Zeitschrift: Umweltradioaktivität und Strahlendosen in der Schweiz = Radioactivité

de l'environnement et doses de rayonnements en Suisse = Radioattività

dell'ambiente e dosi d'irradiazione in Svizzera

Herausgeber: Bundesamt für Gesundheit, Abteilung Strahlenschutz

Band: - (2007)

Rubrik: Die Überwachung der Umweltradioaktivität in der Schweiz

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 23.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Umweltradioaktivität und Strahlendosen in der Schweiz

Radioactivité de l'environnement et doses de rayonnements en Suisse

Ergebnisse 2007 Résultats 2007

Kapitel 1 Die Überwachung der Umweltradioaktivität in der Schweiz

Kapitel 1 Die Überwachung der Umweltradioaktivität in der Schweiz	10
Veranlassung und Ziel der Überwachung	10
Gesetzliche Vorgaben	10
Grundsätze der Überwachung	10
Organisation und Zusammenarbeit	11
Liste der beteiligten Stellen und der	11
verwendeten Abkürzungen	11
Quellenangaben	11

Kapitel 1 Die Überwachung der Umweltradioaktivität in der Schweiz

S. Estier, P. Steinmann

Sektion Umweltradioaktivität (URA), BAG, 3003 Bern

Veranlassung und Ziel der Überwachung

Die Überwachung der Umweltradioaktivität begann in der Schweiz 1956, durch die Ernennung der Eidgenössischen Kommission zur Überwachung der Radioaktivität (KUER) durch den Bundesrat. Überwacht wurde anfänglich der radioaktive Ausfall (Fallout) der Kernwaffenversuche; später wurde die Überwachung von Kernanlagen, sowie Betrieben und Spitälern, die Radionuklide verwenden, wichtiger. Heute wird auch die natürliche Radioaktivität, insbesondere das Radon erfasst, vor allem dort wo dieses zu nennenswerten Strahlendosen führen kann. Das BAG veröffentlicht die Messergebnisse in den jährlichen Berichten zu Umweltradioaktivität und Strahlendosen [1].

Gesetzliche Vorgaben

Gesetzliche Basis für die Überwachung ist die Schweizer Strahlenschutzverordnung (StSV: [2]), die dem BAG diese Aufgabe überträgt. Beurteilungsgrössen sind die Immissionsgrenzwerte für Luft und Wasser gemäss Art. 102 bzw. im Anhang 3, d.h. CA/300 für die Luft (CA = Arbeitsplatz-Richtgrenze) und LE/50 für das Wasser (LE = Freigrenze). Bei Dauerexposition führen diese Werte zu je 0.2 mSv pro Jahr. Für die Lebensmittel gelten die Toleranz- und Grenzwerte (s. Tabelle 1) gemäss FIV (Fremd- und Inhaltsstoffverordnung [3]). Für die Bevölkerung («nichtberuflich strahlenexponierte Personen») darf die effektive Dosis durch künstliche Strahlenquellen (ohne natürliche Radioaktivität oder medizinische Anwendungen) 1 mSv pro Jahr nicht übersteigen (Art. 37). Für beruflich strahlenexponierte Personen gilt eine Limite von 20 mSv pro Jahr.

Grundsätze der Überwachung

Die Anforderungen an ein Überwachungsprogramm hängen von dessen Zielsetzung ab. Ein Monitoringprogramm soll in erster Linie feststellen, ob vorgegebene Immissionsgrenzwerte eingehalten sind. Dies wird durch eine «verdachtsorientierte» Stichprobenerhebung dort, wo mit den grössten Immissionen bzw. den grössten radiologischen Auswirkungen gerechnet wird, erreicht. Ein Umweltmessprogramm soll für die gewählte Messgrösse für bestimmte Gebiete und Zeitintervalle die tatsächlichen Werte und deren örtliche und zeitliche Variationen ermitteln. Hier sollen die Probenahmen nach statistischen Kriterien vorgenommen werden, wobei eine grössere Empfindlichkeit gefordert wird als beim Monitoringprogramm, damit aus den Ergebnissen die tatsächlichen Strahlendosen hergeleitet werden können. Wissenschaftliche Programme dienen der Überprüfung radioökologischer Modelle und der Bestimmung von Modellparametern. Hier müssen statistische Gesichtspunkte bei der Wahl der Proben berücksichtigt werden und die Messempfindlichkeit soll die Verifikation der dem Modell zugrunde gelegten Hypothesen ermöglichen.

Die Radioaktivitätsüberwachung hat folgende Ziele:

- Das Verfolgen der grossräumig verbreiteten, natürlichen und künstlichen Radioaktivität; dies, um Veränderungen, Akkumulationen und Trends frühzeitig zu erkennen.
- Die Uberwachung der Umgebung von Kernanlagen und Betrieben, die radioaktive Stoffe verwenden (Immissionsüberwachung).
- Die Ermittlung der Strahlendosen der Bevölkerung und ihrer zeitlichen und räumlichen Variationen.

Organisation und Zusammenarbeit

Die Durchführung der Radioaktivitätsüberwachung erfolgt in Zusammenarbeit mit allen Stellen beim Bund, den Hochschulen, Forschungsinstituten, die entsprechende Kompetenzen und Messkapazität haben. Diese Zusammenarbeit ist durch Verträge, Übereinkommen und Abmachungen geregelt. Die meisten der beteiligten Labors (inklusive das BAG) sind zertifiziert und akkreditiert.

Die Koordination des Messprogrammes obliegt dem Bundesamt für Gesundheit. Dieses legt das Überwachungsprogramm fest, sammelt und veröffentlicht die Daten und wertet diese aus [1]. Die beteiligten Laboratorien melden ihre Messwerte regelmässig (halbjährlich oder jährlich). Die Messwerte aller untersuchten Proben werden in der Datenbank für Umweltradioaktivität ENVIRA abgelegt (www.envira.ch).

Erhöhte Messwerte werden sofort gemeldet, damit bei Bedarf die nötigen Massnahmen veranlasst werden können. Bei erhöhter Radioaktivität, wenn Schutzmassnahmen für die Bevölkerung erforderlich sind, kommen die Nationale Alarmzentrale (NAZ) und die Einsatzorganisation für erhöhte Radioaktivität zum Zug.

Die Kompetenzzentren für die wichtigsten Überwachungsbereiche sind in Tabelle 2 aufgelistet. Die aktuellen Überwachungsprogramme sind in Tabelle 3 zusammengefasst.

Liste der beteiligten Stellen und der verwendeten Abkürzungen

- **URA**: Sektion Umweltradioaktivität, Bundesamt für Gesundheit, Bern (Liebefeld)
- RADAIR: Automatisches Netz zur Überwachung der Radioaktivität der Luft
- UniBE: Universität Bern, Physikalisches Institut, Abteilung Klima- und Umweltphysik
- IRA: Institut Universitaire de Radiophysique Appliquée, Lausanne
- LABOR SPIEZ: Labor Spiez, Fachsektion Physik, Bundesamt für Bevölkerungsschutz (BABS), VBS, Spiez
- **EAWAG:** EAWAG, Gruppe Radioaktive Tracer, Abteilung Oberflächengewässer, Dübendorf
- Institut Forel: Universität Genf, Versoix
- CHYN: Centre d'Hydrogéologie, Université de Neuchâtel
- Kantonale Laboratorien: Kantonale Lebensmittelkontrolle
- **PSI**: Paul Scherrer Institut, Abteilung Strahlenschutz und Sicherheit, Villigen-PSI
- NAZ: Nationale Alarmzentrale, Bundesamt für Bevölkerungsschutz BABS, VBS, Zürich
- NADAM: Automatisches nationales Dosiswarnnetz
- **HSK:** Hauptabteilung für die Sicherheit der Kernanlagen, Villigen-PSI
- MADUK: Automatisches Dosiswarnnetz für die Umgebung der Kernanlagen
- **HUG** Hôpital Universitaire Cantonal Genève, Division de médecine nucléaire,
- Suva: Bereich Physik, Abteilung Arbeitssicherheit, Luzern
- BAG: Bundesamt für Gesundheit, Bern (Liebefeld)

Quellenangaben

- [1] Jahresberichte des BAG: Umweltradioaktivität und Strahlendosen in der Schweiz: http://www.bag. admin.ch/themen/strahlung/00043/00065/02239/index.html?lang=de
- [2] Schweizerisches Strahlenschutzgesetz (StSG) vom 22. März 1991 und Strahlenschutzverordnung (StSV) vom 22. Juni 1994: http://www.bag. admin.ch/themen/strahlung/02883/02884/index. html?lang=de
- [3] Verordnung über Fremd- und Inhaltsstoffe in Lebensmitteln (Fremd- und Inhaltsstoffverordnung, FIV): http://www.admin.ch/ch/d/sr/c817_021_23.html

Tabelle 1:Toleranz- und Grenzwerte für Radionuklide in Lebensmitteln gemäss Verordnung über Fremd- und Inhaltsstoffe (FIV) in Bg/kg [3]

	Toleranzwert Bq/kg	Grenzwert Bq/kg			
Radionuklid(e)	Alle Lebensmittel	Lebensmittel allgemein	Flüssige Lebensmittel	Säuglings- anfangs- und Folgenahrung	Lebensmittel von geringer Bedeutung
Tritium	1′000	10'000	10′000	3′000	100'000
Kohlenstoff-14	200	10'000	10′000	1′000	100'000
Strontiumisotope	1	750	125	75	7′500
lodisotope	10	2'000	500	150	20'000
Künstliche Alphastrahler (z.B. ²³⁹ Pu, ²⁴¹ Am)	0.1	80	20	1	800
Radionuklide der Uran- und Thoriumreihen: • Gruppe I: ²²⁴ Ra, ²²⁸ Th, ²³⁴ U, ²³⁵ U, ²³⁸ U	_	50	10	10	500
• Gruppe II: ²¹⁰ Pb, ²¹⁰ Po, ²²⁶ Ra, ²²⁸ Ra, ²³⁰ Th, ²³² Th, ²³¹ Pa	_	5 (**)	1	1	50 (***)
Übrige Radionuklide (z.B. ¹³⁴ Cs, ¹³⁷ Cs, jedoch ohne ⁴⁰ K)	10 (*)	1′250	1′000	400	12′500

^(*) Toleranzwert für Cäsiumisotope in Wildfleisch und Wildpilzen: 600 Bq/kg (gilt für die Summe von 134 Cs und 137 Cs); der Toleranzwert für 137 Cs in Wildbeeren beträgt neu 100 Bq/kg.

Tabelle 2: Überwachungsbereiche und Kompetenzzentren

Bereich:	überwacht wird:	Kompetenzzentren¹¹:
Atmosphäre	Aerosole, Niederschläge ¹⁴ C, Edelgase	URA inkl. RADAIR UniBE
Deposition	Boden, Bewuchs, in-situ ⁹⁰ Sr- und Alpha-Messung	URA, IRA und LABOR SPIEZ
	Aeroradiometrie	HSK, NAZ
Aquatisches Milieu	Gewässer, Fische, Sedimente Grund- und Quellwasser, Deponien	EAWAG, Institut Forel, LABOR SPIEZ CHYN
Lebensmittel	Milch, Getreide, Gemüse, Wild, Pilze, etc.	Kantonale Laboratorien, URA, IRA
Dosis	γ- und n-Dosen	PSI, IRA
	automatische Dosiswarnnetze	NAZ (NADAM), HSK (MADUK)
menschliche Körper	Ganzkörpermessungen ⁹⁰ Sr in Knochen und Zähnen	PSI, HUG IRA
Kernanlagen	Emissionen, Umgebung	HSK, URA
Betriebe	Emissionen, Umgebung	Suva, URA
Spitäler	Emissionen	BAG
Radon	Radon in Häusern und im Boden	BAG, URA

¹⁾ Liste der Abkürzungen s. Seite 11 «Liste der beteiligten Stellen und der verwendeten Abkürzungen»

^(**) Grenzwert für Meerestiere: 150 Bq/kg (gilt insbesondere für ²¹⁰Po)

^{(***) &}lt;sup>226</sup>Ra und ²²⁸Ra gelten nicht für Paranüsse

Tabelle 3:Das Messprogramm im Überblick

Expositionspfade	Probenahmestellen	Proben und Messung	
Ortsdosen (externe Gamma-Strahlung)	Automatische Überwachung der Ortsdosen: landesweit mit NADAM und in der Umgebung der KKW mit MADUK.	NADAM: 58 Stellen, Betrieb durch die Nationale Alarmzentrale NAZ (landesweites Dosis- Warnnetz)	
	TLD in der Nahumgebung von KKW und Forschungsanlagen (PSI und CERN)	MADUK: je 12-17 Stellen, Betrieb durch die HSK TLD (γ-Komponente) und n-Dosis (PSI, CERN)	
In-situ Messung	Umgebung der Kernanlagen Ganze Schweiz nach speziellem Programm	direkte vor-Ort-Messung des γ-Spektrums Bestimmung des Radionuklidgehaltes des Bo- dens und deren Beiträge zur Ortsdosis	
Luft	12 Aerosolsammler: ca. 40 m³/h 5 High-Volume-Sampler: ca. 700 m³/h 1 Digitel-Aerosolsammer Jungfraujoch	Aerosolsammler und High-Volume-Sampler: kontinuierlich Sammlung auf Aerosolfiltern mit γ-Spektrometrie im Labor: Nachweisgrenze für ¹³⁷ Cs: 1 μBq/m³ bzw. 0.1 μBq/m³	
	RADAIR: Aerosolwarnnetz 11 Stellen on-line-Mes- sung mit Datenfernübertragung ⁸⁵ Kr-Messungen an Luftproben vom Jungfraujoch	RADAIR: 11 Stationen α/β -Messung (FHT-59S), 3 Stellen mit Jod-Monitor (FHT-1700); 1 Stelle: nuklidspezifischer Monitor (FHT-59N1)	
Niederschläge	Regensammlerstationen, ganze Schweiz inkl. Umgebung der KKW, sowie Forschungsanlagen	9 Regensammler mit Trichtern von 1 m² Fläche, wöchentlich γ-Spektrometrie der Rückstände; Nachweisgrenze für ¹³⁷ Cs: 10 mBq/l (monatliche Probe)	
	und Industrien	An 15 Stellen Sammlung der Niederschläge für die Tritiumbestimmung; eine Stelle: Bestimmung des Tritiumgehaltes in der Luftfeuchte.	
Aquatisches Milieu	Kontinuierlich gesammelte Wochenproben aus Rhein, Rhone, Ticino und Doubs sowie oberhalb und unterhalb der KKW (Aare)	γ- und α-Spektrometrie Tritium-Messung	
	Bei den KKW auch Grundwasser, Sedimente, Fische, Wasserpflanzen	Intum-iviessung	
Erde	30 Stellen in den Alpen, dem Mittelland, dem Jura, auf der Alpensüdseite inkl. Umgebung der KKW, PSI, CERN	Erdschicht 0-5 cm für ⁹⁰ Sr-Bestimmung und γ-Spektrometrie und z.T. α-Spektrometrie	
	Gleiche Stellen wie Erdboden	Gras zweimal jährlich; γ-Spektrometrie und ⁹⁰ Sr	
Bewuchs (Gras, Pflanzen)	Baumblätter aus Umgebung KKW, Industrieverbrennungsanlage Basel und Referenz- stationen	Bäumblätter: ¹⁴ C-Bestimmung (jährlich)	
Milch	Gleiche Regionen wie Erde und Gras	γ-Spektrometrie und ⁹⁰ Sr-Messung Einzel- und Sammelmilchproben	
Andere Lebensmittel	Getreidemischproben aus verschiedenen Regionen und Umgebung KKW	γ-Spektrometrie ⁹⁰ Sr-Bestimmung	
	Weitere Proben nach Bedarf, z.B. Gemüse Umgebung KKW, Mineralwässer, Wildpilze, Importproben etc.		
Menschlicher Körper	Schulklassen Genf	Ganzkörpermessungen in Genf (HUG) und am	
	Mitarbeiter PSI	PSI	
	Zahnärzte, Schulzahnkliniken und pathologische Institute aus verschiedenen Gegenden	⁹⁰ Sr-Bestimmungen an Wirbelknochen und Milchzähnen	
	Kernanlagen, Forschungsanlagen, etc.	Abluftfilter, Abgas etc.	
Emissionen von KKW, Betrieben etc.	Kläranlagen der Agglomerationen Sickerwässer von Deponien	Abwässer aus Spitäler, Deponien, Kehricht-ve brennungsanlagen, Abwasserreinigungsanlagen γ -, α - und 90 Sr-Messung	