Zeitschrift: Radioaktivität der Umwelt in der Schweiz = Radioactivite de

l'environnement en Suisse = Radioattivita dell'ambiente in Svizzera

Herausgeber: Bundesamt für Gesundheitswesen, Abteilung Strahlenschutz

Band: - (1991)

Rubrik: Ueberwachung der Kernkraftwerke : Emissionen und Immissionen

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 10.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

4. UEBERWACHUNG DER KERNKRAFTWERKE: EMISSIONEN UND IMMISSIONEN

F. Cartier, A. Leupin, J. Schuler, W. Baur Hauptabteilung für die Sicherheit der Kernanlagen HSK, BEW Ch. Murith Sektion Ueberwachung der Radioaktivität SUER, BAG

Zusammenfassung

Die Abgaben radioaktiver Stoffe mit dem Abwasser und der Abluft der Kernkraftwerke Beznau (KKB), Gösgen (KKG), Leibstadt (KKL) und Mühleberg (KKM) sowie des Paul Scherrer Instituts (PSI) lagen deutlich unterhalb der auferlegten Limiten. Die aus den Emissionen errechneten Jahresdosen für Personen der Bevölkerung liegen weit unterhalb des Dosisrichtwertes von 0.2 mSv pro Jahr für Emissionen.

Die wichtigsten Ausbreitungspfade von radioaktiven Stoffen in der Umgebung sind im Rahmen des permanenten Probenahme- und Messprogrammes überwacht worden. In den kontinuierlich erhobenen Aerosol, Regenwasser- und Flusswasserproben sowie in den Stichproben von Erde, Gras, Milch, Getreide, Kartoffeln und Trinkwasser konnten keine Radionuklide festgestellt werden, die für das Jahr 1991 auf Emissionen aus den Kernanlagen hinweisen. In einer Fischprobe aus dem Stausee Niederried wurden Spuren von Zn-65 nachgewiesen; die daraus berechnete Personendosis ist kleiner als 1% des oben angegebenen Dosisrichtwertes. In einigen Sedimentproben aus der Aare und dem Rhein sind wie in den Vorjahren Spuren von Co-58, Co-60, Mn-54 und in einigen Wasserpflanzenproben zusätzlich Zn-65 und I-131 gemessen worden.

Die Ueberwachung der Ortsdosisleistung in der Umgebung zeigte unmittelbar ausserhalb der Umzäunung erhöhte Werte durch Direktstrahlung: bei den Siedewasserreaktoren KKL und KKM aus dem Maschinenhaus oder andern Anlageteilen. Beim PSI sind auch Beiträge aus den Abfallagern des Bundes und beim PSI-West zusätzlich durch Neutronen-Streustrahlung der Beschleuniger zu erwähnen, wo bedingt durch die Strahlleistungserhöhung bis zur Entfernung von einigen hundert Metern gegenüber den Vorjahren deutlich höhere Werte auftraten. Im Bereich der Direktstrahlung wohnen nur beim PSI einzelne Personen. für sie muss unter konservativen Annahmen mit Personendosen von bis zu 0.03 mSv gerechnet werden. Im Jahre 1991 wurde sowohl beim Paul Scherrer Institut wie bei den schweizerischen Kernanlagen der quellenbezogene Dosisrichtwert für die Umgebungsbevölkerung von 0.3 mSv (Emissionen und Direktstrahlung) pro Kalenderjahr durch externe und interne Strahlung nicht überschritten.

4.1. Emissionen aus den Kernanlagen im Jahr 1991 (Tabelle 4a bis d)

Die Abgaben radioaktiver Stoffe mit dem Abwasser und der Abluft und die daraus für die Umgebungsbevölkerung errechneten Personendosis im Jahre 1991 ist für die Kernkraftwerke in Tabelle 4a und für das PSI in Tabelle 4b zusasmmengestellt.

Nuklidspezifische Angaben über die Abgaben sind den Tabellen 4c und 4d zu entnehmen. Hinweise über die Berechnungsart und Definitionen sind in den Fussnoten zu diesen Tabellen zu finden. Die Abgaben der Kernkraftwerke und der Kernanlage Lucens liegen durchwegs im Bereich des Vorjahres.

Die errechneten Jahresdosis für Erwachsene wie für Kleinkinder (Alter 1 Jahr) der Umgebungsbevölkerung liegen bei allen Anlagen weit unterhalb des Dosisrichtwertes von 0.2 mSv pro Jahr. Sie ist kleiner 0.006 mSv beim KKB, <0.017 mSv beim KKM, <0.004 mSv beim KKG, <0.009 mSv beim KKL und kleiner 0.005 mSv beim PSI. Der Wert beim KKM wird dominiert (0.012 mSv) durch am Boden abgelagerte Aerosolen, die im Jahre 1986 in die Umgebung gelangten (29. KUER-Bericht) und bei in-situ-Gammaspektrometrie-Messungen (Kapitel 4.3) auch nachgewiesen werden. Demgegenüber ist der Dosisbeitrag durch Aerosolabgaben im Jahre 1991 vernachlässigbar und liegt in der Grössenordnung der andern schweizerischen Kernkraftwerke.

Ergänzend muss bemerkt werden, dass für das PSI die Ausbreitungsfaktoren für die einzelnen Abgabestellen im Rahmen einer vorbereiteten Revision des Abgabereglementes neu berechnet wurden (HSK-Aktennotiz 02/157). Da die Immissionsgebiete von PSI-Ost und -West nicht zusammenfallen sind die wichtigsten Abgabestellen in Tabelle 4b separat aufgeführt.

4.2. Ortsdosisleistung in der Umgebung der Kernanlagen im Jahr 1991 (Tabelle 4e und f, Figur 4.2)

Die Ueberwachung der externen Strahlung in der Umgebung der Kernanlagen erfolgt mit

- TL-Dosimetern (für Gamma-Strahlung) der Werke und der SUER (bis 40 Stellen in der Umgebung und zusätzlich ca 20 Stellen entlang der Umzäunung). Beim PSI-West werden zusätzlich Neutronendosimeter eingesetzt.
- Ionisationskammern, die an 1 bis 2 Stellen pro Werk die Gamma-Ortsdosisleistung kontinuierlich registrieren. Pro Werk ist zusätzlich eine NADAM Sonde in Betrieb.
- jährlich einer Messfahrt mit Ionisationskammern in die Nahumgebung von jedem Werk.
- in-situ-Messungen mit einem tragbaren Germaniumdetektor (siehe Kapitel 4.3).

Entlang der Umzäunung der Kernanlagen sind am meistbetroffenen Ort folgende Netto-Ortsdosen im Jahre 1991 bestimmt worden: KKB und KKG <0.05 mSv; KKL 1.8 mSv; KKM 1.5 mSv; PSI 2.9 mSv. Die Werte liegen alle unterhalb der Limite von 0.1 mSv pro Woche respektive 5 mSv pro Jahr. Diese Ortsdosiserhöhungen ergeben sich durch Direktstrahlung aus dem Maschinenhaus oder andern Anlageteilen bei den Siedewasserreaktoren KKL und KKM sowie aus den Abfallagern des Bundes beim PSI. Da in diesen Bereichen niemand wohnt und die Aufenthaltszeiten beim Spazieren, Fischen oder Arbeiten auf dem Feld kurz sind, betragen die akkumulierten Personendosen nur ein Bruchteil der gemessenen jährlichen Ortsdosen am Zaun.

Beim PSI-West sind zusätzlich bis zu Entfernungen von einigen hundert Metern deutlich höhere Neutronen-Ortsdosen gegenüber den Vorjahren gemessen worden (Tabelle 4e). Dies ist eine Folge der Strahlleistungserhöhung der Beschleuniger und der damit zusammenhängenden grösseren Neutronen-Streustrahlung. In diesem Bereich wohnen einzelne Personen. Für sie muss unter konservativen Annahmen mit Personendosen von bis zu 0.03 mSv gerechnet werden.

Aufgrund der Gamma-Dosimeter, die quartalsweise ausgewertet werden, lässt sich schliessen, dass die berechneten zusätzlichen jährlichen Netto-Dosen durch allfälliger Abgaben der Kernkraftwerke oder des Paul-Scherer-Institutes kleiner als 0.05 mSv waren. Mit den berechneten Netto-Dosen lässt sich im Jahre 1991 weder der Beitrag von Tschernobyl erkennen noch die Bodenstrahlung durch die Aerosol-Ablagerungen in der Umgebung des KKM im Jahr 1986 aufzeigen. Tabelle 4f dokumentiert die Ergebnisse der Messfahrten mit den Ionisationskammern. Die Dosisleistungen liegen im Wertebereich der natürlichen Strahlung mit Ausnahme der Messpunkte im Bereich der Direktstrahlung beim KKM. Die resultierende Personendosis an diesen Orten bleibt unter Berücksichtigung der Aufenthaltszeit klein.

In Figur 4.2 sind die kontinuierlichen Messungen der Ortsdosisleistung in der Umgebung der Kernkraftwerke dargestellt. Die 14-Tage-Mittelwerte von "Ufem Horn" lassen nur noch tendenziell eine Ortsdosisleistungserhöhung erkennen, die bei den in-situ-Gammaspektrometrie Daten in Kapitel 4.3 näher diskutiert wird. Bei den Daten Niedergösgen, Wasserkraftwerk-Beznau, Leibstadt-Full und -Chlämmi sind Tagesmittel aufgetragen. Sie zeigen die witterungsbedingte Variation der natürlichen Strahlung. Die Tagesmittelwerte sind aus ein-Minuten-Messwerten, die im Jahre 1991 nie auf erhöhte Aktivitätsabgaben der Kernanlagen hinwiesen, berechnet worden.

Tabelle 4 a: Zusammenstellung der Abgaben radioaktiver Stoffe an die Umgebung für das Jahr 1991 und die daraus resultierende Dosis für Einzelpersonen der Bevölkerung. (Fussnoten am Ende der Tabellen).

Anlage Medium		Art der Abgaben	Abgabelimiten (gem. Reglement) ¹⁾	Tatsächliche Abgaben ¹⁾ ,	Berechnete Ja	hresdosis ²⁾
			, , , , , , , , , , , , , , , , , , ,	,	Erwachsener	Kleinkind
		, ,	Bq/Jahr	Bq/Jahr	Sv/Jahr	Sv/Jahr
KKB 1 und	Abwasser (58000 m ³)	Nuklidgemisch (ohne Tritium) ³⁾	3,7E+11	4,3E+09	1,9E-07	1,9E-08
KKB 2	(00000 III)	Tritium	7,4E+13	8,9E+12	<1,0E-08	<1,0E-08
	Abluft	Edelgase (Xe-133-aeq.)4)	1,1E+15	1,5E+14 (4,6E+13)	4,5E-07	4,5E-07
		Aerosole ⁵⁾ (ohne I-131, Halbwertszeit>8 Tage)	5,6E+09	1,8E+06	1,2E-08	1,2E-08
		Jod-131 ⁶⁾	3,7E+09	1,5E+07	<1,0E-08	3,5E-08
		Kohlenstoff-14 ⁷⁾		4,0E+10	1,1E-06	5,3E-06
KKM	Abwasser (8121 m ³)	Nuklidgemisch (ohne Tritium) ³⁾	3,7E+11	2,0E+09	4,0E-07	5,7E-08
		Tritium	1,9E+13	3,8E+11	<1,0E-08	<1,0E-08
	Abluft	Edelgase (Xe-133-aeq.) ⁴⁾	1,1E+16	1,6E+13 (4,4E+12)	<1,0E-08	<1,0E-08
		Aerosole ⁵⁾ (ohne I-131, Halbwertszeit>8 Tage)	1,9E+10	7,8E+07	1,5E-05	1,3E-05
	Jod-131 ⁶⁾	1,9E+10	1,8E+07	<1,0E-08	<1,0E-08	
		Kohlenstoff-14 ⁷⁾	-	2,0E+11	6,8E-07	3,2E-06
KKG	Abwasser (8315 m ³)	Nuklidgemisch (ohne Tritium) ³⁾	1,9E+11	1,4E+06	<1,0E-08	<1,0E-08
		Tritium	7,4E+13	1,2E+13	1,3E-08	1,7E-08
a.	Abluft	Edelgase (Xe-133-aeq.) ⁴⁾	1,1E+15	5,1E+12 (5,1E+12)	<1,0E-08	<1,0E-08
		Aerosole ⁵⁾ (ohne I-131, Halbwertszeit>8 Tage)	9,3E+09	1,3E+06	<1,0E-08	<1,0E-08
		Jod-131 ⁶⁾	7,4E+09			
		Kohlenstoff-14 ⁷⁾	·	1,0E+11	6,8E-07	3,2E-06
KKL	Abwasser (21379 m ³)	Nuklidgemisch (ohne Tritium) ³⁾	3,7E+11	2,4E+08	<1,0E-08	<1,0E-08
		Tritium	1,9E+13	8,1E+11	<1,0E-08	<1,0E-08
ä	Abluft	Edelgase (Xe-133-aeq.) ⁴⁾	2,2E+15	1,4E+14 (3,8E+13)	7,7E-08	7,7E-08
		Aerosole ⁵⁾ (ohne I-131, Halbwertszeit>8 Tage)	1,9E+10	7,1E+06	<1,0E-08	<1,0E-08
	w	Jod-131 ⁶⁾	1,9E+10	1,0E+09	6,4E-08	4,2E-07
		Kohlenstoff-14 ⁷⁾		3,4E+11	1,8E-06	8,3E-06

B.4.5 -

Tabelle 4b: Zusammenfassung der Abgaben radioaktiver Stoffe an die Umgebung für das Jahr 1991 und die daraus resultierende Dosis für Einzelpersonen der Bevölkerung (Fussnoten am Ende der Tabelle)

Anlage	Medium	Art der Abgaben	Abgabelim	iten ¹⁾	,	Tatsächlich	Tatsächliche Abgaben ¹⁾ ,			Bei	rechnete Jah	resdosis ²⁾			
	tel							Erwachsene			Kleinkinder				
			Bq/Jahr	Bq/Jahr		Bq/Jahr			Sv/Jahr	,		Sv/Jahr		-	
PSI- OST	Abwasser (20270 m ³)	Nuklidgemisch (ohne Tritium) ³⁾	8 1	2,0E+11	4		9,2E+08			<1,0E-08		<1,0E-08		12 14	
001	(20270)	Tritium	a a	2,0E+13			8,0E+11			<1,0E-08				e e	
2	Abluft		Hochka- min-Ost	Verbren- nungsanl.	Uebrige- Ost	Hochka- min-Ost	Verbren- nungsanl.	Uebrige-	Hochka- min-Ost	Verbren- nungsanl.	Uebrige- Ost	Hochka- min-Ost	Verbren- nungsanl.	Uebrige-	
		Edelgase/Gase (Ar-41-aeq.)4)		4,0E+12	5,0E+11										
,		β/γ-Aerosole ⁵⁾ (ohne Jod, Halbwertszeit>8 Tage)	1,0E+10	1,0E+09	1,0E+08	9,8E+04	1,1E+08		<1,0E-08	1,5E-06		<1,0E-08	1,6E-06		
		α-Aerosole	3,0E+08	5,0E+07	2,0E+06		1,0E+06			1,3E-07			3,4E-07		
		Jod (I-131-aeq.) ⁶⁾	3,0E+10	2,0E+09	2,0E+08	3,0E+09 (3,1E+09)	8,0E+07 (9,9E+07)	1,8E+04 (1,8E+04)	1,0E-07	1,2E-07	<1,0E-08	5,8E-07	3,6E-07	<1,0E-08	
e e	142	Tritium ⁸⁾		4,0E+12	2,0E+12	5,7E+10	3,2E+10	1,1E+12	<1,0E-08	<1,0E-08	4.5E-07	<1,0E-08	2,5E-08	1,3E-06	
PSI-	Abwasser	Nuklidgemisch (ohne Tritium)3)		2,0E+09		-,	1,6E+05	1.000.0-		<1,0E-08	.,	11,1	<1,0E-08	<u> </u>	
WEST	(32,5 m ³)	,		_,			.,	*						P 197	
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Tritium		2,0E+11		2,9E+07				<1,0E-08			<1,0E-08		
	Abluft		Hochka-	Doppel-	Uebrige-	Hochka-	Doppel-	Uebrige-	Hochka-	Doppel-	Uebrige-	Hochka-	Doppel-	Uebrige-	
	97 11		min-West	kamin	West	min-West	kamin	West	min-West	kamin	West	min-West	kamin	West	
		Edelgase/Gase (Ar-41-aeq.)4)	2,0E+14	5,0E+12	2,0E+12	5,6E+12	4,2E+11	3,4E+10	4,4E-07	2,3E-07	5,7E-08	4,4E-07	2,3E-07	5,7E-08	
	807					(6,2E+12)	(4,3E+11)	(3,6E+10)							
		β/γ-Aerosole ⁵⁾	2,0E+08	5,0E+07	2,0E+08	6,2E+06	4,1E+04	7,3E+03			0.				
20		(ohne Jod und Be-7, T _{1/2} >8 Tage)		8					1,5E-08	<1,0E-08	<1,0E-08	3,2E-08	<1,0E-08	1,8E-08	
	2	β/γ-Aerosole ⁵⁾	1,0E+11			3,8E+08	2,5E+06	3,4E+06	IJ			J			
	SI .	(8 Std, <halbwertszeit<8 tage)<="" td=""><td></td><td></td><td>w.</td><td></td><td></td><td></td><td></td><td>2</td><td></td><td></td><td></td><td></td></halbwertszeit<8>			w.					2					
		Jod (I-131-aeq.) ⁶⁾	2,0E+09	5,0E+08	1,0E+08	8,1E+08 (2,2E+09)	1,2E+08 (3,6E+08)		1,4E-07	6,8E-08		6,2E-07	4,4E-07		
		Tritium ⁸⁾	6,0E+13		2,0E+12	3,0E+09		1,6E+11	<1,0E-08		3,0E-07	<1,0E-08		9,0E-07	

Tabelle 4 c: Flüssige Abgaben der Kernanlagen an die Aare und den Rhein, 1991
Rejets liquides des installations nucléaires dans l'Aar et le Rhin, 1991
(Bq/Jahr; 1E + 12 = 10¹²)
(Fussnoten am Ende der Tabellen)

Isotop Isotope	Beznau	Gösgen	Leibstadt	Mühleberg	PSI
H - 3	8.9E + 12	1.2E + 13	8.1E + 11	3.8E + 11	8.0E + 11
Na - 22					4.4E + 7
S - 35	To Control of the Con			P	1.2E + 7
Cr - 51	9.3E + 7		4.8E + 7	4.1E + 9	
Mn - 54	5.3E + 8		3.6E + 7	1.1E + 8	7.5E + 7
Fe - 59	2.6E + 6		8 8	7	3.8E + 6
Co - 56			ē	a .	3.0E + 6
Co - 57	4.1E + 7			-	1.1E + 8
Co - 58	1.3E + 10		1.1E + 7	1.1E + 9	2.8E + 7
Co - 60	1.3E + 10	1.0E + 7	3.2E + 8	8.6E + 9	9.1E + 7
Zn - 65			1.1E + 9	2.6E + 9	4.1E + 6
Se - 75					8.9E + 5
Rb - 83	-				9.0E + 5
Sr - 89		×		2.3E + 8	
Sr - 90	1.6E + 7			1.6E + 7	6.9E + 7
Y - 90			Š.	1.6 E + 7	9
Nb - 95	1.3E + 7	5.2E + 4			
Mo - 99				1.5E + 7	2.4E + 7
Tc - 99m				1.8E + 7	8 3 1
Ru - 103	7.7E + 6		2.6E + 6		E .
Ag - 110m	1.3E + 7				
Sb - 122	1.5E + 8				
Sb - 124	1.2E + 9	4.8E + 5			6.3E + 6
Sb - 125	4.0E + 8		1.3E + 7		2.4E + 7
Te - 121	п		· ·		1.6E + 5
Te - 121m		,			2.3E + 5
Te - 123m					5.7E + 4
- 125					8.1E + 7
- 131	1.9E + 8		1.0E + 8	8.9E + 6	1.2E + 7
- 133	9.2E + 7			1.7E + 7	
Cs - 134	1.2E + 9		1.6E + 6	8.2E + 8	7.0E + 7
Cs - 137	5.5E + 9	1.2E + 6	9.3E + 6	1.8E + 9	2.2E + 8
Ba - 133	* *		*	v	4.9E + 6
La - 140	2.8E + 6	9 % #			
Alpha				1	
Pu -239/Am-241	W 81				1.2E + 6
U -234/U -238			1		1.6E + 6
Cm - 244	* · ·	1			3.6E + 4
Pu -239/Pu-240		V -			2.2E + 6
Total Bq/Jahr ³⁾ (ohne Tritium)	4.3E + 9	1.4E + 6	2.4E + 8	2.0E + 9	9.2E + 8

Tabelle 4 d: Gasförmige Abgaben der Kernanlagen, 1991
Rejets gazeux des installations nucléaires, 1991 (Bq/Jahr)
(Fussnoten am Ende der Tabellen)

Isotop Isotope	Beznau	Gösgen	Leibstadt	Mühleberg	PSI
Gase / Edelgase ⁴⁾					
H - 3 (HTO)					1.4E + 12
C - 11				. ·	2.0E + 12
C - 14 7)	4.0E + 10	1.0E + 11	3.4E + 11	2.0E + 11	×
N - 13					1.6E + 12
0 - 15		3			2.9E + 12
Ar - 41		i.		1.9E + 10	7.3E + 11
Kr - 85m	4.2E + 11		5.6E + 10	2.0E + 11	39
Kr - 87			4.8E + 10	1.9E + 9	
Kr - 88			4.4E + 10	1.2E + 11	
Xe - 122			a a		1.4E + 11
Xe - 123					3.5E + 11
Xe - 125				a	1.7E + 11
Xe - 127					3.4E + 10
Xe - 131m				2.6E + 9	
Xe - 133	7.8E + 12		2.9E + 12	5.1E + 11	
Xe - 135	6.9E + 12		5.2E + 12	1.0E + 11	
Xe - 135m			3.6E + 12	2.2E + 11	
Xe - 137				1.0E + 11	
Xe - 138			1.4E + 12	7.4E + 10	
Xe - 133 aeq.		5.1E + 12		2.6E + 10	
Andere	1.4E + 12				
Total Xe-133 aeq. 4)	1.5E + 14	5.1E + 12	1.4E + 14	1.6E + 13	
Total Ar-41 aeq. 4)	_				6.1E + 12
Radio-Jod 6)			2		
I - 122				27	1.2E + 11
I - 123	3o	24		2	6.3E + 10
I - 124		* v *		7	1.0E + 7
I - 125		u u	6		1.3E + 9
I - 126	3	i i			3.1E + 7
I - 131	1.5E + 7	9	1.0E + 9	1.8E + 7	2.3E + 9
I - 133	1.0E + 7	-	7		8
Total Radiojod 6)	1.5E + 7	< 4E + 6	1.0E + 9	1.8E + 7	4.0E + 9

Zu Tabelle 4 d:

Isotop Istotope	Beznau	Gösgen	Leibstadt	Mühleberg	PSI
Aerosole 5)				C	
Be - 7	2				5.3E + 6
Na - 24					1.6E + 6
CI - 38					5.2E + 9
CI - 39					9.3E + 8
S - 38					1.8E + 8
Cr - 51	2.9	i	4.1E + 5		
Mn - 54			7.0E + 5		\$
Fe - 59			5.6E + 4	3.4E + 4	
Co - 58			1.4E + 5	= =	7.8E + 3
Co - 60	9.0E + 5	1.2E + 6	2.5E + 6	2.6E + 6	1.2E + 5
Zn - 65		14	6.7E + 5	2.7E + 4	1.0E + 7
Se - 75					2.6E + 5
Br - 82	9		9 g	e .	6.4E + 7
Sr - 89				6.6E + 7	
Sr - 90		r		1.6E + 6	
Zr - 95			3.1E + 5	, x	
Nb - 95		4.1E + 3	4.1E + 5		
Mo - 99	, i	· ·			2.5E + 4
Ru - 103		0	3.4E + 5		2.9E + 4
Ru/Rh-106	4				1.9E + 6
Ag - 110m					9.2E + 6
Sb - 125		9.3E + 2			5.6E + 5
Te - 121					2.1E + 7
Te - 121m				,	2.3E + 7
Te - 123m	* * * * * * * * * * * * * * * * * * * *				5.1E + 6
Te - 125m					1.6E + 7
Cs - 134		2		2.5E + 5	3.0E + 6
Cs - 137	9.0E + 5	6.3E + 3		1.9E + 6	2.4E + 7
Ba - 140		1.9E + 4	1.2E + 6	5.5E + 6	
La - 140		6.3E + 3	3.5E + 6	*	
Ce - 141			3.3E + 5		
Au - 192		M _a			1.2E + 8
Hg - 192					9.1E + 7
Hg - 193m					5.7E + 7
Hg - 195					2.5E + 8
Hg - 195 m	0		10		5.5E + 6
Hg - 197 m	*				1.1E + 7
Hg - 203				2 9	7.9E + 5
Po - 210					1.0E + 6
Total Aerosole 5)	1.8E + 6	1.3E + 6	7.1E + 6	7.8E + 7	1.2E + 8

Zu Tabelle 4 d:

Isotop Istotope	Beznau	Gösgen	Leibstadt	Mühleberg	PSI
Aerosole 5)				,	
Be - 7					5.3E + 6
Na - 24					1.6E + 6
CI - 38					5.2E + 9
CI - 39		,			9.3E + 8
S - 38					1.8E + 8
Cr - 51			4.1E + 5	8	
Mn - 54			7.0E + 5		
Fe - 59	, and the second		5.6E + 4	3.4E + 4	
Co - 58			1.4E + 5		7.8E + 3
Co - 60	9.0E + 5	1.2E + 6	2.5E + 6	2.6E + 6	1.2E + 5
Zn - 65	ľ	180	6.7E + 5	2.7E + 4	1.0E + 7
Se - 75					2.6E + 5
Br - 82			0		6.4E + 7
Sr - 89				6.6E + 7	
Sr - 90	69			1.6E + 6	
Zr - 95			3.1E + 5		
Nb - 95		4.1E + 3	4.1E + 5		
Mo - 99					2.5E + 4
Ru - 103			3.4E + 5		2.9E + 4
Ru/Rh-106		Ď	×		1.9E + 6
Ag - 110m					9.2E + 6
Sb - 125		9.3E + 2			5.6E + 5
Te - 121		8			2.1E + 7
Te - 121m	8				2.3E + 7
Te - 123m			7		5.1E + 6
Te - 125m				20	1.6E + 7
Cs - 134			a	2.5E + 5	3.0E + 6
Cs - 137	9.0E + 5	6.3E + 3	*	1.9E + 6	2.4E + 7
Ba - 140	×	1.9E + 4	1.2E + 6	5.5E + 6	7
La - 140		6.3E + 3	3.5E + 6		
Ce - 141			3.3E + 5		
Au - 192					1.2E + 8
Hg - 192				9	9.1E + 7
Hg - 193m				10	5.7E + 7
Hg - 195	* H				2.5E + 8
Hg - 195 m		·			5.5E + 6
Hg - 197 m				×	1.1E + 7
Hg - 203		N			7.9E + 5
Po - 210				p	1.0E + 6
Total Aerosole 5)	1.8E + 6	1.3E + 6	7.1E + 6	7.8E + 7	1.2E + 8

Tabelle 4 e: Neutronen-Dosen in der Umgebung des PSI-West im Jahre 1991

Ort/Gebäude	1)	Neutronen-Dosen (μSv)							
		1. Quartal	2. Quartal	3. Quartal	4. Quartal	Summe	Netto 2)		
PSI-Süd	(350m; 100°)	15	9	11	20	55	28		
Tüeliboden	(400m; 310°)	13	9	9	16	47	20		
Förderband	(700m; 210°)	15	8	14	14	51	24		
Scheune Schöd	dler (200m; 270°)	21	18	19	70	128	101		
Gästehaus	(250m; 20°)	18	8	13	24	63	36		
Villigen	(1300m; 210°)	9	8	7	10	34			

¹⁾ In Klammern Distanz und Richtung vom Beschleuniger (Nord = 0°, Ost = 90°)

Angegeben werden Werte, die im Jahr mindestens 20 μ Sv über dem Vergleichswert von Gebenstorf (27 μ Sv) liegen.

Fussnoten zu Tabelle 4

"Reglement über die Abgaben radioaktiver Stoffe aus dem Kernkraftwerk ... und über die Umgebungsüberwachung". Die Abgabelimiten werden so festgelegt, dass die radiologische Belastung der kritischen Bevölkerungsgruppe in der Umgebung unter 0.2 mSv/Jahr bleibt. Die Messung der Abgaben erfolgt nach den Erfordernissen des Reglementes und nach Weisungen der HSK. Die Messgenauigkeit beträgt ca. ± 50 %.
Beim PSI ist eine Revision des Abgabereglementes in Vorbereitung, die dabei vorgeschlagenen Abgabelimiten sind hier bereits aufgeführt (Stand Ende 1991).
Beim PSI fallen unter "Uebrige-Ost" folgende Abgabestellen mit geringer Emmissionshöhe: Saphir, Proteus, Radioaktiv-Abfallabor und Chemie-Labor Ost und unter "Uebrige-West" Injektor II, Tritiumhütte und Montageraum ATEC.

Bei einigen Stoffgruppen und Abgabestellen des PSI wird auf die Festlegung von Jahresabgabelimiten verzichtet, da auch

Berechnete Jahresdosis (effektive Aequivalenzdosis) für Personen, die sich dauernd am kritischen Ort aufhalten, ihre gesamte Nahrung von diesem Ort beziehen und ihren gesamten Trinkwasserbedarf aus dem Fluss unterhalb des Werkes resp. des PSI decken (Wasserführung der Aare in Mühleberg 3,8 · 10⁹ m³/Jahr, in Gösgen 9,0 · 10⁹ m³/Jahr, in Würenlingen (PSI) und in Beznau 1,8 · 10¹⁰ m³/Jahr und des Rheines in Leibstadt 3,3 · 10¹⁰ m³/Jahr). Dosiswerte kleiner als 1,0E-08 Sv - entsprechend einer Dosis, die durch natürliche externe Strahlung in einigen Minuten akkumuliert wird - werden nicht angegeben.

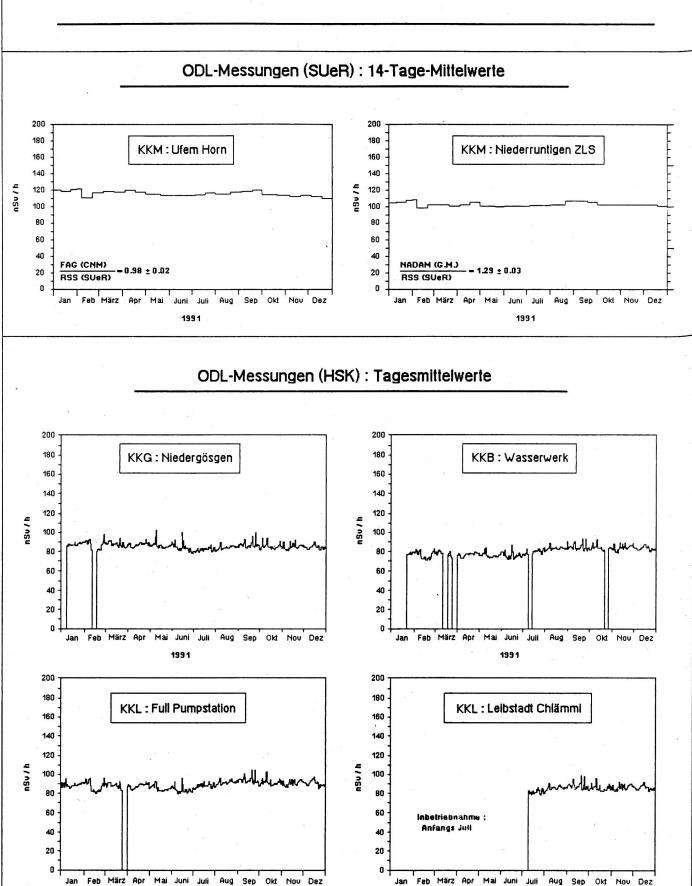
bei dauernder Ausschöpfung der Kurzzeitabgabelimiten die resultierende Dosis unbedeutend klein ist.

- 3) Abwasserabgaben in Bq/Jahr normiert auf einen C_W -Wert von 10^{-4} Ci/m³ = 3,7·10⁶ Bq/m³ nach SSVO.
- 4) Xenon-133-Aequivalente respektive Argon-41-Aequivalente beim PSI, berechnet durch gewichtete Summation der Abgaben sämtlicher Nuklide pro Jahr, wobei sich der Gewichtungsfaktor aus dem Verhältnis des Immersionsdosisfaktors des jeweiligen Nuklides zum Immersionsdosisfaktor von Xe-133 respektive Ar-41 ergibt. Um Vergleiche zu den letztjährigen Tabellen zu ermöglichen, sind in Klammern die Aequivalentabgaben gemäss Berechnung mit den C_a-Werten aus der SSVO angegeben.
 - Bei der Berechnung der Dosis durch Immersion wurden die Abschirmeffekte durch Aufenthalt in Häusern berücksichtigt. Für den Abschirmfaktor im Haus wurde 0.2 angesetzt, für die Aufenthaltszeit im Freien 40 Stunden pro Woche.
- Die Dosisberechnung beruht auf der Annahme homogener Abgaben während des Jahres.
 Der Beitrag der Immissionen längerlebiger Nuklide aus früheren Jahren durch Aerosol-Ablagerungen am Boden (Bodenstrahlung) und Aufnahme über die Nahrung zur Dosis des Berichtsjahres wurde berücksichtigt.
 Der Dosisbeitrag von Aerosolen mit Halbwertszeiten kleiner 8 Tagen ist bei den Kernkraftwerken vernachlässigbar. Beim PSI-West spielen allenfalls die extrem kurzlebigen Aerosole für die Inhalations- und Immersionsdosis sowie für die Dosis aus der Bodenstrahlung eine Rolle. Unter sehr konservativen Annahmen errechnet sich ein Beitrag von ca. 50% zur gesamten Aerosoldosis.
 Beim KKM ergibt sich der Hauptbeitrag zur Dosis durch die Bodenstrahlung von Aerosolen, die im Jahre 1986 durch eine
 - unkontrollierte Abgabe in die Umgebung gelangten. Der Dosisbeitrag, der durch Aerosolabgaben im Berichtsjahr verursacht wurde, ist demgegenüber vernachlässigbar und liegt in der Grössenordnung der anderen schweizerischen Kernkraftwerke.
- 5) Jod-131-Aequivalente pro Jahr berechnet durch gewichtete Summation der Abgaben sämtlicher Iod-Nuklide, wobei sich der Gewichtungsfaktor aus dem Verhältnis des Ingestionsdosisfaktors des jeweiligen Nuklides zum Ingestionsdosisfaktor von I-131 ergibt. Um Vergleiche zu den letztjährigen Tabellen zu ermöglichen, sind in Klammern die Aequivalentabgaben gemäss Berechnung mit C_a-Werten aus der SSVO angegeben.
 Beim Jod wurde dieses Jahr neu auch Ingestion über Gemüse und Fleisch berücksichtigt. Dies ergibt gegenüber der reinen Milchingestion eine Erhöhung der Dosis um ca. einen Faktor 1.5 für Kleinkinder und einen Faktor 3 für Erwachsene.
- 7) Die angegebenen Abgaben von C-14 basieren mit Ausnahme des KKL (gemessene Werte) auf Abschätzungen der HSK basierend auf temporären Messungen in den Anlagen in früheren Jahren.
- 8) Es wurde angenommen, dass das Tritium in der Abluft in der Form von tritiertem Wasser (HTO) abgegeben wurde.

RSS-Messkampagnen Campagnes RSS dans

in der Umgebung der schweizerischen Kernkraftwerke, s le voisinage des centrales nucléaires suisses, 1991

Ort CNM/KKM	19 91
	nSv /h
Runtigerain Waldeingang *	103
Runtigerain Vita-Parcour bei KUeR-TLD*	123
Runtigerain bei KKM-TLD 15 *	110
Runtigerain bei∎ Verbotsschild ★	119
Ufem Horn beim Aerosolfilter	95
Ufem Horn beim Schopf	110
Vordere Rewag Hohlweg	112
Hintere Rewag bei Pumpwerk	80
Marfeldingen, KKM-TLD 30	97
Mühleberg, Kreuzung	95
Gross-Wühleberg	97
Stockeren, beim Umsetzer	82
Jaggisbach, nach Autobahn-Unterführung	93
Oberei, Bus-Haltestelle	93
Fuchsenried, bei KKM-TLD 19	94
Wasserkraftwerk	101
Åbnitacker	97
Salvisberg, vis à vis KUeR-TLD	9 9
Friesvil	96
Murzelen, KKM-TLD 24	92
Matzwil, Ob. Bannhubel	94
Talwatt	86
Bráttelen, Weekend Haus *	105
Huppen	91
Oberruntigen	94
Matswil, Waldrand	95
Oltigen	88
Golaten	85
Wilerau	88
Wileroltigen, bei ARA	78
Niederruntigen, ZLS West	93
lufahrtsstrasse zum KKM *	120


ort CNG/KKG	1991
* -	nSv/h
Dâniken Aarfeld	78
Dâniken Walki	80
Dulliken Schachen, vis à vis Fa. NATECO	79
Dulliken Schachen, Kreuzweg	85
Dulliken Schachen, KKG-TLD 17	83
Dulliken Schachen, bei Reservoir	81
Ober-Gösgen Bollenfeld, KKG-TLD 10	87
Ober-Gösgen Stöckenstrasse	91
Ober-Gösgen Aareufer, Trafostat. ATEL3	92
Ober-Gösgen Gilgenhölzli	87
Mülidorf Auslauf-Bauwerk	79
Mulidorf Schaltanlage 380 kV	79
Mülidorf nähe Meteogarten	83
Niedergösgen Mehrzweckhalle	79
Niedergösgen Belchenstrasse	84
Buerwald Rainstrasse	76
Aarau Schachen, bei KUER-TLD	84
Aarau Aareufer, Wiese vor Schwimmbad	85
Unterentfelden	95
Schönenwerd Riedbrunnen	94
Schönenwerd Bergwald	95
Gretzenbach	81
Dåniken Oberdorf	88
Starrkirch-Wil, Maierhof (Olten)	93
Olten Spital	88
Trimbach Grossfeld	100
Winznau Aareufer, Burmattstrasse	89
Winznau Neufeld	89
Dåniken Aarfeld, KANI-leitung	77
Dåniken Aarfeld, Geleiseweiche	82
Dåniken Aarfeld, ATEL-Versuchsgel.	81
Dåniken Aarfeld	79

ort CNB/KKB	1991
	nSv/h
Hinter Rein, TLD 25	83
Villigen Basel, TLD 23	87
Villigen Appeli, TranspMast, TLD 11	84
Villigen Ob. Chilen, Rebmattweg	81
Villigen Chastel, TLD 13	83
Schmidberg TLD 15	81
Böttstein Lätten	96
Mandach Hinter Rei	101
Böttstein Schnäggeberg	86
Bôttstein Schlossgarten TLD 16	. 89
Bôttstein Flue, TLD 17	90
Kleindöttingen Eien, TLD 18	90
Kleindöttingen Chessel, TLD 30	83
Kleindöttingen Stausee, Mast, TLD 31	83
Leuggern Burlen, TLD 32	86
Hettenschwil, neben Riegelhaus	8 8
Leuggern Schulhaus	93
Gippingen Feldegg	92
Koblenz Bardli	7 7
Klingnau Hönger	96
Döttingen Usser Berg, Lustgarten	84
Beznau WKW, TLD 12	83
Döttingen Bränthau, TLD 21	74
Döttingen Öfelihau, TLD 5	81
Würenlingen südl. PSI, TLD 4	92
Würenlingen Unterwald, TLD 8	76
Untersiggenthal Schützenhaus	87
Station Siggenthal, Steinbruch	7 7
Würenlingen Oberfeld, TLD 26	85
Würenlingen Mänsenthal, TLD 27	9 0
Unterendingen Geren, TLD 28	94
Dôttingen Hard	90

ort CNL/KKL	1991
	nSv/h
Full Ost, Wâldchen bei PSI-TLD 30	78
Full Jüppen, bei KUER-TLD	81
Full Dorf, Schulweg	84
Pull Rüttistr. bei KKL-TLD 3	85
Full Schützenhaus bei KUER-TLD	83
Reuenthal Fischacker	79
Reuenthal Unterem-Tal	80
Reuenthal Dorf, Talgasse bei KKL-TLD	9 80
Reuenthal Ried nähe Umsetzer	79
Leibstadt Strick	86
Leibstadt Fuerlängi	85
Leibstadt Baumliweg	80
Leibstadt Bernau, Zoll	84
Leibstadt bei Grundwassermesser	80
Koblenz Hārdli	77
Gippingen Feldegg	92
Hettenschwil, neben Riegelhaus	88
Leuggern Schulhaus	93
Leibstadt Rheinufer, Damm	83
Leibstadt Linden	78
Leibstadt Wermet	92
Leibstadt Chalchbründli	93
Leibstadt ARA	71
Schwaderloch Im Sand	80
Schwaderloch Röm. Warte	90
Etzgen Weidhof, Pontonierhaus	87
Etzgen Station, 100 m östlich	83
Rheinsulz	76
Mettau Metteberberg	95
Schiltegg	65
Bossenhus Sägerei	91
Leibstadt Buechbrunnen	77

^{*)} Points influencés par le rayonnement direct de la CNM. Im Bereich der Direktstrahlung.

Fig.4.2 : Kontinuierliche Registrierung der Ortsdosisleistung in der Umgebung von KKW, gemessen mit Ionisationskammer, 1991

1991

1991

4.3. Incidence des rejets des installations nucléaires suisses dans l'environnement

CNB: Beznau I et II; GNG: Gösgen; CNL: Leibstadt;

CNM: Mühleberg

4.3.1 Objectif et programme de mesure dans l'environnement

Pour constater l'incidence des rejets dans l'environnement, en plus des dispositifs de l'exploitant, la SUER et la DSN disposent d'un programme de prélèvement et de mesure approprié. Celui-ci tient compte de toutes les voies essentielles par lesquelles la radioactivité peut atteindre l'homme (air, eau, sol, herbe, chaîne alimentaire). L'évolution annuelle de l'activité des radionucléides artificiels de longue période est particulièrement surveillée, afin qu'un accroissement graduel de leur concentration par suite d'un enrichissement dans la biosphère ne puisse passer inaperçu.

En plus des mesures de dose ambiante, des analyses alpha, bêta, gamma, strontium-90 (cf. 3.6), et tritium, carbone-14, krypton-85, argon-37 (cf. 3.2) sont effectuées dans les échantillons du plan de prélèvement. Ce programme de surveillance de routine est encore complété par les mesures de spectrométrie gamma in situ. Ces moyens restent exploitables pour desinterventions ciblées, destinées à l'examen approfondi des valeurs anormales signalées par les enregistrements continus de l'exposition externe ou par l'évaluation des systèmes permanents de collecte (plaques de vaseline, filtres aérosols).

4.3.2 Résultats 1991 concernant les échantillons du plan de prélèvement spécifique au voisinage des centrales nucléaires (tableaux 4.3.a et 4.3.b)

Les **filtres mensuels** des collecteurs d'aérosols installés auprès des centrales nucléaires ont donné: Be-7 (naturel): 730 à 3400 μ Bq/m³; Cs-137 (Tchernobyl): <5 à 20 μ Bq/m³; Cs-134 (Tchernobyl) <5 μ Bq/m³; Co-60 (CNM): 13 μ Bq/m³ en juin et 10 μ Bq/m³ en novembre, sinon <5 μ Bq/m³. Les faibles concentrations Cs-137 et Co-60 décelées occasionnellement témoignent vraisemblablement de la **remise en suspension** des particules radioactives par le vent.

- L'analyse des **précipitations** n'a mis en évidence aucun émetteur gamma artificiel; comme pour les stations en dehors du voisinage des centrales nucléaires, les concentrations de Cs-137 sont restées inférieures à 50 mBq/l en 1991. Les résultats du tritium dans les précipitations figurent au chapitre 3.2. Pour le milieu aquatique (cf. 3.4), relevons que l'analyse gamma EAWAG d'un chevaine prélevé au Stausee Niederried (voisinage CNM) a signalé 12 Bq/kg de Zn-65.
- Les résultats dans le sol, l'herbe, le lait et le froment sont exposés aux tableaux 4.3.a et 4.3.b. On relève dans les sols du voisinage de Beznau et Leibstadt des concentrations de césium-137 plus élevées, du fait de la retombée Tchernobyl plus importante au nord est de la Suisse (voir chap. 3.3).

- Dans les pommes et pommes de terre du voisinage de Leibstadt/Dogern(RFA), ainsi que dans un poisson du Rhin, les teneurs artificielles sont restées inférieures à 0.5 Bq/kg de matière prête à la consommation. Un complément d'information concernant les denrées alimentaires se trouve dans le chapitre 3.5.
- Des **aiguilles de sapin** prélevées auprès de la CNM et de la CNB ont présenté les concentrations suivantes:

CNM: 120 Bq/kg (K-40) et 3 Bq/kg (Cs-137), CNB: 90 Bq/kg (K-40) et 3 Bq/kg (Cs-137).

4.3.3 Mesures in situ 1991 dans le voisinage des centrales nucléaires (fig. 4.3.a et 4.3.b)

Ces mesures n'ont mis en évidence aucune contribution au niveau des émetteurs gamma, attribuable à l'exploitation 1991 des centrales nucléaires suisses. Comme le montre le suivi dans les sites de référence examinés par spectrométrie γ in situ depuis 1984 (fig. 4.3.a), les seules contaminations subsistantes incombent encore aux essais nucléaires passés, à Tchernobyl ainsi qu'au rejet de résines radioactives survenu en septembre 1986 à la centrale nucléaire de Mühleberg. Les mesures supplémentaires effectuées en 1991 dans des forêts du voisinage des centrales suisses ont indiqué une contribution naturelle de la radioactivité de leur sol relativement faible ainsi qu'un renforcement de la part artificielle. Celui-ci s'explique par une répartition de l'activité artificielle plus fortement concentrée dans la couche supérieure. Outre les spécificités locales du sol et des précipitations et l'absence d'interventions humaines (en particulier labourage), la déposition retardée de la part des aérosols attachés aux aiquilles de sapin peuvent justifier cette constatation. Les valeurs du MMGC-ratio déterminées par cartographie gamma par voie aérien-(cf. Aeroradiometrische Messungen in der Umgebung der schweizerischen Kernanlagen: ETHZ-Bericht für das Jahr 1991 zuhanden der HSK) signalent une corrélation correspondante concernant les forêts. Dans ce rapport de l'Institut de géophysique de l'EPFZ figurent également les mesures comparatives aéroradiométrie-spectroscopie in situ effectuées dans la plaine de Magadino, mettant en relation les cps déterminés dans la fenêtre Cs-137 et les activités correspondantes obtenues par spectrométrie in situ. Il en résulte une calibration plus affinée de la cartographie gamma par voie aérienne concernant les contaminations Cs-137.

Les résultats in situ relatifs aux 19 sites du voisinage des centrales nucléaires suisses examinés à la fois par la **DSN** et par la **SUER** sont comparés ci-dessous:

Bq/kg	Ra-226 (U-238)	Ac-228 (Th-232)	K-40	Cs-137	Cs-134	Co-60
DSN/SUER	1.03±0.16	1.05±0.12	1.10±0.05	1.06±0.08	1.14±0.19	0.98±0.07

Cette comparaison montre une **bonne** concordance, en moyenne meilleure que $\pm 10\%$, sauf pour les faibles concentrations subsistantes du Cs-134, dont la détermination est moins précise.

Interprétation et conclusions des mesures in situ 1991

En résumé, la figure 4.3.b présente la contribution des contaminations du sol au débit de dose ambiante dans les sites examinés en 1991 auprès des centrales nucléaires, en comparaison de la part naturelle correspondante qui prédomine. Pour la part artificielle, on relève des valeurs plus élevées dans les forêts ainsi que dans les sites du voisinage de la CNM affectés par son rejet non contrôlé en automne 1986. Il en résulte les doses ambiantes annuelles en plein air suivantes pour 1991: composante naturelle: 0.6 à 1.1 mSv, dont env. 0.3 à 0.7 mSv du rayonnement terrestre et près de 0.4 mSv du rayonnement cosmique; composante artificielle (sans le rayonnement direct): 0.02 à 0.12 mSv, dont moins de 0.03 mSv des essais nucléaires passés, 0.01 à 0.08 mSv des retombées de Tchernobyl et 0.02 à 0.08 mSv du rejet CNM 1986 dans le rayon Ufem Horn.

Si l'on tient compte de la surestimation du débit de dose ambiante d'origine artificielle, du fait de l'hypothèse d'une répartition homogène des contaminations, ainsi que du séjour limité de personnes en plein air et de l'atténuation du rayonnement artificiel dans les habitations, l'exposition externe individuelle due aux différentes contaminations est encore bien moindre. Ainsi l'exposition externe supplémentaire due au rejet CNM de septembre 1986 se situe d'après les mesures in situ 1991 autour de 9 μSv sur le champ (labouré) auprès de la ferme Ufem Horn, respectivement 20 µSv sur le pâturage attenant à la ferme, n'ayant subit aucune intervention humaine depuis 30 ans. Ces valeurs recouvrent le calcul effectué à partir des émissions de la CNM, selon lequel la contribution des aérosols (provenant en majeure partie du rejet de septembre 1986) à l'irradiation externe est voisine de 12 μSv au point critique en 1991 (voir 4.1).

Remerciements

Nos remerciements cordiaux s'adressent à J. Schuler et W. Baur (DSN) pour leur précieuse collaboration aux mesures ainsi qu'à Mme M. Gobet et A. Gurtner (SUER) pour leur participation active à la mise en page (rédaction, tableaux et figures) de ce rapport. Nous aimerions également remercier toutes les personnes qui ont favorisé le bon déroulement de nos mesures.

Tab. 4.3.a

SOL ET HERBE DU VOISINAGE DES CENTRALES NUCLEAIRES

Wertebereich der Aktivitäten von Erdboden (0-5cm), 1991 in Bq/kg Trockensubstanz (T.S.)

Domaine des valeurs des activités du sol (0-5 cm), 1991 en Bq/kg matière sèche (M.S.)

Entnahmestelle (Anzahl Proben) Lieu de prélèvement (Nombre d'échantillons)	Kalium-40 (natürlich) Potassium-40 (naturel)	Radium-226 Uran-Reihe Radium-226 Série uranium	Actinium-228 Thorium-Reihe Actinium-228 Série thorium	Caesium-137 Césium-137	Caesium-134 Césium-134	Strontium-90 Strontium-90 (EPFL)
(Bg/kg TS - MS), 1991						
Umg. KKW Mühleberg (3) Vois. CN Mühleberg (3)	710-890	34-37	29–30	34-42	2-6	3.8
Umg. KKW Gösgen (4) Vois. CN Gösgen (4)	420-490	32–45	27–36	51-64	4-5	3.5
Umg. KKW Leibstadt (4) Vois. CN Leibstadt (4)	320-450	25-40	19–29	41-96	3-5	2.9
Umg. KKW Beznau/PSI (2) Vois. CN Beznau/PSI (2)	380-440	33–35	25-27	69-94	7–8	1.6-2.3

Points critiques du voisinage de la CNM: Co-60: 3-6 Bq/kg PSI-Nord; Co-60: 7 Bq/kg; Sb-125: 2 Bq/kg

Wertebereich der Aktivitäten von Gras, 1991 in Bq/kg Trockensubstanz (T.S.)

Domaine des valeurs des activités de l'herbe, 1991 en Bq/kg matière sèche (M.S.)

Entnahmestelle (Anzahl Proben) Lieu de prélèvement (Nombre d'échantillons)	Kalium-40 natürlich Potassium-40 naturel	Beryllium-7 natürlich Beryllium-7 naturel	Caesium-137 Césium-137	Caesium-134 Césium-134	Strontium-90 Strontium-90 (EPFL)
	(B4	g/kg TS - MS)	, 1991		
Umg. KKW Mühleberg (10) Vois. CN Mühleberg (10)	760-1330	40-300	1-15	< 3	4.8-7.5
Umg. KKW Gösgen (8) Vois. CN Gösgen (8)	260-1080	50-480	1-8	< 3	4.5-4.9
Umg. KKW Leibstadt (4) Vois. CN Leibstadt (4)	520-1350	80-110	<10	< 3	1.8-5.1
Umg. KKW Beznau/PSI (6) Vois. CN Beznau/PSI (6)	370-1780	40-120	<10	< 3	3.2-6.2

Pour l'iode-131 et le cobalt-60 les valeurs ont toujours été inférieures à la limite de détection soit 2 Bq/kg

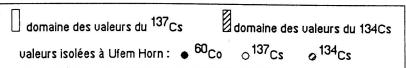
Tab. 4.3.b

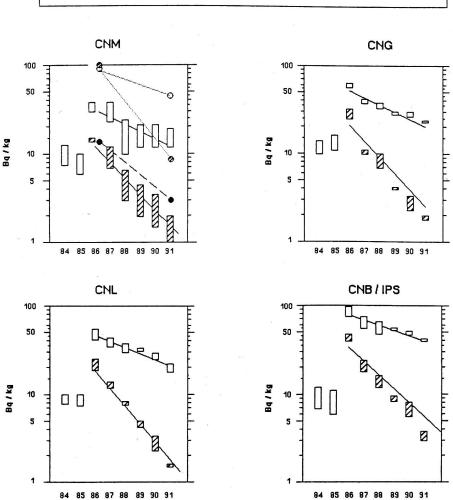
LAIT ET FROMENT DU VOISINAGE DES CENTRALES NUCLEAIRES

Wertebereich der Aktivitäten von Milch, 1991 wenn nicht anders vermerkt: Kuhmilch

Domaine des valeurs des activités du lait, 1991 sans remarque: lait de vache

Entnahmestelle (Anzahl Proben) Lieu de prélèvement (Nombre d'échantillons)	Kalium-40 (natürlich) Potassium-40 (naturel)	Caesium-137 Césium-137	Caesium-134 Césium-134	Strontium-90 Strontium-90 (EPFL)	
(Bg/l), 1991						
Umg. KKW Mühleberg Vois. CN Mühleberg	(3)	*)	< 4	< 4	0.09-0.12	
Umg. KKW Gösgen Vois. CN Gösgen	(1)	46	< 0.3	< 0.2	0.1	
Umg. KKW Leibstadt Vois. CN Leibstadt	(3)	49-50	< 0.5	< 0.2	0.07-0.10	
Umg. KKW Beznau/PSI Vois. CN Beznau/PSI	(2)	50-52	< 0.1	< 0.2	0.08	


^{*)} Données du lab. cant. de Berne (KLBE): seulement pour la contribution artificielle Pour l'iode-131, les valeurs ont toujours été inférieures à la limite de détection de 1 Bq/l


Wertebereich der Aktivitäten von Getreide, 1991 in Bq/kg Trockensubstanz

Domaine des valeurs des activités des céréales, 1991 en Bq/kg matière sèche

Entnahmestelle (Anzahl Proben) Lieu de prélèvement (Nombre d'échantillons)		Kalium-40 (natürlich) Potassium-40 (naturel)	Caesium-137 Césium-137	Caesium-134 Césium-134	Strontium-90 Strontium-90 (EPFL)	
6	(Bg/kg - TS - MS), 1991					
Umg. KKW Mühleberg Vois. CN Mühleberg	(1)	130	< 1	< 0.5	0.54	
Umg. KKW Gösgen Vois. CN Gösgen	(1)	140	< 1	< 0.5	0.47	
Umg. KKW Leibstadt Vois. CN Leibstadt	(2)	130	< 1	< 0.5	0.54	
Umg. KKW Beznau/PSI Vois. CN Beznau/PSI	(1)	140	° <-1	< 0.5	0.43	
Gemeins. Gebiet KKL/KKB Rayon commun CNL/CNB	(1)	140	< 1	< 0.5	0.58	

Fig. 4.3.a : Suivi des concentrations artificielles dans le voisinage des centrales nucléaires (valeurs calculées à partir des spectres in situ pour une répartition homogène dans le sol)

Avant mai 1986 : part des essais nucléaires passés

Dès mai 1986 : augmentation due aux retombées de Tchernobyl Septembre 1986 : contribution additionnelle des résines radioactives

rejetées par la CNM

Fig. 4.3.b Contributions artificielles à l'exposition externe dans le voisinage des centrales nucléaires 1991

	(part naturelle) nSWh		
Murzelen Salvisberg Fuchsenried Niederruntigen Rewag Horn (champ) Horn (forêt) CNM (clôture) Horn (pâturage)		CNM	92 103 103 100 81 102 89 122 102
Aarau Stegbach Niedergösgen Starrkirch Buerwald (forêt)		CNG	78 83 83 85 85
Full (jardin) Full (Pumpenhaus) Etzgen (Pontonier) Leibstadt Chlämmi		CNL	80 84 86 79
PSI-Nord Böttstein PSI-OASE Beznau WkW Oberhalden (forêt)	0 2 4 6 8 10 12 14	CNB	84 84 80 81 72

essais nucléaires passées	Tchernobyl	Rejets de la CNM en 1986
i		