Zeitschrift: Regio Basiliensis: Basler Zeitschrift für Geographie

Herausgeber: Geographisch-Ethnologische Gesellschaft Basel ; Geographisches

Institut der Universität Basel

Band: 17 (1976)

Heft: 2

Artikel: Räumliche Gruppierung von 95 Nordwestschweizer Gemeinden mit

Hilfe multivariater statistischer Methoden

Autor: Opferkuch, Dieter M.

DOI: https://doi.org/10.5169/seals-1088898

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 29.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Räumliche Gruppierung von 95 Nordwestschweizer Gemeinden mit Hilfe multivariater statistischer Methoden

DIETER M. OPFERKUCH

1 Einleitung

Die Zergliederung eines verhältnismässig kleinflächigen Raumes in der Nordwestschweiz zwischen Ergolz, Rhein und Aare durch politische Grenzen verschiedenen Grades lässt dieses Gebiet für eine Grenzlanduntersuchung als ausserordentlich geeignet erscheinen, zumal die zeitliche Festlegung dieser Grenzen bekannt ist (Abb. 1).

1801 löste Napoleon I. das linksrheinische Fricktal aus dem vorderösterreichischen Staatsverband und schlug es 1803 als Bestandteil des neu geschaffenen Kantons Aargau der Eidgenossenschaft zu. Zwei Jahre später ging der rechtsrheinische, bis dahin in vorderösterreichischem Besitz stehende Breisgau an den Kurfürsten von Baden über.

Diese territorialen Veränderungen bewirkten zum einen, dass die vorderösterreichisch-eidgenössische Territorialgrenze im Westen zu einer Kantonsgrenze zwischen den Kantonen Aargau und Basel und im Osten zu einer inneraargauischen Bezirksgrenze umgestaltet wurde. Zum andern brachten jene Neuerungen die Umwandlung der Rheingrenze von einer vorderösterreichischen, lokalen Verwaltungsgrenze zu einer Landesgrenze zwischen der Eidgenossenschaft und dem 1806 zum Grossherzogtum erhobenen Baden.

In meiner Dissertation untersuche ich mit geographischen und historischen Methoden und in einem Zeitraum zwischen dem ausgehenden 18. Jahrhundert und 1970 den Einfluss der genannten Binnengrenzen auf die Gestaltung der Kulturlandschaft. Im Mittelpunkt jener Arbeit stehen somit Binnengrenzen und ihre Wirkung auf das räumliche Gefüge der Kulturlandschaft.

Im Unterschied dazu geht der vorliegende Aufsatz von 95 Gemeinden beidseits der einst vorderösterreichisch-eidgenössischen Grenze aus und versucht, mit Hilfe multivariater statistischer Verfahren diese Gemeinden räumlich zu gruppieren 1. Anhand der Gruppierung oder Regionalisierung soll geprüft werden, ob die Grenzen derart entstandener Gruppen mit den bestehenden politischen Binnengrenzen zusammenfallen 2.

¹ Der vorliegende Aufsatz bildet das 9. Kapitel der 1977 erscheinenden Dissertation mit dem Thema «Der Einfluss einer Binnengrenze auf die Kulturlandschaft» (Basler Beiträge zur Geographie, Heft 21).

² An dieser Stelle danke ich Herrn Prof. Dr. André Kilchenmann für seine Hilfe und die Überlassung der erforderlichen Computerprogramme. Erst diese Unterstützung ermöglichte die statistischen Berechnungen am Rechenzentrum der Universität Zürich und somit die Durchführung dieser Arbeit.

2 Übersicht über die angewandten Methoden zur räumlichen Gruppierung

21 Vorbemerkung

Das Problem der räumlichen Gruppierung oder Regionalisierung ist nicht neu. So entwickelte H. Windler 1953 ein sehr differenziertes Verfahren zur Feststellung geographischer Grenzen und zur Ausscheidung von Regionen aufgrund der kartographischen Grenzgürtelmethode (H. Windler 1954). Der von uns beschrittene Weg führt über eine Faktorenanalyse zu einer Distanzgruppierung und ist rein statistischer Natur. Beide Techniken weisen Vorzüge und Mängel auf, aber beiden ist gemeinsam, dass sie letztlich nicht voll objektivierbare Ergebnisse zeitigen, da sie auf subjektiv ausgewählten Einzelmerkmalen aufbauen (W. Witt, S. 349).

22 Ausgangsbasis: Die Daten

Gemäss der genannten Einschränkung erscheint ein Erfassen sämtlicher Daten, die zu einer Regionalisierung sowohl in kulturräumlicher als auch in naturräumlicher Hinsicht nötig wären, als unmöglich. Deshalb beschränkt sich der vorliegende Versuch einer Regionalisierung auf ein möglichst breit angelegtes Spektrum von veröffentlichten und unveröffentlichten Daten des Eidgenössischen Statistischen Amtes sowie kantonaler Behörden (Tab. 1).

Im folgenden soll die in dieser Reihe von Einzelmerkmalen oder Variablen enthaltene Information mittels einer Faktorenanalyse durch eine geringere Anzahl von Informationsträgern wiedergegeben werden.

Tabelle 1: Ausgangsvariablen für die Faktorenanalyse

Bevölkerung ¹	22 Anteil der Berufstätigen im 2. Sektor (⁰ / ₀)
1 Einwohner / km²	23 Anteil der Berufstätigen im 3. Sektor (0/0)
2 Anteil der 0-14jährigen (0/0)	(- /
3 Anteil der 15–19jährigen (%)	Landwirtschaft (1969) ²
4 Anteil der 20–64jährigen (⁰ / ₀)	24 Mittlere Zahl Parzellen pro Betrieb
5 Anteil der über 65 jährigen (%)	25 Mittlere Fläche einer Parzelle in a
6 Anteil der Protestanten (%)	26 Anzahl ldw. Betriebe / 100 Einwohner
7 Anteil der Katholiken (%)	27 Hauptberufliche Ldw-Betriebe (0/0)
8 Anteil der Christkatholiken (0/0)	28 Ldw-Betriebe mit einer Fläche bis 1 ha
9 Ledige (⁰ / ₀)	29 Ldw-Betriebe mit einer Fläche bis 5 ha
10 Verheiratete (%)	30 Ldw-Betriebe mit einer Fläche bis 10 ha
11 Geschiedene (%)	31 Ldw-Betriebe mit einer Fläche bis 20 ha
12 Personen pro Haushalt	32 Ldw-Betriebe mit einer Fläche bis 50 ha
13 Privathaushalt mit 1 Person (0/0)	33 Ldw-Betriebe mit einer Fläche bis 50 ha
14 Privathaushalt mit 2 Personen (%)	34 Pferde pro Besitzer
15 Privathaushalt mit 3 Personen (%)	35 Rindvieh pro Besitzer
16 Privathaushalt mit 4 Personen (%)	36 Schweine pro Besitzer
17 Privathaushalt mit 5 Personen (%)	37 Hühner pro Besitzer
18 Privathaushalt mit +5 Personen (%)	38 Anteil der Betriebe mit Silo (%)
19 Bevölkerungswachstum 1960–1970 (⁰ / ₀)	39 Anteil der Betriebe mit 4-Radfahrzeug (0/0)
20 Im Ausland Heimatberechtigte	40 Anteil der Betriebe mit Güllverschlauchung
(in % der Bevölkerung)	41 Anteil der Betriebe mit Melkanlagen
21 Anteil der Berufstätigen im 1. Sektor (0/0)	42 Anteil der Betriebe mit Einachstraktor
(/v)	

- 43 LNF in a / Betrieb mit LNF
- 44 Betriebe mit offenem Ackerlandanteil von 0-10 º/o
- 45 Betriebe mit offenem Ackerlandanteil von 10-30 º/o
- 46 Betriebe mit offenem Ackerlandanteil $von + 30 \, 0/0$
- 47 Anteil der LNF an der Gemeindefläche

Betriebe (1965) 3

- 48 Industrie und Handwerk (%)
- 49 Baugewerbe (0/0)
- 50 Handel und Banken (%)
- 51 Verkehr und Post (0/0)
- 52 Diverse

Bodennutzung (1969)²

- 53 Kunstwiese in % der LNF
- 54 Betriebe mit Kunstwiese (0/0)
- 55 Naturwiese in % der LNF
- 56 Betriebe mit Naturwiese (0/0)
- 57 Weiden in % der LNF (ohne Sömmerungsw.)89 Buche
- 58 Betriebe mit Weiden (%)
- 60 Betriebe mit obstbaulicher Intensivkultur
- 61 Rebland in % der LNF
- 62 Betriebe mit Rebland (%)
- 63 Offenes Ackerland in % der LNF
- 64 Betriebe mit offenem Ackerland
- 65 Brotgetreide in % der LNF
- 66 Weizen in % des offenen Ackerlandes
- 67 Roggen in % des offenen Ackerlandes
- 68 Dinkel in % des offenen Ackerlandes
- 69 Futtergetreide in % des offenen Ackerlandes

- 70 Gerste in % des offenen Ackerlandes
- 71 Hafer in % des offenen Ackerlandes
- 72 Knollengewächse in % des offenen Ackerl.
- 73 Kartoffel in % des offenen Ackerlandes
- 74 Zuckerrübe in % des offenen Ackerlandes
- 75 Gemüse in ⁰/₀ des offenen Ackerlandes
- 76 Raps in % des offenen Ackerlandes
- 77 Futterrübe in % des offenen Ackerlandes
- 78 Betriebe mit Rapsanbau (in % aller Betriebe)
- 79 Mais in % des offenen Ackerlandes

Wald (Angaben aus der Periode 1950–1970) 4

- 80 Waldfläche in % der Gemeindefläche
- 81 Gemeindewald (in % der ges. Waldfläche)
- 82 anderer öffentlicher Wald (% d. ges. Waldfl.)
- 83 Privatwald (in % der ges. Waldfläche)
- 84 Nadelholz in % am Gemeindewald (Stämme)
- 85 Laubholz in % am Gemeindewald (Stämme)
- 86 Fichte in % am Gemeindewald (Stämme)
- 87 Tanne in % am Gemeindewald (Stämme)
- 88 Föhre in ⁰/₀ am Gemeindewald (Stämme)
- in % am Gemeindewald (Stämme)
- 90 Eiche in ⁰/₀ am Gemeindewald (Stämme)
- 59 Obstbauliche Intensivkulturen (in % d. LNF)91 div. Laubhölzer in % am Gemeindewald (St.)
 - 92 Nutzung: m³ / ha / Jahr
 - 93 Zuwachs sv / ha / Jahr

QUELLEN:

Statistische Quellenwerke der Schweiz (QS)

- ¹ Bevölkerung: QS 493, 496, 498
- ² Landwirtschaft, Bodennutzung: QS 402, 450, 451
- Betriebe: QS 412
- Wald: gemäss unveröffentlichter Angaben der kantonalen Forstämter (AG, BL, SO)

23 Die Korrelationsmatrix

Ausgangspunkt einer Faktorenanalyse bildet die Matrix der Korrelationen (R) zwischen allen Paaren der durch Transformation standardisierten Ausgangsvariablen (Z). So wurden in unserm Beispiel die paarweisen Korrelationswerte (r) für die 93 Variablen ermittelt. Eine Zusammenstellung aller Korrelationswerte mit $r \ge 0.7$ lässt erkennen, dass hohe Werte fast ausschliesslich zwischen Variablenpaaren anzutreffen sind, die thematisch derselben Merkmalsgruppe zugehören (z. B. zwischen Variablen innerhalb der Gruppe Landwirtschaft oder Bodennutzung). Demgegenüber finden sich kaum hohe Korrelationswerte von Ausgangsdaten aus thematisch verschiedenen Merkmalsgruppen (Tab 2).

Tabelle 2: Korrelationskoeffizienten zwischen den Ausgangsvariablen ($r \ge 0.7$)

Variablen aus thematisch gleichen Gruppen	Wert r	Variablen aus thematisch verschiedenen Gruppen
6— 7	—0.98	
9—10	-0.95	
63—65	+0.93	
	+0.88	21—26
55—63	-0.88	
77—78	+0.84	
32—43; 84—87	+0.83	
55—65; 81—83	0.83	
21—22; 61—62	+0.82	
85—89	+0.81	
	-0.81	20—26
2— 9	+0.79	
9—12	+0.78	
84—86	+0.77	
4—12	+0.76	
	-0.76	20—21
63—69; 65—78	+0.75	
2—12	+0.74	
10—12; 46—55; 59—60	-0.74	
4—10; 32—35; 35—43	+0.73	
12—14; 45—46	0.73	
45—65	+0.72	
	+0.70	27—31
41—43; 44—46; 46—63; 46—65	-0.70	

Aufgrund dieser Korrelationswerte steht zu vermuten, dass am Aufbau der einzelnen Faktoren vornehmlich Variablen aus derselben thematischen Gruppe beteiligt sind.

24 Faktorenanalyse

Als Grundlage für die vorliegende Arbeit dient die einführende Darstellung in die Faktorenanalyse von K. Ueberla (1968) sowie die methodisch differenzierenden und sehr klar gegliederten Untersuchungen von A. Kilchenmann (1968; 1970) und Kilchenmann/Moergeli (1970). Diese Schriften beleuchten den mathematischen Hintergrund dieser Technik ausführlich, weshalb hier zur Faktorenanalyse nur soviel ausgesagt werden soll, als zum unmittelbaren Verständnis der Tabellen und Abbildungen nötig erscheint.

Das Ziel der Faktorenanalyse besteht darin, aus einer Menge beobachteter Variablen eine geringere Anzahl von Grössen oder Faktoren zu ermitteln, die die ursprünglichen Beobachtungen hinreichend genau beschreiben und erklären. Die Faktoren bilden somit nicht direkt messbare Grössen und gewähren Einblick in die hinter den messbaren Daten stehende Ordnung.

Anders ausgedrückt bedeutet das, dass die Korrelationsmatrix R durch eine einfachere Matrix A von möglichst wenig Spalten p wiedergegeben werden soll. Dabei hat A derart beschaffen zu sein, dass die Multiplikation mit der inversen Matrix A' die Ausgangsmatrix R ergibt. Es gilt demnach, gewissermassen die «Wurzel» aus der Korrelationsmatrix R der standardisierten Ausgangswerte zu ziehen.

Die neue Matrix A umfasst p Spalten oder Faktoren, wobei p kleiner sein soll als die Anzahl der Ausgangsvariablen. Die Elemente dieser Matrix sind die Faktorenladungen (a). Sie geben für jeden Faktor das Mass der Korrelation mit den ihn bildenden Ausgangsvariablen an. Hohe Faktorenladungen bedeuten demzufolge hohe Entsprechung zwischen einer Ausgangsvariablen und einem bestimmten Faktor. Mehrere hohe Ladungen auf einem Faktor (a > 0.7) lassen darauf schliessen, dass mehrere Variablen am Aufbau des entsprechenden Faktors stark beteiligt sind (vgl. Tab. 3).

Tabelle 3: Abfolge der einzelnen Schritte bis zur Bildung der Faktoren

- 1. Ausgangsmatrix
 - n Beobachtungen (Gemeinden)
 - m Variablen
- Standardisieren der Ausgangsmatrix ergibt Matrix der standardisierten Ausgangswerte Z
- 3. Bildung der Korrelationsmatrix R
- 4. Suche nach einer einfacheren Matrix A, die mit der inversen Matrix A' multipliziert R ergibt: $R = A \times A'$
- 5. In der Matrix A bedeuten:

	F_1	F_2		$F_{\mathbf{f}}$	a = Faktorenladung
V_1	a ₁₁	a ₁₂		a_{1f}	F = Faktor
V_2	a21	a ₂₂		a_{2f}	V = Variable
	•		•		EW = Eigenwert eines Faktors
					= Summe der quadrierten
V_{m}	a_{m1}	a_{m2}		a_{mf}	Faktorenladungen.
EW	v_1	v_2		v_{f}	

Bei m Ausgangsvariablen beträgt die gesamte Varianz m × 1.0, bei 93 Variabeln also 93. Um die Aussagekraft eines Faktors ermessen zu können, bildet man dessen Eigenwert, d. h. die Summe der quadrierten Faktorenladungen. Dieser Eigenwert gibt den Anteil der durch den betreffenden Faktor erklärten Varianz an der Gesamtvarianz wieder. In unserem Beispiel erreicht der erste Faktor³ einen Eigenwert von 9,308 und enthält somit rund 10% der ursprünglichen Information. Insgesamt lassen sich neun Faktoren finden, die zusammen 51,7% der ursprünglichen Information enthalten.

Hier liegt ein entscheidender Zahlenwert vor: Alle neun Faktoren vermögen etwas mehr als die Hälfte der Gesamtvarianz zu reproduzieren. Damit muss zugleich gesagt werden, dass die Resultate dieser Faktorenanalyse nicht viel mehr angeben können als einen Trend. Immerhin sei darauf hingewiesen, dass in gewissen Untersuchungen ein einzelner Faktor bis über 73 % aller Varianz erklärt (Kilchenmann 1968). Trotz dieser Einschränkung lohnt sich, wie sich zeigen wird, die Durchführung der Analyse.

Über den Aufbau der einzelnen Faktoren mit Eigenwerten > 2 unterrichtet Tabelle 4.

Tabelle 4: Aufbau und Bedeutung der wichtigsten Faktoren

Faktore ladung —		Erklärte Varianz (º/º)	Beteiligte Variable	Faktor beschreibt
		10,0		I Bevölkerung
	0.936		12 Personen pro Haushalt	
	0.834		9 Ledige	
	0.792		2 Anteil 0 bis 14jährige	
0.789			10 Verheiratete	
0.769			4 Anteil 20–64jährige	
	0.758		18 Haushalt grösser als 6 Personen	
0.718			14 Haushalt mit 2 Personen	
0.968			15 Haushalt mit 3 Personen	
	0.558		21 Anteil Beruftätiger im 1. Sektor	
0.551			11 Anteil Geschiedener	
		7,0		II Viehwirtschaft
0.819			35 Rindvieh pro Besitzer	
0.751			32 Landwirtschaftsbetrieb mit 20-50 ha	
0.727			58 Betriebe mit Weide	
0.722			43 LNF in a pro Betrieb mit LNF	
0.699			41 Betrieb mit Melkanlagen	
0.645			25 Parzellenfläche pro Betrieb	

³ Das Beispiel stützt sich auf eine Faktorenanalyse mit orthogonalen, d. h. unkorrelierten Faktoren. Dies ist berechtigt, da sich bei einem Versuch mit schiefwinkligen Faktoren eine maximale Korrelation von 0.2 zwischen den einzelnen Faktoren ergeben hat. Im übrigen beziehen sich die hier genannten Eigenwerte – wie alle folgenden Angaben – auf Werte nach der Rotation der Faktoren (vgl. hierzu K. Ueberla, S. 165 ff.).

Faktoren- ladung		Erklärte Varianz	Beteiligte Variable		Faktor beschreibt	
_	+	(0/0)				
0.567			57 Weidefläche in % der LNF			
0.529			38 Betriebe mit Silo			
	0.524		29 Betriebe mit Fläche 1–5 ha			
	0.509		56 Betriebe mit Naturwiese			
		5,9		III	Holzarten und	
0.828			84 Nadelholzanteil / Gemeindewald		Konfession	
0.705			86 Fichtenanteil / Gemeindewald			
	0.684		6 Anteil Protestanten			
0.664			7 Anteil Katholiken (römkath.)			
0.662			87 Tannenanteil / Gemeindewald			
	0.549		85 Laubholzanteil / Gemeindewald			
		9,2		IV	Ackerland und	
0.926			63 Offener Ackerlandanteil		Getreideanbau	
0.905			65 Brotgetreidefläche / offenes Ackerland			
	0.816		55 Naturwiese in ⁰ / ₀ LNF			
0.747			46 Offenes Ackerland > 30 %			
	0.695		45 Offenes Ackerland 10–30 %			
0.687			78 Rapsanbaubetriebe			
0.616			69 Futtergetreideanteil			
0.603	• • • •		77 Rapsflächenanteil			
_	0.587		89 Buchenanteil			
		4,5		V	Rebbau	
	0.707		61 Rebland in % LNF			
	0.702		62 Betriebe mit Rebland			
	0.554		26 Landwirtschafts-Betriebe pro 100 EW			
		3,9		VI	Holzzuwachs u. a.	
0.839			72 Knollengewächsanteil			
0.622			93 Holzzuwachs			
0.533			90 Eichenanteil am Gemeindewald			
		3,2		VII	Waldbesitz	
	0.781		81 Gemeindewaldanteil / Gesamtwald			
0.766			83 Privatwaldanteil / Gesamtwald			
-		3,7		VIII	Betriebsrichtung	
0.795		٠,,	48 Betriebe im 2. Sektor	, , , , ,	im 2. und 3. Sektor	
	0.657		51 Betriebe im 3. Sektor			
		()		137	Betriebsflächen	
0.005		6,2	54 Betriebe mit Kunstwiese	IA	und Wiesland	
0.805			27 Betriebe mit Kunstwiese 27 Betriebe hauptberuflicher Landwirte		und wiestand	
0.685			31 Ldw. Betriebe mit Fläche 10–20 ha			
Ÿ.00J	0.578		28 Ldw. Betriebsfläche 0–1 ha			
	0.572		44 Betriebe mit off. Ackerland 0–10 ha			
0.521	, -		53 Kunstwiese in % der LNF			

Erwartungsgemäss beteiligen sich am Aufbau der einzelnen Faktoren zumeist Variablen aus gleichen Merkmalsgruppen. Nur Faktor III weicht mit hohen Ladungen seitens der Konfession und Wald beschreibenden Variablen von diesem Muster ab und bedarf einer Erklärung: Die eingangs erwähnte Grenzlandunter-

suchung deckt einen engen Zusammenhang zwischen Nadelholzanbau im katholischen Fricktal einerseits und Förderung des Laubholzes im vorwiegend protestantischen Kanton Baselland andererseits auf. Somit zeigt gerade dieser dritte Faktor, wie sich das Verfahren der Faktorenanalyse eignet, unerwartete Querverbindung aufzuzeigen und der Forschung neue Impulse zu vermitteln.

25 Faktorenwerte

Jede Gemeinde besitzt auf den bekannten Grössen der Ausgangsvariablen einen bestimmten Messwert. Demgemäss lässt sich für jede Gemeinde ein Messwert auf den errechneten Grössen der Faktoren ermitteln. Dabei handelt es sich um die Faktorenwerte. Rechnerisch geht es – stark vereinfacht ausgedrückt – darum, die Matrix der standartisierten Ausgangsvariablen Z durch die Matrix AP wiederzugeben, wobei A als Matrix bekannt ist und P ermitteln werden muss. Die verschiedenen Methoden zur Berechnung des Faktorenwerts P werden bei *Ueberla* (S. 235–253) sowie bei *Kilchenmann* (1968) ausführlich besprochen.

Abb. 2 stellt die Faktorenwerte aller Gemeinden auf dem Faktor I dar. Dabei verzeichnen jene Gemeinden einen hohen Faktorenwert, die einen

a) hohen Anteil an - Ledigen

- 0-14jährigen

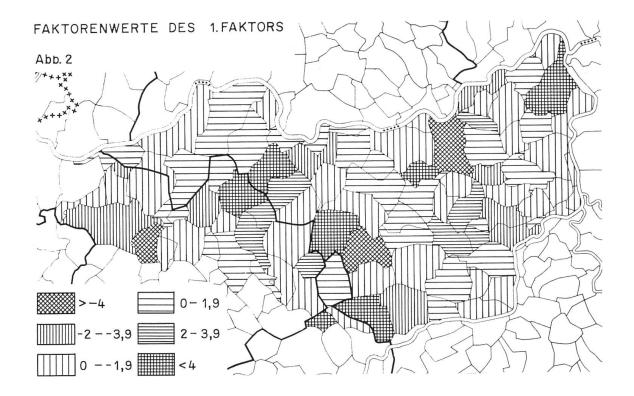
- Grosshaushalten

- Erwerbstätigen im 1. Sektor

und einen

b) geringen Anteil an - Verheirateten

– 20–64jährigen


KleinhaushaltenGeschiedenen

aufweisen (vgl. hierzu auch Tab. 4). Gemeinden, die diese Bedingungen in schwachem Mass erfüllen, weisen mittlere Werte auf und solche mit hohem Anteil in Gruppe b) und niedrigem in a) besitzen tiefe Faktorenwerte.

Grundsätzlich liesse sich von jedem durch mehrere Variablen hoch geladenen Faktor ein Verteilungsbild der Faktorenwerte zeichnen und durch Überlagerung dieser Karten mittels der konventionellen Grenzgürtelmethode Regionsgrenzen bestimmen. Dasselbe Ziel kann auf rechnerischem Weg mit Hilfe der Methode der Distanzgruppierung angegangen werden.

26 Distanzgruppierung (Abb. 4)

Die Methode der Distanzgruppierung erlaubt eine Gemeindeklassifikation aufgrund der Überlagerung sämtlicher Faktorenwerte aller Gemeinden eines Gebiets. Ausgehend von der Faktorenanalyse wird eine solche Klassifizierung mittels einer schrittweisen Gruppierung der Gemeinden aufgrund der Ähnlichkeit ihrer Strukturwerte (= Faktorenwerte) erreicht. Dabei werden als Mass für die Strukturähnlichkeit der Gemeinden bei k Faktoren alle paarweisen Distanzen der Gemeindepunkte im k-dimensionalen Raum berechnet (Kilchenmann 1968, S. 35).

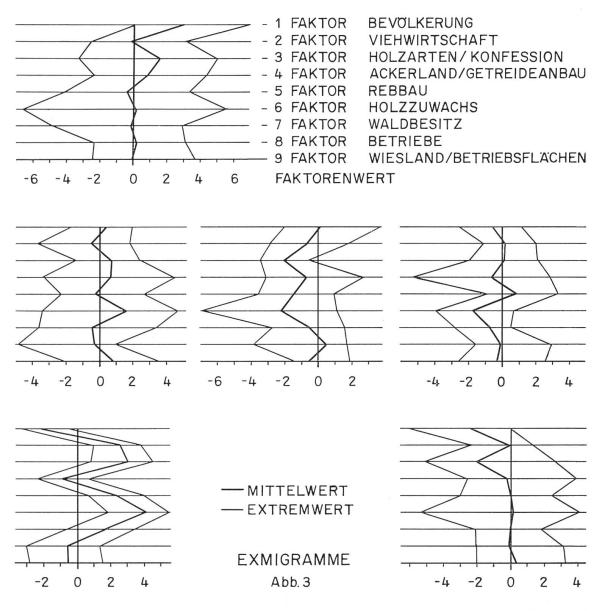
Im Maximum entstehen bei n Elementen n Gruppen; sie lassen sich nach einer Reihe von Zwischenschritten auf das Minimum einer einzigen Gruppe zusammenfassen. Dabei beinhaltet höhere Generalisierung einen Verlust an Information und bedingt eine wachsende Fehlerrate.

In unserem Beispiel werden die 95 Gemeinden in 94 Schritten gruppiert, wobei das Mass der Generalisierung und des wachsenden Fehlers bei einer Reduktion auf weniger als sechs Gruppen sprunghaft ansteigt. Der berechnete Fehlerindex steigt von einem untern Wert von 2.4 bei 94 Gruppen zunächst kontinuierlich auf 169 bei sieben Gruppen und 175 bei sechs Gruppen, danach aber in einem Sprung auf den Wert 212 bei fünf Gruppen, weiter über die Marke von 351.6 bei vier auf 857 bei zwei Gruppen.

27 Diskriminanzanalyse (Trennverfahren)

Das Trennverfahren erlaubt, mehrere Gruppen optimal zu trennen, und gewährleistet für jede Gemeinde eine eindeutige Gruppenzuordnung. Nach diesem Verfahren wurde die Gruppenzugehörigkeit aller Gemeinden überprüft und vereinzelt korrigiert.

3 Ergebnis


31 Beschreibung der Gruppen (Abb. 3 und 4)

Wie oben ausgeführt worden ist, fasst die Distanzgruppierung Gemeinden mit ähnlichen Strukturwerten auf der Faktorenskala zusammen. Man wird deshalb ver-

suchen, jede derart gebildete Gemeindegruppierung durch die zu erwartende Häufung von einander entsprechenden Strukturwerten auf einzelnen Faktoren zu charakterisieren.

Zu einer solchen Beschreibung gelangt man, indem für jeden Faktor innerhalb einer Gemeindegruppe das Mittel der Faktorenwerte berechnet und in einem Diagramm festgehalten wird. Diese Mittelwerte unterscheiden sich mehr oder weniger deutlich von Null, je höher oder niedriger die Gesamtheit der Faktorenwerte der betreffenden Gemeinde auf einem Faktor von Null abweicht.

In einer graphischen Darstellung – Kilchenmann bezeichnet sie als Exmigramm – wird neben dem Mittelwert eines jeden Faktors der jeweilige positive und negative Extremwert übertragen (Abb. 3). Innerhalb dieser Extreme liegen alle übrigen Gemeindewerte. Dabei gilt zu beachten, dass Gruppierungen von Gemeinden mit komplexer Wirtschaftsstruktur eine breitere Streuung der Faktorenwerte aufwei-

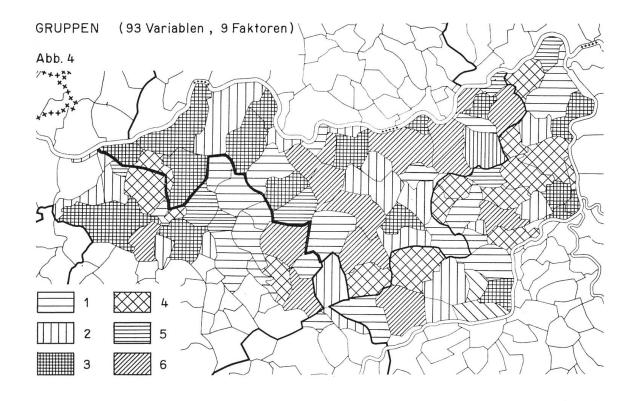
sen als solche eines wirtschaftlich einheitlichen Raumes. Demzufolge lässt sich aus dem Mass der Abweichung der Extreme vom Mittelwert jenes der Streuung der Gemeinden innerhalb einer Gruppe und somit die Komplexität der Wirtschaftsstruktur einer Gemeindegruppe abschätzen. Daneben kann eine grosse Streuung aber auch durch eine die Information der Ausgangsmatrix nur unvollständig reproduzierende Faktorenmatrix verursacht werden.

Im folgenden umreissen wir das Wesen der sechs Gruppen (Abb. 3/4):

Gruppe 1 umschliesst Gemeinden mit einem hohen Anteil an Grosshaushalten (Faktor I) und einer vorwiegend evangelischen Bevölkerung (Faktor III). Da diese Gruppe eine sehr breite Streuung aufweist, müssen diese Kennzeichen allerdings mit Vorsicht beurteilt werden.

Die 2. Gruppe umfasst Gemeinden mit einem nicht unbedeutenden Anteil von Betrieben mit Einrichtungen zur Viehhaltung (Faktor II); in zahlreichen Gemeinden finden sich daneben kleine Betriebe und solche mit einem offenen Ackerlandanteil von 0–10% der Betriebsfläche (Faktor IX). Der 3. Gruppe gehören Gemeinden mit Betrieben im 3. Sektor an, d. h. Gemeinden mit Dienstleistungsbetrieben. Hierzu zählen die zentralen Orte wie Liestal, Sissach, Rheinfelden, Laufenburg, Brugg. Ausserdem zeichnen sich die Gemeinden dieser Gruppe durch einen hohen Anteil an Knollengewächsen und im forstwirtschaftlichen Bereich einen beachtlichen Holzzuwachs (Faktor VI) bei einem nicht unbedeutenden Nadelholzanteil des Gemeindewaldes (Faktor III) aus. Bezeichnend für die Gemeinden der 4. Gruppe ist im landwirtschaftlichen Sektor der Rebbau (Faktor V) und im forstwirtschaftlichen ein kräftiger Holzzuwachs (Faktor VI).

In Gruppe 5 weist Faktor I auf ein häufiges Auftreten von kleinen Haushalten hin. Trotz bedeutsamem Laubholzanteil (Faktor III) hält sich der Holzzuwachs des Gemeindewaldes in diesen Gemeinden im Rahmen (Faktor VI). Im Bereich der Landwirtschaft nimmt der Getreidebau (Faktor II) eine etwas wichtigere Stellung ein als der Wieslandanbau (Faktor IX).


In Gruppe 6 fällt der geringe Mittelwert auf (Faktor I: Bevölkerung), sowie ein relativ hohes Mittel auf Faktor III auf, was auf ein Vorwiegen des Nadelholzwaldes in meist katholischen Gemeinden hindeutet.

Da alle neun Faktoren lediglich die Hälfte der ursprünglichen Information wiedergeben und die Streuung der Gemeinden innerhalb aller Gruppen verhältnismässig gross ist, treffen nicht alle Merkmale einer Gruppe auf jede Gemeinde vollumfänglich zu.

32 Zusammenfassung

Bei der Beschreibung der Gruppen halten wir inne und kehren zum Ausgangspunkt zurück: Decken sich die Grenzen der auf statistischem Weg gefundenen Gemeindegruppen mit vorhandenen politischen Schranken? An zwei Orten lässt sich eine solche Übereinstimmung feststellen, wenn auch nur in schwacher Form: zum einen zwischen der östlichen laufenburgischen Bezirksgrenze und der Westgrenze der Gemeindegruppe 4, zum andern zwischen den östlichen Baselbieter Grenzgemeinden und den benachbarten Gemeinden des Bezirks Rheinfelden. Im westlichen Grenzabschnitt zwischen Baselland und dem Bezirk Rheinfelden durchzieht die politische Grenze Gebiete einheitlichen Charakters.

Trotz aller Einschränkungen bestätigt die hier angewandte Methode der Gemeindegruppierung aufgrund einer Faktorenanalyse weitgehend die mit herkömmlichen Verfahren gewonnenen Ergebnisse meiner Untersuchung über den Einfluss einer Binnengrenze auf die Kulturlandschaft. Die politischen Grenzen haben ihre Bedeutung als Schranken zwischen unterschiedlich gearteten Wirtschaftsräumen

weitgehend eingebüsst, da sich die wirtschaftliche Entwicklung, wenn auch mit einer zeitlichen Phasenverschiebung, in ähnlicher Richtung bewegt. Deshalb erscheint es uns dringlich, inskünftig bei jeder Massnahme zur Veränderung des räumlichen Gefüges vermehrt die Auswirkungen über die Grenzen hinweg auch im politisch benachbarten Gebiet zu berücksichtigen – ganz im Sinn übergreifenden regionalen Denkens.

LITERATUR

Kilchenmann, André (1968): Untersuchungen mit quantitativen Methoden über die fremdenverkehrs- und wirtschaftsgeographische Struktur der Gemeinden im Kanton Graubünden. Zürich.

Kilchenmann, André (1970): Statistisch-analytische Arbeitsmethoden in der regionalgeographischen Forschung. Untersuchungen zur Wirtschaftsentwicklung von Kenya und Versuch einer Regionalisierung des Landes aufgrund von thematischen Karten. Ann Arbor, Michigan.

Kilchenmann, André / Moergeli, Werner (1970): Typisierung der Gemeinden im Kanton Zürich mit multivariaten statistischen Methoden aufgrund ihrer wirtschaftsgeographischen Struktur. In: Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich, Heft 3.

Opferkuch, Dieter (1975): Der Einfluss einer Binnengrenze auf die Kulturlandschaft. Manuskript Diss.

Ueberla, Karl (1968): Faktorenanalyse. Berlin.

Windler, Hans (1954): Zur Methodik der geographischen Grenzziehung am Beispiel des Grenzbereichs der Kantone Schwyz, Zug und Zürich. In: Geographica Helvetica IX, S. 129–185.

Witt, Werner (1970): Grenzlinien und Grenzgürtelmethode. In: Mitteilungen der österreichischen Geographischen Gesellschaft. Wien, Bd. 112, S. 340-352.