2 , O_3 , welche auf demselben zur Achse parallelen Strahl so liegen, dass ihre Projektion auf die Achse: 1) innerhalb der Streke H_1F_1 , 2) zwischen F_1 und V_1 , wobei $F_1V_1 = F_1H_1$ ist, endlich 3) ausserhalb V_1 liegt. Die zugehörigen Bildpunkte liegen dann auf dem Strahle X_2F_2 . Wie man mit Benutzung der Strahlen OH am einfachsten sieht, haben die Bildpunkte die in Fig. 2 durch B_1 , B_2 und B_3 gekennzeichnete Lage.

Wir sehen, dass sich die von O₁ aus ins Objektiv tretenden Lichtstrahlen nach dem Austritte nicht schneiden, sondern auseinandergehen, dass dagegen die von O₂ und O₃ her eintretenden Strahlen nach dem Austritte Schnittpunkte liefern, die Projektion von B₂ auf der Achse liegt dabei aus-

serhalb V_2 , dem V_1 entsprechenden Punkte hinter dem Objektiv, die Projektion von B_3 liegt zwischen F_2 und V_2 .

Die Deutung wird übersichtlicher, wenn wir an Stelle der Objektpunkte O die zur Achse senkrechten Objektlinien Oo ins Auge fassen. Den Objektlinien Oo entsprechen alsdann die Bildlinien Bb, welche gleichfalls senkrecht zur Achse stehen. Denn (Fig. 3) ziehen wir von irgend einem Punkte auf Oo, P, die Parallele zur Achse PY₁ Y₂ und dann Y₂ F₂,



welches Bb in Q schneidet, ziehen wir ferner PH₁ und QH₂, dann ist:

 $\mathbf{B}b: \mathbf{O}o = \mathbf{H}_2b: \mathbf{H}_1o \text{ und weil } \mathbf{O}o = \mathbf{H}_1\mathbf{X}_1 = \mathbf{H}_2\mathbf{X}_2 \text{ ist,}$

 $Bb: Oo = F_2b: F_2H_2$. Es ist aber auch

 $\mathbf{Q}b: \mathbf{H_2}\,\mathbf{Y_2} = \mathbf{F_2}b: \mathbf{F_2}\,\mathbf{H_2}$ und weil $\mathbf{H_2}\,\mathbf{Y_2} = \mathbf{H_1}\,\mathbf{Y_1} = \mathrm{PO}$ ist,

 $Qb: Po = F_2b: F_2H_2$, also schliesslich

 $Qb: Po = H_2b: H_1 O$. Daraus folgt, dass auch PH_1 parallel zu QH_2 , also Q der Bildpunkt zu P ist.

Gehen wir jetzt noch einmal auf die in Fig. 2 dargestellten Verhältnisse zurück, so folgt, dass einer Objektgeraden $O_3 o_3$ ausserhalb V_1 die Bildgerade $B_3 b_3$ zwischen F_2 und V_2 entspricht der Objektgeraden $O_2 o_2$ dagegen zwischen V_1 und V_2 die Bildgerade V_3 0 ausserhalb V_4 1. Lassen wir also die Objektgerade von einem sehr weit ge-

legenen Punkte aus nach der ersten Hauptebene bis $\mathbf{F_1}$ hin wandern, so wandert die Bildgerade von dem zweiten Brennpunkte aus in der gleichen Richtung ins Unentliche. Die Zeichnung lässt uns ferner erkennen: So lange die Objektgerade vor dem Punkte V_1 liegt, ist das Bild verkleinert, rückt sie in den Punkt V_1 hinein, dann liegt die Bildgerade symetrisch in V_2 und hat dieselbe Grösse, geht sie von V_1 auf F_1 zu, so ist das Bild vergrössert. Sobald die Objektgerade über F_1 hinausrückt, existirt ein auffangbares Bild überhaupt nicht mehr.

Die photographischen Objektive verwerten im allgemeinen den ersten Fall, in welchem das Objekt in der Strecke zwischen V₁ und Unendlich liegt, das Bild demnach zwischen V₂ und F₂ entsteht und verkleinert ist. Je stärkere Vergrösserung man erzielen will, desso näher muss man mit dem Objekte an den Punkt V₁ herangehen, im Punkte V₁ selbst erhält man das Bild in natürlicher Grösse.

Der letzte Umstand liefert das namentlich für symmetrische-Objektive besonders gut verwendbare Verfahren zur Bestimmung der Lage der Brennpunkte, auf welches oben hingewiesen wurde. Bei symmetrischen Objektiven, d. h. solchen welche aus zwei gleichen wie Bild und Spiegelbild gestellen Hälften der Linsenkombinationen bestehen, liegen die Hauptebenen H1 und H2 symmetrisch gegen den geometrischen Mittelpunkt des Systems und im allgemeinen so nahe an diesem, dass die Entfernung gegen die Entfernung des Brennpunktes vernachlässigt werden kann. Man benutzt als Objekt eine kurze Gerade, welche senkrecht zur optischen Achse an eine solche Stelle gebracht wird, dass das auf der Mattscheibe aufgefangene Bild derselben genau dieselbe Grösse erhält: Die Entfernung der Mattscheibe von dem Orte der Objektgeraden liefert alsdann die Strecke V₁ V₂ also sehr angenähert die vierfache Grösse H₂F₂, das ist die vierfache Brennweite. Damit sind die prakund Grösse der Bilder gefunden. Die Vergrösserung bezw. in unserem Falle Verkleinerung ist direkt gegeben durch das Verhältnis der Strecken $H_2b:H_1o$, also bei symmetrischen Objektiven den vom geometrischen Mittelpunkte aus gemessenen Bild- und Objektentfernungen. Von den Punkten H_1 und H_2 aus erscheinen die einander entsprechenden Punkte des Objektes und des Bildes unter den gleichen Winkeln, also in perspectivisch ähnlicher Lage.

Auf die Mödifikationen, welche bei den speziellen photographischen Apparaten für Telephotographie, Mikrophotographie u. a. eintreten, soll in diesem Aufsatze nicht näher eingegangen werden.

