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REÇIO BASILIENSIS 34/3 1993 S. 163-173

Nichtlineare Wachstumsprobleme
und Chaos

Computeranwendungen im Geographieunterricht

Hanspeter Meier

Zusammenfassung
Nichtlineares Wachstum, Rückkoppelung und Chaos sind Begriffe, mit welchen sich die

Schülerinnen und Schüler heute auseinandersetzen sollten. Der Autor zeigt, wie im
Geographieunterricht (fächerübergreifend mit Informatik, Mathematik oder Physik) anhand des

Wachstums von Populationen mit Hilfe eines Computers und einer Tabellenkalkulation ein

einfacher erster Zugang zu diesen Begriffen und zur neuen Denkweise gefunden wird.

Einleitung

Es liegt im Wesen des Menschen, dass er möglichst die ganze Natur nach streng
naturwissenschaftlichen, v.a. mathematischen Gesetzen erfassen und verstehen will.
Zugleich möchte er mit diesen Erkenntnissen seine Zukunft und diejenige der Welt, in
der er lebt, prognostizieren und "vorausberechnen".

Der Eindruck des Allgemeingültigen und des Vorausberechenbaren täuscht. Seit

wenigen Jahren befinden wir uns in einer eigentlichen Revolution unseres Weltbildes.

Peitgen (1992 umreisst diese folgendermassen:

Adresse des Autors: Hanspeter Meier, Lehrer Wirtschaftsgymnasium und Kantonale Handelsschule

Basel; Pfaffenmattweg 75,4132 Muttenz
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Abb. 1 Rückkoppelungsmodell
für die Zinseszinsrechnung.

"Chaostheorie und fraktale Geometrie haben Naturwissenschaftler und Mathematiker

mit einer Reihe von Überraschungen konfrontiert, deren Konsequenzen im Verhältnis

zu den Angeboten einer sich oft omnipotent gebenden Wissenschaft und Technik
zugleich ernüchternd und dramatisch sind:

Zahlreiche Phänomene sind trotz strengem naturgesetzlichem Determinismus
prinzipiell nicht prognostizierbar.
Es gibt Struktur im Chaos, die sich bildlich in phantastisch komplexen Mustern -
den sogenannten Fraktalen - ausdrückt.
Meist leben Chaos und Ordnung nebeneinander, und der Übergang von der Ordnung
ins Chaos folgt strengen Fahrplänen.
Die bahnbrechenden Entdeckungen wurden erst durch Computerexperimente möglich,

d.h. eine von vielen beargwöhnte Technologie zeigt uns ihre eigenen und

zugleich auch unsere prinzipiellen Grenzen".

Der Geographieunterricht ermöglicht im Rahmen der Bevölkerungsgeographie
einen relativ leichten Zugang zu den Problemen der Chaos-Theorie. Ausgehend von
einfachen Wachstumsbetrachtungen anhand der Erdbevölkerung bzw. der Bevölkerung
der Schweiz werden die Probleme des exponentiellen Wachstums untersucht. Die
Begrenzung des Wachstums soll anhand der nichtlinearen Verhulstgleichung dargestellt
und diskutiert werden. Anschliessend wird mit der Verhulstgleichung und grossen
Wachstumsraten ein erster Zugang zum Chaosproblem ermöglicht.

Nichtlineare WachstumsVorgänge

Bevölkerungswachstum mit Zinseszins-Rechnung

Das Bevölkerungswachstum ist ein brennendes Problem unserer Zeit. Gerade die
Voraussagbarkeit der Entwicklung und das Verhalten der Welt- bzw. Regionalbevölkerung

stellt ein ganzes Spektrum von Problemen. Diese können mit einfachsten
mathematischen Hilfsmitteln und einer Tabellenkalkulation (Excel, Lotus, Quattro Pro

etc.) wertmässig und grafisch dargestellt und mit den Schülerinnen und Schülern
diskutiert werden.

Ausgangspunkt unserer Betrachtungen sei das Zinsrechnen (Kapital Bevölkerung,
Zins Wachstumsrate in %):
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Wir legen zu Beginn eines Jahres (1. Januar) ein Kapital Ko 1000 - Fr. auf ein

Sparheft bei einer Bank zu einem Zinssatz von p 2 %. Der lineare Zins Ziwährend

eines Jahres beträgt somit Z\ 20.- Dieser Zins wird jetzt zum

Kapital geschlagen: Ki= Ko + Zi=1020- Fr. Für das neue Jahr hat sich also das

Ausgangskapital verändert und somit wird sich zwangsläufig auch der Jahreszins

verändern. Dieser Prozess wird als Rückkoppelung (Iteration, rekursiver Prozess)
bezeichnet. Dabei dient jeweils das Resultat (Output) des Rechenganges als Basis

(Input) für den nächsten Rechenvorgang etc. (Abb. 1).

Wir wollen mit Hilfe einer Tabellenkalkulation die Auswirkungen einer Rückkoppelung

auf das Wachstum der Weltbevölkerung untersuchen. Dazu erstellen wir ein

Arbeitsblatt (Abb. 2) mit zwei Spalten. Die erste Spalte A ist für die Jahreszahlen, die
zweite Spalte B für die Bevölkerungszahlen reserviert. In die erste Zelle A5 setzen wir
die Ausgangsjahreszahl, z.B. 1900, in die Zelle B6 die Ausgangsbevölkerung Ko
1652 Mio und in die Zelle E2 eine Wachstumsrate von r 1.2 %.

Um die restlichen (beliebigen) Jahreszahlen zu entwickeln, lassen wir diese durch
den Computer im Arbeitsblatt ausrechnen: In die Zelle A6 schreiben wir '= A5+1'
(Excel-Format). Die restlichen Jahreszahlen können durch Kopieren erzeugt werden.

Beim Kopieren von Rechenvorschriften werden alle Zellenadressen automatisch so

verändert, dass die relativen Bezüge erhalten bleiben (relative Adressierung).
Ähnlich gehen wir bei der Berechnung der Bevölkerung vor. Hier müssen wirjedoch

berücksichtigen, dass jede Rechenvorschrift Bezug auf die Zelle E2 (Wachstumsrate)
nimmt. Wir müssen deshalb die Variable r absolut adressieren (im Excelformat mit dem

Zeichen '$'): Wir schreiben in die Zelle B6: '=B5+(B5*$E$2/100)' und kopieren diese

Formel in die übrigen Zellen. Anschliessend stellen wir die Tabelle grafisch dar

(Abb. 3). Jetzt können wir mit verschiedenen Wachstumsraten, Ausgangsbevölkerungen

und Zeiträumen
unterschiedliche Szenarien und

Prognosen berechnen und
diskutieren. An dieser Stelle
muss mit den Schülerinnen
und Schülern unbedingt der
Unterschied des Zinsrechnens

zum echten Bevölkerungswachstum,

müssen die
Veränderung der Wachstumsraten
im Laufe der Zeit und weitere
die Bevölkerungszahl
beeinflussende Effekte, z.B. die

Migration, besprochen werden.

Abb. 2 Arbeitsblatt zur
Bevölkerungsentwicklung mit
Zinseszinsrechnung.
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Abb. 3 (links) Grafische Darstellung der im Arbeitsblatt berechneten Weltbevölkerung.
Abb. 4 (rechts) Grafische Darstellung der im Arbeitsblatt berechneten Bevölkerung der Schweiz.

Zinseszins-Rechnung und exponentielles Wachstum

Mit mathematisch weiter fortgeschrittenen Schülerinnen und Schülern kann dieselbe

Untersuchung mit Hilfe der Zinseszinsrechnung (siehe Kasten) durchgeführt werden.
Anhand dieser Zinseszinsrechnung kann das exponentielle Wachstum der Bevölkerung
diskutiert werden (siehe Meadows 1992,35ff)- Gerade in der heutigen Zeit ist es wichtig,
dass die Schülerinnen und Schüler das Prinzip des exponentiellen Wachstums begreifen,
da ja bekanntlich sehr viele Prozesse danach ablaufen. Dieser nichtlineare Aufbaumechanismus

hat die Eigenschaft, über alle Grenzen zu wachsen. Er führt in endlicher Zeit
zu unendlichen Zustandsgrössen. Somit können sich bereits kleinste Schwankungen in
den Anfangswerten gravierend auf den Endzustand des betreffenden Systems auswirken.

Dies kann leicht auf dem Rechenblatt illustriert werden, indem man die Anfangswerte

Ko und r verändert. Interessant sind in diesem Zusammenhang die Untersuchungen

über die Entwicklung und die Prognosen der Schweizer Bevölkerung (Abb. 4).

Ein Anfangskapital Ko, das jährlich zu p% verzinst wird, ist nach
/ v

einem Jahr: K\ Ko + Z\ Ko + Ko- yj Ko JZ_

zwei Jahren: K2 Ki +Z2 K\ +K\- K\
100

1+
100

v y
y \
1+

100
Ko 1+

v y v
/ \

100

n Jahren: K„ K„-\ + Z„ Kn-1 + Kn-\- yyy Kn-\ 1+
100

v"

Ko 1+
100
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Stetige Verzinsung

Da die Bevölkerung im Gegensatz zum Zins er wird im Normalfall nur einmal per
Ende Jahr zum Kapital geschlagen ununterbrochen wächst (stetiges Wachstum) ergibt
sich für das Bevölkerungswachstum eine neue Exponentialfunktion (e-Funktion, wobei
e für die Eulersche Zahl steht). Es sei bemerkt, dass für unsere Untersuchungen die

Abweichungen der Methode mit der e-Funktion von denjenigen mit Zinseszins minimal
sind. Für Gymnasiasten der obersten Klassen kann es jedoch reizvoll sein, solche
Wachstumsfunktionen zu untersuchen.

Erfährt das Kapital Ko m Zinszuschläge pro Jahr von je %, so ist es nach n Jahren
m

auf K„ Ko
\n-m

i+-
100 m

angewachsen.

Wenn die Zinszuschläge in jedem Augenblick erfolgen ("stetige Verzinsung"), ist

\n
das zu p % verzinste Kapital Ko nach n Jahren wegen lim

o°

/ fl ^ \X1+-
X

V \ /
e11 auf

Kn Ko-e
100

gewachsen.

Bevölkerungswachstum mit der Verhulstgleichung

Ein Mechanismus wie das exponentielle Wachstum, der neben der Bevölkerungsentwicklung

noch viele andere Phänomene des täglichen Lebens annähernd beschreibt,
führt, wie wir gesehen haben, zu einer wahren Bevölkerungsexplosion, wenn er einige
Jahre ungebrochen anhält. In der Praxis wird ein solches Wachstum nur eine gewisse
Zeit andauern, solange nämlich, bis gewisse Grenzen bezüglich Nahrung, Wasser,

Umweltbelastungen, Bevölkerung etc. erreicht sind. In diesem Zusammenhang sei auf
das ausgezeichnete Computer-Simulationsprogramm World3-91 von Bossel (1993)
hingewiesen. Dieses Simulationsprogramm berechnet verschiedene Szenarien zum
Buch von Meadows "Die neuen Grenzen des Wachstums" (1992).

Schon der britische Nationalökonom und Sozialphilosoph T.R. Malthus postulierte
ein Bevölkerungsgesetz, nach welchem die landwirtschaftliche Produktion linear, die

Bevölkerung jedoch in einer geometrischen Form wächst, so dass das Bevölkerungswachstum

durch den Nahrungsspielraum nach oben begrenzt würde. Dieses Gesetz ist
durch die Entwicklung seither widerlegt worden.

1845 formulierte der belgische Mathematiker P.F. Verhulst ein Wachstumsgesetz,
das die Existenz einer oberen Grenze der Bevölkerungsgrösse K berücksichtigt. Wie
der Meteorologe E.N. Lorenz im Jahre 1963 feststellte und damit der Verhulst-Glei-
chung zu neuen Ehren verhalf, beschreibt diese auch gewisse physikalische Aspekte
turbulenter Luftströmungen aus der Meteorologie!

Das Verhulstgesetz besagt nichts anderes, als dass die Wachstumsrate r gegen 0

strebt, wenn sich die Bevölkerungszahl dem Wert K nähert.
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Wir berechnen zuerst die Wachstumsrate zur

Zeit t: —:—-. Verhulst nahm an, dass diese
K-t

Wachstumsrate zur Zeit t proportional zu
1-Kt ist, dem verbleibenden Anteil der
maximal ertragbaren Bevölkerungsgrösse:
Kt+1—Kt
—— r(l-Kt Der Proportionalitäts-

Kt
faktor r kann, z.B. als Fruchtbarkeitsrate, als

eigentliche Wachstumsrate interpretiert werden.

Diese Gleichung kann nach Kt+i aufgelöst

werden : Kt+\ Kt+r-Kt 1 —Kt bzw.

Kt+i (l+r)Kt - r-Kt Diese quadratische

Verhulst-Gleichung soll die Basis für unsere
weiteren Computeruntersuchungen sein. Für

diese Untersuchungen müssen wir den Bereich menschlicher Populationen verlassen,
da für diese im Normalfall Wachstumsraten von z.B. 2 (200 %) ganz unrealistisch, für
andere Populationen aus der Natur (Seuchenausbreitung etc.) aber durchaus
wirklichkeitsgetreu sind!
Wir erstellen Rechenblätter (Abb. 5) für ca. 10-12 Jahre mit einer hypothetischen
Basispopulation von 0.1 und unterschiedlichen Wachstumsraten von r: 0,4 / 1.2 / 1,9 /
2,4 /2.5 und 3,0.

Die Diskussion der einzelnen Fälle zeigt folgendes:

a) r= 0,4 und r 1,2 Abb. 6a und b ):

Je nach Grösse der Wachstumsrate steigt die Gesamtpopulation langsamer bzw.
schneller auf die max. Population von 1 (Attraktor genannt) und stabilisiert sich auf
diesem Niveau.

b) r= 1.9 (Abb. 6c):
Die Population steigt schnell auf den Höchstwert und pendelt sich dann langsam auf
das oberste Niveau ein.

c) r 2,4 (Abb. 6d ):

Die Population pendelt regelmässig zwischen zwei Attraktoren hin und her. Die
optimale Population wird nie erreicht. Wir haben immer einmal eine zu grosse, dann

wieder ein zu kleine Population.
d) r 2.5 (Abb. 6e):

Jetzt oszilliert der Wert zwischen vier Attraktoren. Man spricht in diesem
Zusammenhang von Periodenverdoppelung. Ab 2.55 erfolgt wieder eine Periodenverdoppelung

auf acht Werte etc.

e) r 3,0 (Abb. 6f):
Bis ca. 2.57 hat sich der Prozess der Verdoppelung laufend wiederholt. Ab diesem
Punkt kippt das System ins Chaos. Es lässt sich keine Regelmässigkeit mehr
erkennen.

Es zeigt sich, dass schon bei kleinen Abweichungen der Wachstumsrate Prognosen
über die Populationsentwicklung äusserst schwierig, wenn nicht sogar unmöglich sind.
Ein weiteres Problem in diesem Zusammenhang ergibt sich bei der Verwendung von
Rechenautomaten für Prognosen.

1 1 i i I I r
Verhulstgleichung

I Wachstumsrate | 5
1

Jahre j

Ô
Population
aï

i Formel für Spalte Bi
1 1 0.208

'
j=(B5+$D$2"B5'l:i-B5i) 1

2 0 4056832 =(B6+$D$2"B6"i;iHB6)).i 1
i

1

3
4

5 I

0.695008409
0 949374474
1.007049573

*=(B7+$D$2 B7 I

4=(B8+$D$2"B8'i
[1-B7N

;ï-B8jj

r~ 6 0 99853045 i etc.

r~ 7 :! :

8 10.999941634 I

r- 3 1000011669
*

I

10 0 999997666
4

P 11 1000000467
*

I

i— 12 0.999999907 i rP~ WÊÊ 1
L_y r [î,[ï[

Abb. 5 Arbeitsblatt zur Verhulst-Gleichung.
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Abb. 6 a - f Verhulst-Prozess mit unterschiedlichen Wachstumsraten r.

Chaotisches Verhalten

Ob Taschenrechner oder Computer, jeder Rechner arbeitet mit einer bestimmten

Genauigkeit, d.h. mit einer unterschiedlichen Zahl von Nachkommastellen und allenfalls

entsprechender Rundung. Diesen Einfluss auf unsere Untersuchungen wollen wir
in einem neuen Rechenblatt darstellen:

Wir starten mit einer Ausgangspopulation von Ko=0.01 und einer Wachstumsrate

von i-3,0. Anschliessend berechnen wir z.B. n=10 Jahre: Kio=0.722914301... In einer

Spalte lassen wir anschliessend die Berechnung bis n= 100 weiterlaufen. In einer zweiten
Spalte runden wir diesen Wert auf 5 Nachkommastellen, d.h. Kio= 0.72291 und lassen

ebenfalls die Berechnung bis n 100 laufen. In einer dritten Spalte berechnen wir die
Differenz der beiden errechneten Werte und stellen diese grafisch dar (Abb. 7). Der
kleine Unterschied in der Genauigkeit beim 10. Wert - dieser ist in Wirklichkeit bei

jeder Messung und bei jeder Rechnung anzutreffen - bewirkt, dass die Unterschiede im
Resultat derart anwachsen, dass die Voraussagekraft des Rechners rapide nachlässt.

Man stelle sich einmal die Daten und Rechnungen bei den Wetterprognosen vor. Bei

unserem Beispiel sind die Abweichungen schon nach 20 bis 30 Iterationen grösser als

das Signal selbst. - Mit Hilfe des Computers wurde Chaos entdeckt und bekannt, und

gerade jetzt lässt uns der Computer bei der Vorhersagbarkeit von Prozessen im Stich.
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Abb. 7 Abweichungen beim
Verhulst-Prozess bei
unterschiedlicher Genauigkeit der
Wachstumsrate r (Rundung bei

n= 10).

Feigenbaumdiagramm

Bisher haben wir festgestellt, dass für verschiedene Wachstumsraten die Verhulst-

gleichung unterschiedliche, teils chaotische Ergebnisse liefert. In der Folge wollen wir
jetzt den Verhulstprozess allgemein untersuchen und grafisch darstellen. Dazu werden

Werte von r zwischen 0 und 3 in einem Diagramm entlang der x-Achse abgetragen. Für

jeden Wert von r sind nacheinander zuerst 5000 Werte iteriert worden. Die nachfolgenden

120 Werte (5001 bis 5120) von K werden vertikal abgetragen. Dabei erhält man
das bekannte Feigenbaum-Diagramm (Abb. 8), benannt nach dem amerikanischen

Physiker Mitchell J. Feigenbaum.
An der Stelle n= 2 geht der Attraktor von einem einzigen Punkt in einen Zweierzyklus

über. Jeder Parameter r < 2 erzwingt eine Konvergenz zu genau einem Attraktor
(vergleiche Abb. 6c und 6d). Damit beginnt eine ganze Folge von sogenannten
periodenverdoppelnder Bifurkationen (Peitgen 1992).

Bei r2=2,449.. wechselt der Zweierzyklus in einen Viererzyklus usw. (Abb. 6e). Bei
2,57 geht der Prozess ins Chaos über (Abb. 6f). Vergrössern wir einen Ausschnitt aus

dem chaotischen Bereich, erkennt man wiederum eine Ordnung, die der Gesamtordnung
ähnlich ist - man spricht von
Selbstähnlichkeit des Prozesses.

Untersuchen wir jetzt die
Differenzen d der Bifurkations-
punkte und berechnen den
Quotienten dk/dk+i aufeinanderfolgender

Differenzen (Tab. 1), so

nähert sich dieser Quotient
einem festem Wert.

M. Feigenbaum entdeckte,
dass sich dieser Quotient mit
wachsendem n dem Wert d

4,669202.. (Feigenbaum-Konstante)

nähert. Diese Konstante d ist universal wie die Zahl k. Man findet diese

Konstante bei Turbulenzen (Strömungen), in elektronischen Schaltungen und bei
verschiedenen physikalischen Experimenten sowie bei gewissen Differentialgleichungen
(Peitgen 19923). Dieser Konstanten d gehorchen offenbar die sprunghaften Übergänge
in der gesamten Natur, seien es Periodenverdoppelungen oder Übergänge von der

rn dn—Tn+l-Tn dn/dn+i

2.0

2.449489.. 4.494910"1

2.544090.. 9.461110"2 4.7514

2.564407.. 2.031610"2 4.6562

2.568759.. 4.352110"3 4.6682

2.569692.. 9.321910"4 4.6687

2.569891.. 1.996410"4 4.6690

Tab. 1 Feigenbaumkonstante (Peitgen 1992
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Abb. 8 Feigenbaum-Diagramm.
Beim Verhulst-Prozess sind Werte von r zwischen 0 und 3,0 entlang der x-Achse abgetragen.
Für jeden Wert von r sind nacheinander zuerst 5000 Werte iteriert worden. Die nachfolgenden
120 Werte (5001 bis 5120) von K werden vertikal abgetragen. Für r zwischen 2 und 2,5 erhält

man zwei, für r zwischen 2,5 und 2,55 vier Attraktoren etc. Die Verdoppelungen treten immer
häufiger auf, bis bei r=2,57 das System ins Chaos übergeht. Innerhalb des Chaos erkennt

man wieder Ordnung. Die Ausschnitte und deren Vergrösserung zeigen, dass der Prozess

selbstähnlich ist.

Periodizität ins Chaos. "Daraus muss man schliessen, dass Chaos eine regelhafte, in der

Natur und ihrer Systematik vorgesehene Zustandsform ist, dass also die Welt in ihrer
Grundstruktur nichtlinear ist, dass sie aber aus dem deterministischen Chaos immer
wieder Inseln der Ordnung hervorbringt, auf denen unsere einfachen linearen Gesetze

angewendet werden können. Die Linearisierung, die wir im kartesisch-newtonschen

System notwendigerweise durchführen müssen, um überhaupt physikalische Gesetze

hinschreiben zu können, ist daher insular." (Cramer 1993)
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Der Mathematiker Benoit Mandelbrot hat eine Reihe rückgekoppelter Systeme auf
der Basis komplexer Zahlen untersucht und mit dem Computer grafisch dargestellt, die

sog. Mandelbrotmenge - besser bekannt als Apfelmännchen. Diese Bilder sind
Ausdruck von höchster Harmonie und Ästhetik. Die Welt ist im Chaos äusserst harmonisch.
Es scheint also, dass Chaos in der Natur eher die Regel ist, während Ordnung eher die
Ausnahme darstellt. Es hat sich aber herausgestellt, dass Chaos gewissen regelmässigen
Mustern folgt-also Ordnung im Chaos! Durch Chaos-Untersuchungen in klimatischen,
meteorologischen, medizinischen und vielen anderen Bereichen sind in den letzten
Jahren beachtliche Fortschritte gemacht und tiefere Erkenntnisse erzielt worden.
Chaosforschung führt uns zu einem vertieften Verständis unser Natur und unseres Lebensraumes.

Turbo-Pascal-Programm und Feigenbaum-Diagramm

Im Anschluss sei noch ein Turbo-Pascal-Programm (Version 6.0) zur Erzeugung
eines Feigenbaum-Diagramms auf einem Computer aufgelistet. Das Programm ist für
eine Grafikkarte mit 640 x 480 Bildpunkten eingerichtet; es lässt sich jedoch leicht an
andere Hardware-Komponenten anpassen.

PROGRAM Feigenbaum; {Hauptprogramm)

($n+) {Coprozessor'einschalten') BEGIN

USES CRT, GRAPH; Graphdriver:=DETECT ;

INITGRAPH (Graphdriver, Graphmode, 'c:');
VAR XWert, Zaehler, Xachse, Yachse, Graph Achsen;

driver, Graphmode: INTEGER; FOR XWert:=0 TO 600 DO BEGIN

YWert, r, KtREAL; r:=3*Xwert/600;

K:=0.1;

PROCEDURE Achsen; {Achsen zeichnen FOR Zaehler:=1 TO 5120 DO BEGIN

BEGIN K:=r*K*(l-K);
LINE( 10,0,10,400); YWert:=2*( 195-140*K);

LINE(0,400,640,400); IF Zaehler>5000 THEN PUTPIXEL

XAchse:=10; (XWert+10, ROUND(YWert),l);
WHILE XAchse<621 DO BEGIN END

LINE(Xachse, 398,Xachse, 402); END;

Xachse;=Xachse+20; REPEAT UNTIL KEYPRESSED;

END; CLOSEGRAPH

Yachse:=l 10; END.

WHILEYachse<300 DO BEGIN

LINE(7,Yachse, 13, Yachse);

Yachse:=Yachse+140;

END

END;
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