Zeitschrift: Umweltradioaktivität und Strahlendosen in der Schweiz = Radioactivité

de l'environnement et doses de rayonnements en Suisse = Radioattività

dell'ambiente e dosi d'irradiazione in Svizzera

Herausgeber: Bundesamt für Gesundheit, Abteilung Strahlenschutz

Band: - (2021)

Anhang: Annexes = Anhänge

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 23.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

1. Beteiligte Stellen und Laboratorien - Organismes et laboratoires participants

Die in diesem Bericht zusammen gestellten Messwerte stammen von Probenahmen und Analysen folgender Laboratorien und Stellen, denen ihre Mitarbeit bestens verdankt sei.

Les résultats présentés dans ce rapport se basent sur les prélèvements et les analyses des laboratoires et organismes ci-après. Qu'ils soient remerciés de leur collaboration.

BAG SRR	Radiologische Risiken, Bundesamt für Gesundheit	Bern	D. Storch, M. Palacios
BAG FANM	Forschungsanlagen und Nuklearmedizin, Bundesamt für Gesundheit	Bern	N. Stritt, R. Linder, T. Flury
BAG URA	Umweltradioaktivität, Bundesamt für Gesundheit	Bern	S. Estier, P. Steinmann. P. Beuret, G. Ferreri, A. Gurtner, D. Lienhard, M. Müller
BfS	Bundesamt für Strahlenschutz	Freiburg im Breisgau /D	H. Sartorius, C. Schlosser, S. Schmid
BAFU	Abteilung Hydrogeologie, Bundesamt für Umwelt	Bern	Robert Lukes
CERN	CERN, Occupational Health & Safety and Environmental Protection (HSE) unit	Genève	F. Malacrida
EAWAG	Wasserressourcen & Trinkwasser	Dübendorf	M. Brennwald, P. Rünzi
ENSI	Eidgenössisches Nuklearsicherheitsinspektorat	Brugg / AG	R. Sardella, A. Leupin, B. Bucher, J. Löhle, M. Schibli, R. Habegger
ETHZ	Institut für Geophysik ETHZ	Zürich	L. Rybach
HUG	Division de médecine nucléaire, Hôpital Cantonal	Genève	S. Namy, K. Jeandet
IFAF	Département FA- Forel, Université de Genève	Versoix	JL. Loizeau
IRA	Institut de Radiophysique, CHUV	Lausanne	F. Bochud, M. Straub, P. Froidevaux, P.A. Pittet, F. Barraud,
LS	LABOR SPIEZ, Bundesamt für Bevölkerungsschutz des VBS	Spiez/BE	S. Röllin, J.A. Corcho Alvarado, M. Astner, R. Althaus, R. Gosteli, H. Sahli
LUBW	Landesanstalt für Umwelt, Messungen und Naturs- chutz, Baden-Württemberg	Karlsruhe / D	R. Bechtler
NAZ	Nationale Alarmzentrale, Bundesamt für Bevölkerungsschutz des VBS	Zürich	A. Hess, F. Stoffel, C. Poretti
PSI	Abteilung für Strahlenschutz und Sicherheit, Paul Scherrer Institut	Villigen / AG	M. Heule, M. Jäggi, P. Kramer, H. Haus- wirth, E. G. Yukihara
Suva	Bereich Physik, Abt. Gesundheitsschutz am Arbeitsplatz	Luzern	M. Hammans, F. Danini
Uni-BE	Physikalisches Institut, Abt. Klima- und Umweltphysik, Universität	Bern	T. Stocker, R. Purtschert, P. Dürring, T. Wagner,
	Departement für Chemie, Universität	Bern	S. Szidat

2. Kantonale Laboratorien - Laboratoires cantonaux

AG A. Breitenmoser		Amt für Verbraucherschutz Obere Vorstadt 14, 5000 Aarau	
BE O. Deflorin, S. Nussbaume		Kantonales Laboratorium Muesmattstr. 19, 3000 Bern	
BL	P. Brodmann	Kantonales Laboratorium Hammerstrasse 25, 4410 Liestal	
BS	P. Hübner, A. Pregler	Kantonales Laboratorium Kannenfeldstr. 2, Postfach, 4012 Basel	
FR	X. Guilaume	Laboratoire Cantonal ch. du Musée 15, 1700 Fribourg	
GE	P. Edder, E. Cognard	Service de la consommation et des affaires vétérinaires, Quai Ernest-Ansermet 22 Case postale 76, 1211 Genève 4 Plainpalais	
GR	M. Beckmann, D. Baumann	Amt für Lebensmittelsicherheit und Tiergesundheit Bereich Lebensmittelsicherheit Planaterrastrasse 11, 7001 Chur	
JU	F. Beuchat, L. Babst	Laboratoire Cantonal Fbg des Capucins 20, CP 272, 2800 Delémont 1	
LU	S. Arpagaus, R. Brogioli	Kantonales Amt für Lebensmittelkontrolle und Verbraucherschutz Vonmattstr. 16, Postfach, 6002 Luzern	
NE	PF. Gobat	Service de la consommation Rue Jehanne-de-Hochberg 5, 2001 Neuchâtel	
SG	P. Kölbener	Kantonales Amt für Lebensmittelkontrolle Blarerstr. 2, 9001 St. Gallen	
AR/AI/GL/SH	K. Seiler	Amt für Lebensmittelkontrolle der Kantone AR AI GL SH Mühlentalstr. 184, Postfach 786, 8201 Schaffhausen	
SO	M. Kohler	Kantonale Lebensmittelkontrolle Greibenhof, Werkhofstr. 5, 4509 Solothurn	
TG	C. Spinner	Kantonales Laboratorium Spannerstr. 20, 8510 Frauenfeld	
TI	N. Forrer	Laboratorio Cantonale Via Mirasole 22, 6500 Bellinzona	
NW/OW/SZ/UR	D. Imhof	Laboratorium der Urkantone Postfach 363, 6440 Brunnen	
VD	C. Richard	Service de la consommation et des affaires vétérinaires 155, ch. des Boveresses, 1066 Epalinges	
VS	E. Pfammatter	Laboratoire Cantonal Rue Pré-d'Amédée 2, 1950 Sion	
ZG	M. Fricker	Amt für Lebensmittelkontrolle Postfach 262, 6312 Steinhausen	
ZH	M. Brunner, S. Reber	Kantonales Labor Postfach, 8032 Zürich	
LI	W. Burtscher	Amt für Lebensmittelkontrolle Postplatz 2, Postfach 37, FL-9494 Schaan	

3. Das Messprogramm im Überblick

Expositionspfade	Probenahmestellen	Proben und Messung	
Ortsdosen (externe	Automatische Überwachung der Ortsdosen: landesweit mit NADAM und in der Umge- bung der KKW mit MADUK.	NADAM: 71 Stellen, Betrieb durch die Nationale Alarmzen- trale NAZ (landesweites Dosis-Warnnetz) MADUK: je 12-17 Stellen, Betrieb durch das ENSI	
Gamma-Strahlung)	TLD in der Nahumgebung von KKW und Forschungsanlagen (PSI und CERN)	TLD (γ-Komponente) und n-Dosis (PSI, CERN)	
In-situ Messung	Umgebung der Kernanlagen Ganze Schweiz nach speziellem Programm	Direkte vor-Ort-Messung des γ-Spektrums Bestimmung des Radionuklidgehaltes des Bodens und deren Beiträge zur Ortsdosis	
	6 High-Volume-Sampler: ca. 500-1'000 m³/h 1 Digitel-Aerosolsammer Jungfraujoch	Aerosolsammler und High-Volume-Sampler: kontinuierliche Sammlung auf Aerosolfiltern mit γ -Spektrometrie im Labor: Nachweisgrenze für 137 Cs: 1 μ Bq/m³ bzw. 0.1 μ Bq/m³	
Luft	URAnet: Aerosolwarnnetz 15 Stellen on-line- Messung mit Datenfernübertragung ⁸⁵ Kr-Messungen an Luftproben vom Jungfrau- joch	RADAIR: α/β -Messung (FHT-59S) Ende 2017 eingestellt, 4 Stellen mit Jod-Monitor (FHT-1700); URAnet: 15 Stationen nuklidspezifischer Monitor (FHT-59N1)	
Niederschläge	Regensammlerstationen, ganze Schweiz inkl. Umgebung der KKW, sowie Forschungsanla-	10 Regensammler mit Trichtern von 1 m 2 Fläche, wöchentlich γ -Spektrometrie der Rückstände; Nachweisgrenze für 137 Cs: 10 mBq/l (monatliche Probe)	
Wiederschlage	gen und Industrien	An 14 Stellen Sammlung der Niederschläge für die Tritiumbestimmung; eine Stelle: Bestimmung des Tritiumgehaltes in der Luftfeuchte.	
	Kontinuierlich gesammelte Wochenproben aus Rhein, Rhone, Ticino und Doubs sowie oberhalb und unterhalb der KKW (Aare)	$\gamma\text{-}$ und $\alpha\text{-}Spektrometrie$ Tritium-Messung	
Aquatisches Milieu	Bei den KKW auch Grundwasser, Sedimente, Fische, Wasserpflanzen, URAnet: 5 automatische Messstationen in Aare und Rhein	URAnet: Gammaspektrometrie mit Nal-Detektoren	
Erde	30 Stellen in den Alpen, dem Mittelland, dem Jura, auf der Alpensüdseite inkl. Umgebung der KKW, PSI, CERN	Erdschicht 0-5 cm für ⁹⁰ Sr-Bestimmung und γ-Spektrometrie und z.T. α-Spektrometrie	
	Gleiche Stellen wie Erdboden	Gras zweimal jährlich; γ-Spektrometrie und ⁹⁰ Sr	
Bewuchs (Gras, Pflanzen)	Baumblätter aus Umgebung KKW, Industrieverbrennungsanlage Basel (RSMVA) und Referenzstationen	Bäumblätter: ¹⁴ C-Bestimmung (jährlich)	
Milch	Gleiche Regionen wie Erde und Gras Milchzentralen und Grossverteiler	γ-Spektrometrie und ⁹⁰ Sr-Messung Einzel- und Sammelmilch- proben , z.T. Tritium-Messungen	
	Getreide-Mischproben aus verschiedenen Regionen und Umgebung KKW		
Andere Lebensmittel	Weitere Proben nach Bedarf, z.B. Gemüse Umgebung KKW, Mineralwässer, Wildpilze, Importproben etc.	γ-Spektrometrie ⁹⁰ Sr-Bestimmung	
Menschlicher Körper	Mitarbeiter PSI Zahnärzte, Schulzahnkliniken und pathologi- sche Institute aus verschiedenen Gegenden	Ganzkörpermessungen am PSI 9°Sr-Bestimmungen an Wirbelknochen und Milchzähnen	
	Kernanlagen, Forschungsanlagen, etc.	Abluftfilter, Abgas etc.	
Emissionen von KKW, Betrieben etc.	Kläranlagen der Agglomerationen Sickerwässer von Deponien	Abwässer aus Spitäler, Deponien, Kehricht-verbrennungsanlagen, Abwasserreinigungsanlagen γ -, α - und 90 Sr-Messung	

4. Überwachungsbereiche und Kompetenzzentren

Bereich:	überwacht wird:	Kompetenzzentren ¹⁾ :	
Atmosphäre	Aerosole, Niederschläge ¹⁴ C, Edelgase	URA (BAG) inkl. URAnet / RADAIR UniBE	
Deposition	Boden, Bewuchs, in-situ ⁹⁰ Sr- und Alpha-Messung	URA (BAG), IRA und LABOR SPIEZ	
	Aeroradiometrie	ENSI, NAZ	
Aquatisches Milieu	Gewässer, Fische, Sedimente Grund- und Quellwasser, Deponien	EAWAG, Institut Forel, LABOR SPIEZ, URA BAG	
Lebensmittel	Milch, Getreide, Gemüse, Wild, Pilze, etc.	Kantonale Laboratorien, URA, IRA, LABOR SPIEZ	
Desir	lpha- und n-Dosen	PSI, IRA	
Dosis	automatische Dosiswarnnetze	NAZ (NADAM), ENSI (MADUK)	
menschliche Körper	Ganzkörpermessungen ⁹⁰ Sr in Knochen und Zähnen	PSI IRA	
Kernanlagen	Emissionen, Umgebung	ENSI, URA (BAG)	
Betriebe	Emissionen, Umgebung	Suva, URA (BAG)	
Spitäler	Emissionen	FANM (BAG)	
Radon	Radon in Häusern und im Boden	SRR (BAG), URA (BAG)	

¹⁾Liste der Abkürzungen s. Anhang 1.

5. Im Strahlenschutz verwendete Grössen und ihre Bedeutung

Aktivität A

angegeben in Bq (Becquerel)

Die Aktivität einer Substanz ist die mittlere Anzahl radioaktiver Zerfälle pro Zeiteinheit. 1 Bq = 1 Zerfall/s. Die alte Einheit war das Ci (Curie) mit 1 Ci = $3.7 \cdot 10^{10}$ Zerfälle/s; 1 nCi = 37 Bq oder 1 Bq = 27 pCi.

Absorbierte Dosis oder Energiedosis D

angegeben in Gy (Gray)

Die durch Wechselwirkung von ionisierender Strahlung mit Materie in einer Masseneinheit deponierte Energie. Der spezielle Name dieser Einheit ist das Gray (Gy); 1 Gy = 1 J/kg.

Organ-Äquivalentdosis H₊

angegeben in Sv (Sievert)

Das Produkt aus der absorbierten Dosis $D_{T,R}$ infolge der Strahlung R im Gewebe T und dem Strahlen-Wichtungsfaktor w_R (vgl. auch Dosis, effektive).

$$H_T = \Sigma_R W_R \cdot D_{TR}$$

Der spezielle Name der Einheit der Äquivalentdosis ist das Sievert (Sv); 1 Sv = 1 J/kg.

Effektive Dosis E

angegeben in Sv (Sievert)

Summe der mit den Wichtungsfaktoren wT gewichteten Äquivalentdosen in allen Organen und Geweben.

 $D_{T,R} = Im Gewebe T durch Strahlung R absorbierte Dosis$

w_p = Wichtungsfaktor der Strahlung

 w_T = Wichtungsfaktor für Gewebe (Anteil am Gesamtrisiko für Gewebe/Organ T)

 H_{τ} = Äquivalentdosis des Gewebes/Organs T

Die spezielle Einheit der effektiven Dosis ist das Sievert (Sv); 1 Sv = 1 J/kg.

Effektive Folgedosis E₅₀

angegeben in Sv (Sievert)

Effektive Dosis, die als Folge einer Aufnahme eines Nuklids in den Körper im Verlauf von 50 Jahren akkumuliert wird.

Umgebungsäquivalentdosis H*(10)

angegeben in Sv (Sievert)

Die Umgebungs-Äquivalentdosis H*(10) am interessierenden Punkt im tatsächlichen Strahlungsfeld ist die Äquivalentdosis im zugehörigen ausgerichteten und aufgeweiteten Strahlungsfeld in 10 mm Tiefe der an diesem Punkt zentrierten ICRU-Kugel auf demjenigen Kugelradius, der dem ausgerichteten Strahlungsfeld entgegengerichtet ist.

Internet-Adresse für die Begriffsbestimmungen der StSV: http://www.admin.ch/ch/d/sr/814_501/app1.html

6. Grandeurs utilisées en radioprotection et leur signification

Activité A

exprimée en Bq (Becquerel)

L'activité d'une substance est le nombre moyen de désintégrations radioactives par unité de temps. 1 Bq = 1 désintégration/s. L'ancienne unité était le Ci (Curie) avec 1 Ci = 3.7·10¹⁰ désintégrations/s; 1 nCi = 37 Bq ou 1 Bq = 27 pCi.

Dose absorbée ou dose énergétique D

exprimée en Gy (Gray)

Energie déposée dans la matière, lors de l'interaction des rayonnements ionisants, par unité de masse de matière. Le nom de cette unité est le gray (Gy); 1 Gy = 1 J/kg.

Dose équivalente H₊

exprimée en Sv (Sievert)

Produit de la dose absorbée $D_{T,R}$ dans le tissu T due à un rayonnement R et du facteur de pondération w_R (voir la définition de la dose effective);

$$H_T = \Sigma_R W_R \cdot D_{T,R}$$

l'unité de la dose équivalente est le sievert (Sv); 1 Sv = 1 J/kg.

Dose efficace E

exprimée en Sv (Sievert)

Somme des doses équivalentes reçue par tous les tissus et organes, pondérées à l'aide de facteurs spécifiques $w_{\scriptscriptstyle T}$

$$\mathsf{E} = \Sigma_{\mathsf{T}} \, \mathsf{w}_{\mathsf{T}} \, \mathsf{H}_{\mathsf{T}} = \Sigma_{\mathsf{T}} \, \mathsf{w}_{\mathsf{T}} \, \Sigma_{\mathsf{R}} \, \mathsf{w}_{\mathsf{R}} \, \mathsf{D}_{\mathsf{TR}}$$

D_{T,R} = dose absorbée dans le tissu T sous l'effet du rayonnement R

w_R = facteur de pondération du rayonnement R

 w_T = facteur de pondération du tissu (apport de l'organe ou tissu T au risque total)

 $H_{_{\rm T}}$ = dose équivalente reçue par l'organe ou par le tissu T

L'unité de la dose effective est le sievert (Sv); 1 Sv = 1 J/kg.

Dose efficace engagée E_{so}

exprimée en Sv (Sievert)

Dose effective accumulée durant 50 ans suite à l'incorporation d'un nucléide.

Equivalent de dose ambiante H*(10)

exprimé en Sv (Sievert)

En un point dans un champ de rayonnements, dose équivalente produite à 10 mm de profondeur de la sphère CIUR, centrée en ce point, par le champ en question, étendu et aligné, sur le rayon opposé à la direction du champ aligné.

205