Zeitschrift: Regio Basiliensis : Basler Zeitschrift fir Geographie

Herausgeber: Geographisch-Ethnologische Gesellschaft Basel ; Geographisches
Institut der Universitat Basel

Band: 34 (1993)

Heft: 3

Artikel: Nichtlineare Wachstumsprobleme und Chaos : Computeranwendungen
im Geographieunterricht

Autor: Meier, Hanspeter

DOl: https://doi.org/10.5169/seals-1088592

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 15.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-1088592
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

REGIO BASILIENSIS 34/3 1993 S.163-173

Nichtlineare Wachstumsprobleme
und Chaos

Computeranwendungen im Geographieunterricht

Hanspeter Meier

Zusammenfassung

Nichtlineares Wachstum, Riickkoppelung und Chaos sind Begriffe, mit welchen sich die
Schiilerinnen und Schiiler heute auseinandersetzen sollten. Der Autor zeigt, wie im Geogra-
phieunterricht (fécheriibergreifend mit Informatik, Mathematik oder Physik) anhand des
Wachstums von Populationen mit Hilfe eines Computers und einer Tabellenkalkulation ein
einfacher erster Zugang zu diesen Begriffen und zur neuen Denkweise gefunden wird.

Einleitung

Es liegt im Wesen des Menschen, dass er moglichst die ganze Natur nach streng
naturwissenschaftlichen, v.a. mathematischen Gesetzen erfassen und verstehen will.
Zugleich mochte er mit diesen Erkenntnissen seine Zukunft und diejenige der Welt, in
der er lebt, prognostizieren und “vorausberechnen”.

Der Eindruck des Allgemeingiiltigen und des Vorausberechenbaren tduscht. Seit
wenigen Jahren befinden wir uns in einer eigentlichen Revolution unseres Weltbildes.
Peitgen (19923) umreisst diese folgendermassen:

Adresse des Autors: Hanspeter Meier, Lehrer Wirtschaftsgymnasium und Kantonale Handelsschule
Basel; Pfaffenmattweg 75, 4132 Muttenz
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Abb. 1 Riickkoppelungsmodell
fiir die Zinseszinsrechnung.

Kyp

- I K
Kp+1 =Kp+ —T00 n+l

“Chaostheorie und fraktale Geometrie haben Naturwissenschaftler und Mathemati-
ker mit einer Reihe von Uberraschungen konfrontiert, deren Konsequenzen im Verhiilt-
nis zu den Angeboten einer sich oft omnipotent gebenden Wissenschaft und Technik
zugleich erniichternd und dramatisch sind:

0 Zahlreiche Phdnomene sind trotz strengem naturgesetzlichem Determinismus prin-
zipiell nicht prognostizierbar.

o Es gibt Struktur im Chaos, die sich bildlich in phantastisch komplexen Mustern —
den sogenannten Fraktalen — ausdriickt.

0 Meistleben Chaos und Ordnung nebeneinander, und der Ubergang von der Ordnung
ins Chaos folgt strengen Fahrplidnen.

a Die bahnbrechenden Entdeckungen wurden erst durch Computerexperimente mog-
lich, d.h. eine von vielen beargwohnte Technologie zeigt uns ihre eigenen und
zugleich auch unsere prinzipiellen Grenzen”.

Der Geographieunterricht erméglicht im Rahmen der Bevolkerungsgeographie
einen relativ leichten Zugang zu den Problemen der Chaos-Theorie. Ausgehend von
einfachen Wachstumsbetrachtungen anhand der Erdbevélkerung bzw. der Bevolkerung
der Schweiz werden die Probleme des exponentiellen Wachstums untersucht. Die
Begrenzung des Wachstums soll anhand der nichtlinearen Verhulstgleichung dargestellt
und diskutiert werden. Anschliessend wird mit der Verhulstgleichung und grossen
Wachstumsraten ein erster Zugang zum Chaosproblem erméglicht.

Nichtlineare Wachstumsvorginge

Bevolkerungswachstum mit Zinseszins-Rechnung

Das Bevolkerungswachstum ist ein brennendes Problem unserer Zeit. Gerade die
Voraussagbarkeit der Entwicklung und das Verhalten der Welt- bzw. Regionalbevol-
kerung stellt ein ganzes Spektrum von Problemen. Diese kénnen mit einfachsten
mathematischen Hilfsmitteln und einer Tabellenkalkulation (Excel, Lotus, Quattro Pro
etc.) wertmissig und grafisch dargestellt und mit den Schiilerinnen und Schiilern
diskutiert werden.

Ausgangspunkt unserer Betrachtungen sei das Zinsrechnen (Kapital = Bevolkerung,
Zins = Wachstumsrate in %):
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Wir legen zu Beginn eines Jahres (1. Januar) ein Kapital Ko = 1000.—- Fr. auf ein
Sparheft bei einer Bank zu einem Zinssatz von p = 2 %. Der lineare Zins Zwihrend
eines Jahres betridgt somit Z; _Lip_ 10002 20.—. Dieser Zins wird jetzt zum
Kapital geschlagen: Ki= Ko + Z1=1020.— Fr. Fiir das neue Jahr hat sich also das
Ausgangskapital verdndert und somit wird sich zwangsldufig auch der Jahreszins
verdndern. Dieser Prozess wird als Riickkoppelung (Iteration, rekursiver Prozess)
bezeichnet. Dabei dient jeweils das Resultat (Output) des Rechenganges als Basis
(Input) fiir den ndchsten Rechenvorgang etc. (Abb. 1).

Wir wollen mit Hilfe einer Tabellenkalkulation die Auswirkungen einer Riickkop-
pelung auf das Wachstum der Weltbevélkerung untersuchen. Dazu erstellen wir ein
Arbeitsblatt (Abb. 2) mit zwei Spalten. Die erste Spalte A ist fiir die Jahreszahlen, die
zweite Spalte B fiir die Bevolkerungszahlen reserviert. In die erste Zelle A5 setzen wir
die Ausgangsjahreszahl, z.B. 1900, in die Zelle B6 die Ausgangsbevolkerung Ko =
1652 Mio und in die Zelle E2 eine Wachstumsrate vonr = 1.2 %.

Um die restlichen (beliebigen) Jahreszahlen zu entwickeln, lassen wir diese durch
den Computer im Arbeitsblatt ausrechnen: In die Zelle A6 schreiben wir = A5+1’
(Excel-Format). Die restlichen Jahreszahlen konnen durch Kopieren erzeugt werden.
Beim Kopieren von Rechenvorschriften werden alle Zellenadressen automatisch so
verindert, dass die relativen Beziige erhalten bleiben (relative Adressierung).

Ahnlich gehen wir bei der Berechnung der Bevélkerung vor. Hier miissen wir jedoch
beriicksichtigen, dass jede Rechenvorschrift Bezug auf die Zelle E2 (Wachstumsrate)
nimmt. Wir miissen deshalb die Variable r absolut adressieren (im Excelformat mit dem
Zeichen ’$’): Wir schreiben in die Zelle B6: *=B5+(B5*$E$2/100)’ und kopieren diese
Formel in die iibrigen Zellen. Anschliessend stellen wir die Tabelle grafisch dar
(Abb. 3). Jetzt konnen wir mit verschiedenen Wachstumsraten, Ausgangsbevdlkerun-
gen und Zeitrdumen unter-
schiedliche Szenarien und
Prognosen berechnen und dis-
kutieren. An dieser Stelle | Bevélkerungswachstum mit Zinseszinsrechmung

ERDBEV.XLS:1

muss mit den Schiilerinnen Wechstumsrater =
und Schiilern unbedingt der
. - Beviolkerung: Bevolkerung
Unterschied des Zinsrechnens in Mio. effektiv  |Formel Fiir Spalte B
i . 852 1852
zum echten "Bevolkerun?s _ L2 e
wachstum, miissen die Verin- 1692 =B6+B67($E$2100)

: 1712 “B7+ B $E$AH100)
derung der Wachstumsraten . 5 - BB BB E£3100)
im Laufe der Zeit und weitere ‘ =S?U+B|§1?[§g§%o]

% o - = + ™
die Bevolkerungszahl beein-

flussende Effekte, z.B. die 4 eic.
Migration, besprochen wer- ~
den.

Abb. 2 Arbeitsblatt zur Bevol-
kerungsentwicklung mit Zinses-
zinsrechnung.

—l = === =] ]
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Bevilkerung in Mio.

10000 + 12000 +
9000 + Prognose mit r=1.2 Prognose mit r=0.78
10000 +
8000 +
7000 g 8000 +
=
6000 =
o0
5000 S 6000 +
3
4000 %’
& 4000 +
3000
2000 effektive Bevolkerung
2000 +
1000 +
0 -+ 0
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Abb. 3 (links) Grafische Darstellung der im Arbeitsblatt berechneten Weltbevolkerung.
Abb. 4 (rechts) Grafische Darstellung der im Arbeitsblatt berechneten Bevolkerung der Schweiz.

Zinseszins-Rechnung und exponentielles Wachstum

Mit mathematisch weiter fortgeschrittenen Schiilerinnen und Schiilern kann diesel-
be Untersuchung mit Hilfe der Zinseszinsrechnung (siehe Kasten) durchgefiihrt werden.
Anhand dieser Zinseszinsrechnung kann das exponentielle Wachstum der Bevolkerung
diskutiert werden (siehe Meadows 1992, 35ff). Gerade in der heutigen Zeit ist es wichtig,
dass die Schiilerinnen und Schiiler das Prinzip des exponentiellen Wachstums begreifen,
da ja bekanntlich sehr viele Prozesse danach ablaufen. Dieser nichtlineare Aufbaume-
chanismus hat die Eigenschaft, iiber alle Grenzen zu wachsen. Er fiihrt in endlicher Zeit
zu unendlichen Zustandsgrossen. Somit konnen sich bereits kleinste Schwankungen in
den Anfangswerten gravierend auf den Endzustand des betreffenden Systems auswir-
ken. Dies kann leicht auf dem Rechenblatt illustriert werden, indem man die Anfangs-
werte Ko und r veridndert. Interessant sind in diesem Zusammenhang die Untersuchun-
gen iiber die Entwicklung und die Prognosen der Schweizer Bevilkerung (Abb. 4).

Ein Anfangskapital Ko, das jahrlich zu p% verzinst wird, ist nach
. L P
Jahr: K1 =Ko+ Z1 =Ko+ Ko =Ko| 1+
einem Jahr: K1=Ko+Z1=Ko+Ko 755 o[ 100]

2
: o — _ P P |_ P
zwel Jahren: Ko =K1+Z> =K1 + K1 100 K{H IOO) Kg[l+ 100]

N
R _ P P P
n Jahren: Ky = K-t + Zn = Ku-t + K-t b Kn_l(n 100} K({H 100}
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Stetige Verzinsung

Da die Bevolkerung im Gegensatz zum Zins ( er wird im Normalfall nur einmal per
Ende Jahr zum Kapital geschlagen ) ununterbrochen wéchst (stetiges Wachstum) ergibt
sich fiir das Bevolkerungswachstum eine neue Exponentialfunktion (e-Funktion, wobei
e fiir die Eulersche Zahl steht). Es sei bemerkt, dass fiir unsere Untersuchungen die
Abweichungen der Methode mit der e-Funktion von denjenigen mit Zinseszins minimal
sind. Fiir Gymnasiasten der obersten Klassen kann es jedoch reizvoll sein, solche
Wachstumsfunktionen zu untersuchen.

L g,
m

Erfihrt das Kapital Ko m Zinszuschléige pro Jahr von je so ist es nach n Jahren

Jm

- p
auf K, = Ko| 1+ 100 - m angewachsen.

Wenn die Zinszuschlédge in jedem Augenblick erfolgen (“stetige Verzinsung”), ist

X— 0

n
das zu p % verzinste Kapital Ko nach n Jahren wegen lim [ [1+—i— ]x J = ¢" auf

_1% n
Kn=Kp-e gewachsen.

Bevolkerungswachstum mit der Verhulstgleichung

Ein Mechanismus wie das exponentielle Wachstum, der neben der Bevolkerungs-
entwicklung noch viele andere Phdnomene des tidglichen Lebens anndhernd beschreibt,
fiihrt, wie wir gesehen haben, zu einer wahren Bevolkerungsexplosion, wenn er einige
Jahre ungebrochen anhilt. In der Praxis wird ein solches Wachstum nur eine gewisse
Zeit andauern, solange nidmlich, bis gewisse Grenzen beziiglich Nahrung, Wasser,
Umweltbelastungen, Bevolkerung etc. erreicht sind. In diesem Zusammenhang sei auf
das ausgezeichnete Computer-Simulationsprogramm World3-91 von Bossel (1993)
hingewiesen. Dieses Simulationsprogramm berechnet verschiedene Szenarien zum
Buch von Meadows “Die neuen Grenzen des Wachstums™ (1992).

Schon der britische Nationalokonom und Sozialphilosoph T.R. Malthus postulierte
ein Bevolkerungsgesetz, nach welchem die landwirtschaftliche Produktion linear, die
Bevolkerung jedoch in einer geometrischen Form wiichst, so dass das Bevolkerungs-
wachstum durch den Nahrungsspielraum nach oben begrenzt wiirde. Dieses Gesetz ist
durch die Entwicklung seither widerlegt worden.

1845 formulierte der belgische Mathematiker P.F. Verhulst ein Wachstumsgesetz,
das die Existenz einer oberen Grenze der Bevolkerungsgrosse K beriicksichtigt. Wie
der Meteorologe E.N. Lorenz im Jahre 1963 feststellte und damit der Verhulst-Glei-
chung zu neuen Ehren verhalf, beschreibt diese auch gewisse physikalische Aspekte
turbulenter Luftstromungen aus der Meteorologie!

Das Verhulstgesetz besagt nichts anderes, als dass die Wachstumsrate r gegen 0
strebt, wenn sich die Bevolkerungszahl dem Wert K nihert.
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i [BEVCHAOQS. XL W]Tabelle! Wir berechnen zuerst die Wachstumsrate zur
. Ku1—K; :
Zeitt: . Verhulst nahm an, dass diese
Wachstumsrate! 1, Kt
Fepulation Formel fur Spahe B Wachstumsrate zur Zeit t proportional zu
005553 -(0a+ 4Dz e (100) 1-K; ist, dem verbleibenden Anteil der
B =(B6+ - . . .
0.695008403 1 =(B7+$082 BT (FB7) maximal ertragbaren Bevdélkerungsgrosse:
0.949374474 :=(B8+$0$2°B8"(1-B8)) K 1 K
1.007043573 :.. 171\ » ncne
058653048 ey Kk - r(1-K:). Der Proportionalitits-
1.000231313 t
10,53331?5%%4 faktor r kann, z.B. als Fruchtbarkeitsrate, als
0.933337666 s : : :
g les eigentliche Wachstumsrate interpretiert wer-
0393939207 [T den. Diese Gleichung kann nach K4 aufge-

16st werden : Ku1 = KK (1-K;) bzw.

Abb.5 Arbeitsblatt zur Verhulst-Glei-  Kr+1 = (141K = r-K; . Diese quadratische
chung. Verhulst-Gleichung soll die Basis fiir unsere
weiteren Computeruntersuchungen sein. Fiir
diese Untersuchungen miissen wir den Bereich menschlicher Populationen verlassen,
da fiir diese im Normalfall Wachstumsraten von z.B. 2 (200 %) ganz unrealistisch, fiir
andere Populationen aus der Natur (Seuchenausbreitung etc.) aber durchaus wirklich-
keitsgetreu sind!
Wir erstellen Rechenblétter (Abb. 5) fiir ca. 10-12 Jahre mit einer hypothetischen
Basispopulation von 0.1 und unterschiedlichen Wachstumsraten vonr: 0,4 /1.2/1,9/
2,4 /2.5 und 3,0.

Die Diskussion der einzelnen Fille zeigt folgendes:

a) r=04undr=1,2( Abb. 6aund b ):
Je nach Grosse der Wachstumsrate steigt die Gesamtpopulation langsamer bzw.
schneller auf die max. Population von 1 (Attraktor genannt) und stabilisiert sich auf
diesem Niveau.

b) r=1.9 (Abb. 6¢):
Die Population steigt schnell auf den Hochstwert und pendelt sich dann langsam auf
das oberste Niveau ein.

c) r=2,4(Abb. 6d):
Die Population pendelt regelméssig zwischen zwei Attraktoren hin und her. Die
optimale Population wird nie erreicht. Wir haben immer einmal eine zu grosse, dann
wieder ein zu kleine Population.

d) r=2.5(Abb. 6e):
Jetzt oszilliert der Wert zwischen vier Attraktoren. Man spricht in diesem Zusam-
menhang von Periodenverdoppelung. Ab 2.55 erfolgt wieder eine Periodenverdop-
pelung auf acht Werte etc.

e) r=3,0(Abb. 6f):
Bis ca. 2.57 hat sich der Prozess der Verdoppelung laufend wiederholt. Ab diesem
Punkt kippt das System ins Chaos. Es ldsst sich keine Regelméssigkeit mehr
erkennen.

Es zeigt sich, dass schon bei kleinen Abweichungen der Wachstumsrate Prognosen
tiber die Populationsentwicklung dusserst schwierig, wenn nicht sogar unméglich sind.
Ein weiteres Problem in diesem Zusammenhang ergibt sich bei der Verwendung von
Rechenautomaten fiir Prognosen.
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6/a: r=04 6/b: r=12
1 12
0.9
0.8 L
0.7
0.8
0.6
0.5 0.6
0.4
03 0.4
0.2 02
0.1
0 04
< A -~ - - w) w0 ~ ® ) 2 : ﬁ =] - ~ - - wi o ~ -] -3 2 : :
6/c: r=19 6/d: r=24
12 14
1 1.2
0.8 |
0.8
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0.2 02
0 0
<o - ~ L] - i - ~ ® - E : l;‘! =) - ~ L} - wi -] e -] ) 3 : ﬁ
6le: r=25 6/f: r=3.0
1.4 1.4
12 12
1 1
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
0+ 0

Abb. 6 a-f Verhulst-Prozess mit unterschiedlichen Wachstumsraten r.

Chaotisches Verhalten

Ob Taschenrechner oder Computer, jeder Rechner arbeitet mit einer bestimmten
Genauigkeit, d.h. mit einer unterschiedlichen Zahl von Nachkommastellen und allen-
falls entsprechender Rundung. Diesen Einfluss auf unsere Untersuchungen wollen wir
in einem neuen Rechenblatt darstellen:

Wir starten mit einer Ausgangspopulation von Ko=0.01 und einer Wachstumsrate
von r=3,0. Anschliessend berechnen wir z.B. n=10 Jahre: K19=0.722914301... In einer
Spalte lassen wir anschliessend die Berechnung bis n=100 weiterlaufen. In einer zweiten
Spalte runden wir diesen Wert auf 5 Nachkommastellen, d.h. K o= 0.72291 und lassen
ebenfalls die Berechnung bis n = 100 laufen. In einer dritten Spalte berechnen wir die
Differenz der beiden errechneten Werte und stellen diese grafisch dar (Abb. 7). Der
kleine Unterschied in der Genauigkeit beim 10. Wert — dieser ist in Wirklichkeit bei
jeder Messung und bei jeder Rechnung anzutreffen — bewirkt, dass die Unterschiede im
Resultat derart anwachsen, dass die Voraussagekraft des Rechners rapide nachlésst.
Man stelle sich einmal die Daten und Rechnungen bei den Wetterprognosen vor. Bei
unserem Beispiel sind die Abweichungen schon nach 20 bis 30 Iterationen grosser als
das Signal selbst. — Mit Hilfe des Computers wurde Chaos entdeckt und bekannt, und
gerade jetzt ldsst uns der Computer bei der Vorhersagbarkeit von Prozessen im Stich.
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14 ' Abb.7 Abweichungen beim
Verhulst-Prozess bei unter-
schiedlicher Genauigkeit der
Wachstumsrate r (Rundung bei
n = 10).

Differenz r

Feigenbaumdiagramm

Bisher haben wir festgestellt, dass fiir verschiedene Wachstumsraten die Verhulst-
gleichung unterschiedliche, teils chaotische Ergebnisse liefert. In der Folge wollen wir
jetzt den Verhulstprozess allgemein untersuchen und grafisch darstellen. Dazu werden
Werte von r zwischen 0 und 3 in einem Diagramm entlang der x-Achse abgetragen. Fiir
jeden Wert von r sind nacheinander zuerst 5000 Werte iteriert worden. Die nachfolgen-
den 120 Werte (5001 bis 5120) von K werden vertikal abgetragen. Dabei erhilt man
das bekannte Feigenbaum-Diagramm (Abb. 8), benannt nach dem amerikanischen
Physiker Mitchell J. Feigenbaum.

An der Stelle rj= 2 geht der Attraktor von einem einzigen Punkt in einen Zweierzy-
klus iiber. Jeder Parameter r < 2 erzwingt eine Konvergenz zu genau einem Adttraktor
(vergleiche Abb. 6¢ und 6d). Damit beginnt eine ganze Folge von sogenannten perio-
denverdoppelnder Bifurkationen (Peitgen 1992).

Bei rn=2,449.. wechselt der Zweierzyklus in einen Viererzyklus usw. (Abb. 6e). Bei
2,57 geht der Prozess ins Chaos iiber (Abb. 6f). Vergrossern wir einen Ausschnitt aus
dem chaotischen Bereich, erkennt man wiederum eine Ordnung, die der Gesamtordnung

dhnlich ist — man spricht von

Selbstidhnlichkeit des Prozesses.
tn dy=tn1-Tn dn/dp: | Untersuchen wir jetzt die
20 i Differenzen d der Bifurkations-
2.449489.. 4.494910 punkte und berechnen den Quo-
2.544090.. 9.461110 4.7514 tienten di/dis; aufeinanderfol-
2.564407.. 2.031610 4.6562 gender Differenzen (Tab. 1), so
2.568759.. 43521107 4.6682 ndhert sich dieser Quotient ei-
2.569692..  [9.321910 4.6687 nem festem Wert.

2.569891..  |1.996410° 4.6690 M. Feigenbaum entdeckte,
Tab.1 Feigenbaumkonstante (Peitgen 1992°) dass sich dieser Quotient mit

wachsendem n dem Wert d =

4,669202.. (Feigenbaum-Kon-
stante) nihert. Diese Konstante d ist universal wie die Zahl ®. Man findet diese
Konstante bei Turbulenzen (Stromungen), in elektronischen Schaltungen und bei ver-
schiedenen physikalischen Experimenten sowie bei gewissen Differentialgleichungen
(Peitgen 1992%). Dieser Konstanten d gehorchen offenbar die sprunghaften Ubergiinge
in der gesamten Natur, seien es Periodenverdoppelungen oder Uberginge von der
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Abb. 8 Feigenbaum-Diagramm.

Beim Verhulst-Prozess sind Werte vonr zwischen 0 und 3, 0 entlang der x-Achse abgetragen.
Fiir jeden Wert von r sind nacheinander zuerst 5000 Werte iteriert worden. Die nachfolgenden
120 Werte (5001 bis 5120) von K werden vertikal abgetragen. Fiir r zwischen 2 und 2,5 erhilt
man zwei, fiir r zwischen 2,5 und 2,55 vier Attraktoren etc. Die Verdoppelungen treten immer
hiufiger auf, bis bei r=2,57 das System ins Chaos iibergeht. Innerhalb des Chaos erkennt
man wieder Ordnung. Die Ausschnitte und deren Vergrosserung zeigen, dass der Prozess

selbstdhnlich ist.

Periodizitit ins Chaos. “Daraus muss man schliessen, dass Chaos eine regelhafte, in der
Natur und ihrer Systematik vorgesehene Zustandsform ist, dass also die Welt in ihrer
Grundstruktur nichtlinear ist, dass sie aber aus dem deterministischen Chaos immer
wieder Inseln der Ordnung hervorbringt, auf denen unsere einfachen linearen Gesetze
angewendet werden konnen. Die Linearisierung, die wir im kartesisch-newtonschen
System notwendigerweise durchfiihren miissen, um iiberhaupt physikalische Gesetze
hinschreiben zu konnen, ist daher insulér.” (Cramer 1993)
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Der Mathematiker Benoit Mandelbrot hat eine Reihe riickgekoppelter Systeme auf
der Basis komplexer Zahlen untersucht und mit dem Computer grafisch dargestellt, die
sog. Mandelbrotmenge — besser bekannt als Apfelmdnnchen. Diese Bilder sind Aus-
druck von héchster Harmonie und Asthetik. Die Welt ist im Chaos #usserst harmonisch.
Es scheint also, dass Chaos in der Natur eher die Regel ist, wihrend Ordnung eher die
Ausnahme darstellt. Es hat sich aber herausgestellt, dass Chaos gewissen regelmissigen
Mustern folgt—also Ordnung im Chaos! Durch Chaos-Untersuchungen in klimatischen,
meteorologischen, medizinischen und vielen anderen Bereichen sind in den letzten
Jahren beachtliche Fortschritte gemacht und tiefere Erkenntnisse erzielt worden. Cha-
osforschung fiihrt uns zu einem vertieften Verstindis unser Natur und unseres Lebens-
raumes.

Turbo-Pascal-Programm und Feigenbaum-Diagramm

Im Anschluss sei noch ein Turbo-Pascal-Programm (Version 6.0) zur Erzeugung
eines Feigenbaum-Diagramms auf einem Computer aufgelistet. Das Programm ist fiir
eine Grafikkarte mit 640 x 480 Bildpunkten eingerichtet; es ldsst sich jedoch leicht an
andere Hardware-Komponenten anpassen.

PROGRAM Feigenbaum;
{$n+} {Coprozessor "einschalten’}
USES CRT, GRAPH;

VAR XWert, Zaehler, Xachse, Yachse, Graph
driver, Graphmode: INTEGER;
YWert, r, K.REAL;

PROCEDURE Achsen;{ Achsen zeichnen }
BEGIN

LINE(10,0,10,400);

LINE(0,400,640,400);

XAchse:=10;

WHILE XAchse<621 DO BEGIN
LINE(Xachse, 398,Xachse, 402);
Xachse;=Xachse+20;

END;

Yachse:=110;

WHILEYachse<300 DO BEGIN
LINE(7,Yachse, 13, Yachse);
Yachse:=Yachse+140;

END

END;

{Hauptprogramm }
BEGIN
Graphdriver:=DETECT,;
INITGRAPH (Graphdriver, Graphmode, ’c:’);
Achsen;
FOR XWert:=0 TO 600 DO BEGIN
r:=3*Xwert/600;

K:=0.1;

FOR Zaehler:=1 TO 5120 DO BEGIN
K:=r*K*(1-K);
YWert:=2%(195-140*K);

IF Zaehler>5000 THEN PUTPIXEL
(XWert+10, ROUND(Y Wert),1);
END
END;
REPEAT UNTIL KEYPRESSED;
CLOSEGRAPH
END.
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