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Beyond Pythagoras:
Ancient Techniques for Designing Musical
Instrument Scales

Paul Poletti

Over the last decade or so, a new trend has emerged in the reconstruction of
historical musical instruments: “copying” based on “first principles”. That is,
the modern maker doesn’t slavishly reproduce each and every detail of an
original instrument, but rather tries to understand the design and construction
principles which guided the original maker. By reproducing the process, we
produce objects which — though new —remain within the confines of a historical
tradition, exactly as the modern “historically-informed” musician does when
performing a piece of “early music”.

The challenge, of course, is figuring out exactly what these principles were.
Any object can be described by a number of design theories. Which theory we
consider most plausible depends greatly upon our education and experience, to
say nothing of our broader view of existence —how we think about and manipu-
late the materials and forces which confront us in the “real” world. As late-20th
century people, we cannot assume that our modes of thought are similar to those
of the skilled craftsman of two or three hundred years ago. Therefore, it is of
fundamental importance to learn as much as we can about their techniques,
both intellectual and practical. Only by understanding and approaching the
problems of instrument making in a similar manner will we gain real insight
into their creative processes.

To this end, a number of articles have recently appeared on the geometri-
cal layout techniques used by old makers to design the cases of harpsichords
and fortepianos. However, one critical aspect of instrument design has yet to
be subjected to such an approach: the design of an instrument’s scale. Basic
Pythagorean proportions! are still assumed to be the fundamental principle
underlying the determination of string lengths for most instruments. How-
ever, a surprising number cannot be explained with Just scaling, a fact which
remains largely unacknowledged, and therefore unexplained by modern
organology. This is partly due to the use of methods of examining scales

1  Regarding scaling, “Pythagorean proportions” means a scale in which the octaves halve or
double precisely in length, and the length of each successive note is related to the previous
by the 12th root of 2. Such a scale is also called “Just”.
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which do not make significant aberrations apparent.? Secondly, when devia-
tions from Just scaling are noticed, organologists seem to be incapable of
imagining methods of devising such scales other than minor variations upon
the simplistic theme of Pythagorean proportions. Dogma has also gotten in
the way, in a form which I call “The Tyranny of the Whole Zoll”.? This is my
term for an approach based on an assumption of Pythagorean scaling in com-
bination with “rediscovering” the local/temporal measuring unit used by the
ancient maker. Such an approach inevitably results in forcing the observed
string lengths into integer units or simple fractions of the assumed original
measure. While this works for some instruments, it fails miserably at explain-
ing a significant number of others.

Modern organology has settled into the rather complacent view that
the scales of stringed keyboard instruments can be divided into two broad
categories:

(1) Pythagorean scaling throughout (or nearly so); most often found in instru-
ments of southern building schools, and generally assumed to be strung
entirely in brass (see Chart 1).

(2) Pythagorean scaling in the treble half of the instrument only, often from
around middle c up, but with a “foreshortened” tenor and bass; thought to
be typical of “northern” building schools, and usually (though not always)
assumed to be strung in brass in the bass and iron from the high tenor up
(see Chart 2).

In either instance, it is no mystery how a builder would have designed the
Pythagorean portions of the scale; beginning with a design length — usually
assumed to be c2 — one simply doubles and halves to get the octaves. If a second
reference note is desired, either f or g can be determined by simple Pythagorean
proportions.* These lengths were marked directly on the soundboard, starting
from the nut, and then used to position the bridge during gluing. The bridge
itself was either sawn or bent into a curve which best connected the marks of

2 LoglO graphing of string lengths is far too coarse to make aberrations of 1 or 2 semitones
visually obvious, especially in the treble, where such deviations are often found.

3 Zollisthe German word for “inch”, also called duim in Dutch and pouce in French. Regardless
of regional variations in name and size, the “inch” of approximately 24 to 27 mm was the
standard unit of measure throughout Europe before the introduction of the metric system.

4 Anyfwillbehalfagain aslongas the cabove it, or any g will be a third less the length of any ¢
below it. These are, of course, pure Pythagorean “harmonic” proportions, which give lengths
slightly different from a true “Pythagorean scale” in which the proportion of every step is
the 12th root of 2. However, for the practical purposes of designing a scale and positioning a
bridge upon a soundboard, this error is insignificant. In any event, as I'll later demonstrate,
an extremely simple method also exists for deriving the length of a true “Pythagorean” f#
(related to c lengths by the square root of 2).
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Chart 1 - “Typical southern” scale shape. String lengths of the Cristofori 1722
harpsichord (Leipzig # 84).

the “reference” notes. In a “generic northern” instrument, such logic would
have been used by the builder to design only the treble portion of his scale,
down to the point at which foreshortening begins. I call this area the “Main
Sequence”, since it is here that we find the basic length/stress/pitch identity
of the instrument.®

5  Scale length determines the stress upon the wire (closeness to breaking) at any given pitch
level. Builders are of course free to choose a scale much too short for the desired pitch, which
would produce a stress level well below breaking. The only thing we can determine with any
degree of certainty is the maximum pitch level an instrument with a certain scale length can
withstand.
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Chart 2 — “Typical northern” scale shape. String lengths of the Kirckman 1771
harpsichord (Deutsches Museum #87-409).

Below the Main Sequence, the tenor bridge often followed a straight (or
near-straight) line, quite often parallel to the bentside. The angle of the bentside
itself was probably predetermined by case layout geometry, meaning that the
string lengths in the foreshortened area were determined by extra-acoustical
considerations. Some builders let the bridge continue along this line to the
very bottom; others chose an even more severely foreshortened bottom note
length by bending the bridge away from the straight line, eventually arriving
at a predetermined bottom note length. As with the tenor straight line, this
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bottom note may have been taken at a convenient distance inward from the
tail of the instrument, the position of which was again predetermined by case
geometry.

Two instruments from the same time and place provide evidence both for
and against such a design scheme.® The first is a classic example of the “generic
northern” scale, as explained by Grant O’Brien:

note actual assumed equivalent error nearest error

length designlength mm mm  equivalent —mm
mm inches Vs inch

Bottom note

FF 1828 72 1828.8 -0.8 - -

Straight tenor

C 1705 67 1701.8 42 67 Va -3.1

F 1512 89 Ya 151135 0.7 = =

(o 1229 48 1231.9 -2.9 - -

f 1019 40 1016.0 3.0 - -

Main sequence

cl 720 28 %2 7299 -39 28 V4 2.5

f1 536 21 533.4 2.6 - -

c2 357 14 355.6 1.4 - -

f2 267 10 Y2 266.7 -0.7 - -

e3 179 7 177.8 12 - -

£3 139 5% 139.7 -0.7 - -

Table 1

Actual string lengths and proposed design logic
Double manual harpsichord by Johannes Willbrock, London, 1730

The left three columns are taken from the published article, the right repre-
sent my analysis of the accuracy of the interpretation. The proposed design
lengths for this instrument are generally believable, though not without some
reservations. O’Brien offers some lengths which are not the best “V4 inch fit”,
for reasons which remain unexplained. Bass C, for example, is almost exactly
half-way between 67"and 67 %4" and could arguably go either way. Neither

6  GrantO’Brien, The Double-Manual Harpsichord by Francis Coston, London, c. 1725, The Galpin
Society Journal XLVII (March 1994), pp. 2-31.
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Chart 3 — Real string lengths and proportional deviation of the Willbrock harpsichord.

inch equivalent fits any sort of apparent mathematical design scheme, though
as stated above, I don’t believe builders actually “designed” the lengths of
any of the notes in the straight tenor section in any acoustical or proportional
(octave) sense.

In the treble, O’Brien suggests 28 %2" for middle c, when 28 %4" would have
been a closer fit. There is no apparent advantage to 28 2" —in fact, we can prob-
ably assume that the builder’s original intent was 28" (711.2 mm), because it fits
a scheme of pure Pythagorean proportions for all f’sand c’s from c1 to c3. While
the length error required to accept this interpretation may seem large — almost
9mm —we shouldn’t forget that the bridge at c1 is running at an oblique angle to
the strings. Therefore, the amount of actual perpendicular bridge displacement
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(during gluing, or due to age and distortion) needed to cause this length error
is quite small: only about 2.5 mm. In this register, an error of this magnitude
between the “ideal” length and the actual length is readily acceptable, since the
length aberration produces an acoustic error (i.e. a change in tension/stress)
which is negligible.

Chart 3 demonstrates the credibility of the proposed design scheme. In
order to increase our ability to judge the correlation between the real string
lengths and the assumed design curve, another graph has been superimposed
upon the graph of actual string lengths and the assumed Pythagorean design
curve. This second graph shows the deviation from the design curve in pro-
portional units of semitones. For example, at tenor f we see that the length
is almost 1 semitone too short. This means that tenor f has the length which
tenor f# would have had, had the scale not been foreshortened and continued
following the Just curve. Such an analysis makes it easy to see deviations in
the high treble which are small in an absolute sense but nonetheless important
acoustically, while reminding us that exactly the opposite holds true in the
tenor and bass, that is, fairly large absolute deviations are of little acoustic
significance.”

For the most part the scale does indeed follow the Pythagorean curve mapped
out by the design lengths. The slight “error” at middle c causes a slight increase
in scale length relative to the ideal, though being about 1/10th semitone, it
remains insignificant. In the high treble, the scale seems to have been pur-
posely lengthened by almost one semitone relative to the ambient scale length.
Perhaps the builder simply wanted to keep the 8 bridge back from the gap to
allow more room for the top of the 4'. This could have been done by taking the
“theoretically correct” Pythagorean value for f3 - 5 4" —and adding another 4"
to the length. In any event, we have little trouble accepting O’Brien’s conclusion:
“Clearly Willbrock was ... using the inch and the inch divided into halves and
quarters to design the scalings of his harpsichord.” Beginning with a c2 of 14
inches, Willbrock could have easily calculated the other reference lengths with
very simple arithmetic.

Unfortunately, O'Brien’s analysis of the other instrument is much less con-
vincing:

7  The amountbywhich thelength of any string must be altered in order to introduce an acoustic
effect of a certain magnitude (changes in stress, inharmonicity, etc.) is always proportional
to the string’s length, and cannot be expressed in an absolute sense.
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note actual proposed equivalent error nearest error
length design length mm mm  equivalent —mm
mm inches Ysinch

Bottom note

GG 1689 66 Y2 1689.1 -0.1 - -
Straight tenor

C 1552 61 1549.4 2.6 - -
F 1346 58 1346.2 -0.2 - -
c 1063 42 1066.8 -3.8 41 ¥4 2.5
f 859 34 863.6 -4.6 33 % 1.8
Main sequence

cl 603 24 609.6 -6.6 23 Va4 -0.3
f1 460 18 457.2 2.8 - -
€2 314 12 % S -3.5 12 V4 2.9
f2 239 9 241.3 -2.3 - -
c3 163 6 V2 165.1 -2.1 - -
e3 139 5.3 139.7 -0.7 - -

Table 2

Actual string lengths and assumed design logic
Double manual harpsichord by Francis Coston, London, c. 1725

Note that there are two curious choices of proposed design lengths in the treble;
why should we reject the nearest ¥ inch equivalents for ¢1 and c¢2, when in both
cases they represent smaller deviation from the actual string lengths? Accept-
ing a larger assumption of error might well be valid if the resultant inch values
more closely followed Pythagorean proportions (or some other readily apparent
design scheme), but they don’t. Perhaps O’Brien assumed that Coston was using
some kind of modified Pythagorean scheme, with a basic design series of 24,
18, 12, 9, 6, but altered from c2 upward using a “constant addition” method:
Just values plus %2". However, this conflicts with O’Brien’s stated conclusion
that the scale is “based on a c2 of 12 %2 inches.”

If we accept this c2 length as the genesis of the whole series, how would the
lengths above and below have been generated? How did Coston determine his
length for the top note e3? No explanation whatsoever is offered for the design
method of this scale, though O’Brien does admit that the “8' treble scalings are
not strictly Pythagorean.” Despite this, he nonetheless confidently concludes:

From these measurements it can be seen that, as one might have expected, Coston
was using the inch as his unit of length, and that the cand f strings were designed to
be either whole numbers ... or integral plus half- and quarter-divisions of inches.
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Thisis a classic example of the “Tyranny of the Whole Zoll” at work: the observed
datais freely interpreted in a manner which fits the expectation of rational num-
bers, and the result is offered as some sort of explanation of design principles.
We shouldn’t forget that any metric value will always be within +£3.2mm of
some Y4 inch value, and simply converting millimeter measurements to their
nearest (or not) simple-fraction inch equivalents proves absolutely nothing —not
unless the result gives us a believable explanation for how the builder actually went
about the work of devising the scale.

2
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Chart 4 — Proposed design curve compared with actual string lengths of the Coston
harpsichord. Zero line represents a Pythagorean curve at the actual ¢" length.

A graphic analysis illustrates the unlikelihood that the proposed design lengths
represent the original method by which Coston created this scale. Chart 4
shows the deviation from a Pythagorean curve of two spline curves (Main
Sequence only): the curve connecting the real string lengths at all f’s and ¢’s,
and the curve which connects O’Brien’s proposed design notes.® Leaving aside
the question of how Coston might have arrived at these values, note that the
“reference lengths” do not provide believable coordinates for controlling the
bridge shape. On the contrary, it appears that “design” and “practice” have
exchanged places; usually the design notes indicate a smoothly-flowing curve
which the actual bridge follows only approximately, as we saw above with the
Willbrock. Butin this case, the proposed ideals describe a series of points which
produce a curve which has a noticeable bump at f1. The actual string lengths,
however, indicate a distinct “vector” of scaling logic with an amazing degree
of precision, as shown by the near-perfect straightness of the upwardly-sloping
deviation trace, from middle c all the way up to the top note.” What is the logic

8  A“spline” curveis a curve which follows the path which a real flexible object —such as a bent
stick — would follow when it is bent so as to intersect a series of points.

9  The instrument has no d#3 key, so in the graph, the note e3 is positioned where d#3 should
be, just as it is in the instrument itself.
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Chart 5 — Real string lengths and proportional deviation of the Tibaut 1691
harpsichord.

behind this “scale vector”? How could an 18th century builder have designed
such a scale, and what methods would he have used to mark the string lengths
on his soundboard for positioning the bridge? Why would he have wanted such
a non-Pythagorean scale in the first place? The answers to these questions are
precisely what this workshop is all about.!”

10 While the use of reference lengths/marks is already well-documented, the reader will note that
I have made little effort to discover any evidence that my proposed scale calculation methodol-
ogy was actually used by string keyboard instrument makers (with one exception —see below).
My purpose is merely to provide a believable hypothesis, using known tools and techniques
of the times, which offer a credible explanation for a number of enigmatic scales.
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Chart 6 — Real string lengths and proportional deviation of the Grabner 1739
harpsichord.

Before we proceed, I think it is important to demonstrate that this kind of scale
is by no means unique to one instrument. Charts 5 and 6 illustrate two more
northern harpsichords with similar non-Pythagorean scales.

A large portion of the main sequence of the Tibaut in the Paris Conserva-
tory (Chart 5) also exhibits a deviation trace which follows a distinct scal-
ing vector, indicated here by the upward-sloping arrow, as opposed to the
horizontal trace of a Pythagorean curve. Note that this slope is much steeper
than in the Coston instrument. This area runs from about tenor d up to about
c2, where the logic appears to level off and follow Pythagorean proportions.
The slight “bubble” at f2 may be intentional, but it could also be due to a
combination of age, original workshop error, and/or modern measurement
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error.!! The important point to realize is that there appears to be some kind
of consistent scaling logic which lies behind the design of two full octaves of
this instrument’s mid and upper portions, a logic which is most definitely not
based on Pythagorean proportions.

The design of the 1739 Grébner!? (Chart 6) is quite similar to Tibaut’s, except
that the non-Pythagorean main sequence has been expanded to about two and
a half octaves, from tenor c up to f2. At this point, the scale abruptly changes
course, suddenly becoming Pythagorean for the highest 8 or 9 notes.

One builder who has made several copies of this instrument has suggested
a possible “modified Pythagorean” method for deriving this scale.!® John Phil-
lips suggests that Grabner’s starting point was a c2 of 14 Saxon inches, and
that higher and lower octaves were then determined by the following variable
subtraction/addition scheme:

¢k=(14"-1") 22 = 256"
¢z = 14"
c3=(14"+1")+2=7Y"

Three possible formulae are offered for tenor c, starting with the length of c1:
C — (26” s 2”) X 2 o 48”
c=(26"-3")x2=46"
c — (26”_4”) Xz — 44”

None of these formulae produce the answer best needed to explain the observed
string length of 47". Nonetheless, taking 48", the proposed scheme does present
a reasonable series of reference lengths at the octaves of the note c. However,
this theory fails to convince because it cannot account for the clearly-defined
“change of course” at f2. Even more so, as is the case with all such “modified
Pythagorean” mathematical methods, this proposal only produces lengths for
octaves of the starting note. Should the builder want other reference lengths as
well — octaves of f, g, or f# (Ruckers), for example — to help position the bridge
more accurately or to define a top note, such schemes provide no means what-
soever for calculating them.

The first step to unraveling this enigmatic situation is to realize the sig-
nificance of the straight-line scaling vectors seen on these instruments. The
deviation graphs used here are a specialized form of logarithmic graph, plotted

11 Rounding to the nearest millimeter, a common practice in measurement taking, can cause
the appearance of aberrations in the highest treble registers, regardless of whether or not
they actually exist.

12 Kunstgewerbemuseum, Schlof Pillnitz, Dresden, Inv. No.37414.

13 See John Phillips, The Surviving Harpsichords of the Grdbner Family, forthcoming in the
proceedings of the Stiftung Kloster Michaelstein. John very kindly provided me with a pre-
publication version of this article, as well as with some additional string lengths not con-
tained therein.
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in units of semitones, which are proportional steps of the 12th root of 2. With
any kind of log-based graph, no matter what the basic proportion, a straight
line always indicates some kind of regular logarithmic curve; the slope of the
line indicates the extent to which the proportions underlying the data set (in
this case, string lengths) agree with the proportion used for the graph. In other
words, the straight lines we see tell us that these scales are based on octave
proportions which are indeed regular, but with a ratio which is different from
the Pythagorean proportion of 1:2. The Coston has an octave ratio of about

1:1.928, the Tibaut 1:1.8, and the Grabner 1:1.835. If we describe these pro-

portions as organ builders do, these scales do not halve or double on the 13th

note, but rather in between notes, at what would be notes 13.67, 15.5, and 14.7

respectively.

Neither method of expressing the underlying proportions of these scales
offers simple answers about how they were devised, since both methods involve
values which are irrational numbers. This suggests a degree of mathematical
sophistication beyond that which modern organologists usually attribute to
craftsmen of past centuries. However, the idea that such proportions are “too
advanced” comes from the blindness of our contemporary mode of thinking, the
result of the scientific and industrial “revolutions” which unfolded in the course
of the 19th century. Our modern “world view” is based on two principles:

(1) The establishment and universal standardization of units of measure —
meters, Hertz, Angstroms, Ohms, Volts, Watts, Newtons — for measuring
all the various aspects of “reality”.

(2) The use of precision quantitative measurement as the primary means for
describing reality, and for generating, preserving, and exchanging informa-
tion about reality.

We have been taught to think numerically - to specify dimensions in fixed units,

and to manipulate these units with mathematical calculation. Our fixation

upon “number crunching” blinds us to the methods used by ancient tradesmen,
whether architects, ship builders, ordinance designers, or musical instrument
makers. For them, universally-consistent absolutes did not exist, nor did the

“thinking machines” which make complex numerical calculation fast and effort-

less. Their world consisted of proportions between things. Their methods of

calculation were based on geometry, and their “calculators” were the straight
edge, the square, and the compass.'4

14 Forexample, Thomas Bradwardine stated (c.1320) that a geometrical approach was the best
manner of dealing with proportions because it solves the problem of irrational numbers, “...
for every proportion has to do with dimensions, but not every proportion is expressible with
numbers [... quia omnis proportio est magnitudinis sed non omnis est numeralis].” See A. G.
Holland, An Examination of Bradwardine's Geometry, Archive for History of Exact Sciences
19,1978, p. 151.
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The organ is the most complex of all acoustic musical instruments ever
devised by man, a status which it had already achieved many hundreds — if not
thousands —of years ago. The construction of even a relatively small instrument
involves the production of hundreds of precisely-proportioned sound-producing
objects. By comparison, designing the scale of a stringed keyboard instrument
is child’s play. Not surprisingly, organ building traditions can provide us with
both the theory and techniques for understanding and manipulating scales
which appear to be based upon sophisticated mathematics.

Organ builders discovered long ago that pipes could not be scaled according
to Pythagorean proportions; if several octaves are made with diameters that
double or halve on the 13th pipe, the sounds produced by the whole rank are
out of balance, the bass being too thick and heavy, the treble shrill and weak.'®
Furthermore, the extreme registers could exhibit speech problems, such as poor
tone, unstable attack, garbled or wobbly sustain, and a tendency to overblow.
These problems are eliminated when non-Pythagorean octave proportions are
used; the scale is tapered so that pipe diameters increase (going down into the
bass) and decrease (going up into the treble) less rapidly than with “theoreti-
cally correct” proportions. In other words, bass pipes are too thin and treble
pipes are too fat. This is directly analogous to a harpsichord or piano scale in
which the bass strings are too short and the treble strings are too long relative
to their theoretical Pythagorean lengths based on some note near the middle of
the compass. For centuries, organ builders have used two types of geometrical
templates both to devise such scales and to mark out the objects under construc-
tion in the workshop. These graphical calculating tools are the right triangle
and the spline curve.

The first type of template is constructed by drawing a right triangle in which
the desired step (not octave) proportion exists between the base and hypotenuse.
To illustrate the principle, here is the recipe for constructing a Pythagorean
template:

15 Organ builders, unlike stringed keyboard makers, do not “scale” (i.e. consciously design) the
lengths of pipes. Their primary design concern is cross-sectional area, followed by other mat-
ters affecting tone quality, such as mouth width, cut-up, foot hole diameter, etc., all of which
follow different scalings for each type of pipe (flute, diapason, string, etc.) in each division
(Hauptwerk, Riickpositiv, Oberwerk, etc.). Length is simply allowed to become whatever it
becomes depending upon wind pressure and tonal scaling; it is precisely determined only
during the final assembly and voicing of the instrument. This is why pipes of different ranks
which speak the same note in the same register (all 8 pipes for the note C, for example) are
not all of the same length. Ancient pipe makers probably judged the length of the raw pipe by
experience, at least until the mid-19th century, when the French organ builder Cavaillé-Coll
devised a formula for predicting length (more or less) based upon wind pressure and area.
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Figure 1a - Constructing the basic triangle.

Figure 1b — Dividing the base line into proportional units.
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Figure 1c — One complete octave of proportional lengths.
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(1) Draw a right triangle with proportions between the base line and altitude
of 20:7 (Figure 1a). The unit of measure (centimeters, inches, etc.) is not
important, as long as the proportions are correct.

(2) Using a compass or trammel, swing the length of the base up to the hypot-
enuse. Using a square, drop a line from this point back down to the base.
Repeat for a third altitude (Figure 1b).

(3)Keep on with the same method until there are 13 altitudes in total (Fig-
ure1c).

The 13th altitude will run between points which are at %2 of both the base and

hypotenuse. It will also be exactly ¥ the height of the original altitude. The

13 altitudes, as well as the 13 segments of both the hypotenuse and base they

define (taken from the left point of the triangle), will reduce by a consistent

ratio of the 12th root of 2. Once the basic template is constructed, its range can
be increased by either continuing the same system of swinging the base lengths
up and dropping new altitudes, or by drawing new hypotenuse lines at steeper
or shallower angles (extending the altitudes where necessary). Combining
the two is also possible. All of the new triangles formed will display the same

Pythagorean proportion between any successive demarcations of any of the

three sides.

In less than five minutes we can construct a powerful graphic “computer”, a
template which we can use to devise a strict Pythagorean progression beginning
with any absolute length we may desire.!® With such a template, we can obtain
the length of any note anywhere within the scale; we are no longer restricted
to octaves of the starting note. Most importantly, even though we start with
simple whole-unit measurements (7 inches by 20 inches, for example), the
majority of the derived lengths will be irrational numbers — a fact which is of
no consequence whatsoever, precisely because we have no need to use a standard
measuring stick. We can transfer the lengths of the desired reference notes
from the template to the instrument under construction by copying them onto
a “scaling stick”, a “dedicated ruler” so to speak. Using such a template, we are
completely free of the Tyranny of the Whole Zoll.

Making a triangle for non-Pythagorean proportions is just as easy; we need
only begin with a different ratio between base and altitude.!” The number of

16 Any generating length, if not found somewhere on the template as initially constructed, can
be drawn as an extension or segment of an existing altitude, to which a new hypotenuse is
drawn.

17 It is important not to confuse the angle of the initial hypotenuse with other angles which
may result from the drawing of additonal hypotenuses after the basic triangle is constructed.
The angle of the first hypotenuse determines the desired ratio and establishes the spacing
between altitudes. Once these altitudes are drawn, however, the drawing of hypotenuses at
other angles does not alter the ratio initially established. In other words, it is precisely the
spacing between the altitudes which lies at the heart of the template; the angle of the first
hypotenuse is merely a method for determining the proper spacing.
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Figure 2 — Various methods for extending the range of the basic template.

ways by which a builder might decide upon alternative proportions are limited
only by imagination. One possibility is to choose different integer values for
the base-altitude ratio. For example, a triangle with the proportions of 28:9
would give us Tibaut’s scale. Perhaps such simple integer pairs were part of
the knowledge passed down from master to apprentice, much in the same way
that the 3:4:5 right triangle recipe has been known in the building trades since
the construction of The Pyramids. Another possibility is to use an existing
Pythagorean template to determine irrational lengths for constructing a second
non-Pythagorean template. In this case, the builder might begin with the idea
that he wants a series of lengths which increase at a slightly less rapid pace. In
other words, his octave ratio should be somewhat less than 2:1, somewhat closer
to 1:1. This means the hypotenuse of the triangle should rise at a shallower
angle, since the shallower the angle, the closer is the length of the hypotenuse
to the length of the base. Therefore, the initial altitude should be slightly less
than the altitude of the Pythagorean triangle. Keeping the same 20 unit length
for the base, he could take a new “reduced” altitude from the existing template,
specifying the amount of “scale alteration” by thinking in whole or half steps
already defined according to Pythagorean proportions. For example, taking
an altitude length exactly half way between the first and second altitude lines
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(i.e. Y2 step), he would get a triangle which produces Coston’s scale. Taking a
length between the second and third altitude lines (1 %2 steps) produces Tibaut’s
proportion. The possibilities are literally endless.

Such scaling triangles are extremely handy for making organ pipes, since the
builder needs the dimensions for each and every pipe — not just the handful of
reference dimensions which the harpsichord or piano maker needs to position
the bridge on the soundboard. The use of such templates probably goes back
to the origins of the instrument itself. The link between organ building and
harpsichord making is well documented; the two crafts were often controlled
by the same guild, and many builders made both types of instruments. Illustra-
tions from Diderot’s Encyclopédie prove that triangle scaling templates were in
use during the first half of the 18th century for designing organ pipes and for
bell casting.'® Thus it is perfectly plausible that harpsichord makers used them
as well, despite the lack of any direct evidence.

Handy as the triangle template is, the second type of scaling template is
actually much better for our uses. It’s a bit more complicated to construct, but
is eminently more flexible for designing various non-Pythagorean scales for
stringed keyboard instruments. It consists of nothing more than an actual
Pythagorean curve. The recipe is as follows:!?

(1) Prepare a board a little larger than about 4 feet by 2 feet (grain running in
thelong dimension) by planning it smooth, shooting one long edge absolutely
true, and then cutting one end perfectly square to this edge.

(2)Mark a series of short (linch or so) evenly-spaced lines along the square
end. The spacing between these lines is not critical as long as it is consis-
tent; however, a spacing of % inch is both convenient and similar to the
stringband spacing the template will be used to design. On a board which is
2 feet+ wide, you’ll be able to rule out about 4 octaves worth (i.e. 24 lines
per foot).

18 The authors of the text (pp.943—-4) accompanying the organ scaling plate, "MM. Thom-
as & Grossier", primarily offer an irregular division of the base line of the triangle using
simple monochord (harmonic) proportions — neither a regular Just scale (12th root of 2) nora
constant-proportion non-Pythagorean geometric division, both of which I describe. They also
offer two alternative tables of numerical values for dividing the base line, one for a systéme
tempéré, the other ostensibly regular Pythagorean (equal) scaling (la partition de l'octave en
douze demi-sons éqaux). Unfortunately, there are some fatal problems with the information:
(1) the musical staff is printed upside-down, causing the relationship between numerical
values and notes on the staff to be reversed; (2) in both the original and inverted form, the
tables give neither a believable "temperament", i.e. one which even remotely resembles a
meantone, a meantone variant (Rameau, Couperin, Schlick, or Werckmeister "modified"
meantones), or any of the known well-temperaments, nor an "equal" division (i.e., equal
temperament). Thus, like so much in the Encyclopédie, it appears that while the basic idea is
correct, certain essential details are totally wrong.

19 I use the old system of feet and inches (12 inches = 1 foot) here — not the modern metric
system — precisely because this is how old builders worked, regardless of what names they
used for “feet” and “inches”.
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Figure 3 — Designing organ pipes (from Diderot’s Encyclopédie).
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Figure 4 — Bell casting (from Diderot’s Encyclopédie).

(3) Extend the first line to 4 feet from the end, the 13th line to 2 feet, the 25th

line to 1 foot, the 37th to 6 inches (Y2 foot), and finally the 49th to 3 inches
(Vafoot), being sure to keep all lines absolutely parallel to the true edge (and

to one another).
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Figure 5 — Basic layout of the spline
4 feet curve templ
plate.
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Figure 5 shows our template so far. The ends of the five extended lines already
define a Pythagorean curve. The only thing remaining is to draw the curve
itself, using a thin evenly-flexible stick (called a spline) as a guide, bent so that
it connects the ends of the lines. A long narrow piece of a leftover soundboard
wood is perfect for this. However, with only one reference length per octave,
it’s difficult to be sure the bent stick is following a perfect curve in the broad
areas between the lines, especially between the 4-foot, 2-foot, and 1-foot lines
were the longitudinal run between reference points is large. It would be much
easier if we had a second series of reference points somewhere between each of
the points already drawn. For the moment, let’s pretend that the lengths we’ve
marked represent octaves of the note “c”. We could also easily mark octaves of
either “f” or “g”, deriving their lengths from the already marked “c” lengths by
simple Pythagorean proportions. But this approach has one minor drawback;
either “f” or “g” will be closer to one or the other of the previously marked “c”
lines. It would be nicer to have additional marks which fall exactly in the middle
between the “c” octaves, i.e. at “f#” (Ruckers again). We might mark the “f” and
“g” and use them both, but if there were some fast and easy way to derive a
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perfect “f#”, it would save time and be just as accurate. Such a way does in fact

exist, again using a clever geometric “rule of thumb”. Here’s the recipe:

(1) Start at the 49th line, the one 3 inches long, and count down 3 %2 steps.
In other words, if we call the 49th line “c”, find the point exactly halfway
between “g#” and “a”.

(2) From this point, lay a straight edge so that it runs diagonally up to the far
end of the 1-foot line (line 25) —in other words, 2 octaves below the highest
(3-inch) “c”.

(3) From the 1-foot line, count up 6 spaces (7 lines inclusive), and extend this
line until it hits the straight edge (keeping it parallel to all other lines/
perpendicular to the base line). The length so defined is exactly that of a
Pythagorean “f4”, that is, the geometric mean between the 1-foot and 6-inch
lengths.

(4) Mark all the other “f§” lengths by doubling and halving. Since these lengths
will be irrational numbers, doubling and halving should be done geometri-
cally, not by using a ruler to measure the length and then dividing or mul-
tiplying the numerical value.

Fast, easy, and incredibly accurate, this method is but one example of the clear

superiority of geometrical over numerical “calculation”.?? Now that we have two

marks per octave, the bending of the spline becomes twice as easy and twice
as accurate. After tracing the curve, we can extend all lines to meet it, and the
template is complete.

Aswith the triangle template, we can now assign any note name to any line
on the template — depending on stringing material, pitch level, and desired
wire stress level — and then derive the lengths of other reference notes merely
by counting up or down. Better yet, we can make a 4 octave “note ruler”, a long
stick marked out with the same spacing as the lines on the template, labeled
with the note names of the keyboard. This ruler can be slid left or right on the
template, the starting note name aligned with the desired starting length, and
the lengths of all other notes rapidly located for transferring onto a scaling
stick. As with the triangle template, the lengths we end up with will usually be
irrational numbers, not expressible as integer or simple fraction values of any
local measuring system.

Now this is all very fine and good for calculating Pythagorean scales, but
what about the non-Pythagorean proportions seen in the instruments above?
Do we have to draw a new spline curve for each octave proportion, like we

20 Ihave madeno attempt toinvestigate whether or not this method can be found in old treatises,
nor do I consider it very important. The ratio of 41:29 (or as actually applied here, 20 ¥2:14
%) is a very good approximation of the square root of 2, and its derivation is well within
the capabilities of ancient monochord theorists. The geometrical method itself is quite easy
to discover by simple trial and error, exactly as I did after only about 10 minutes of playing
around with the scaling template.
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Figure 6 — Geometric method
for finding the length of f#.
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would have to do with a triangle template? Surprisingly, the answer is “no”, and
therein lies the advantage of the spline curve template. Before I discuss how this
is done, let’s look at why a builder might want a non-Pythagorean “tapered” or
“stretched” scale in the first place. The reasoning behind stretched scaling has
only recently been (re)discovered, although there is ample evidence that old
builders knew about it.?!

Modern organologists have mostly assumed that wire strength is “material
specific”, that is, the same for all diameters (relative to the cross sectional area)
of any given type —iron, brass, etc. Were this true, the actual diameters which
were going to be used on an instrument would not be important consideration
during the initial design phases when determining the scale length. A heavier
stringing would require more tension than lighter strings, requiring a heavier
case structure, but in terms of wire stress and pitch handling capability, the
increased tension would be perfectly balanced by the increased capability of
thicker strings to withstand a higher load. In other words, organologists usually
assumed that all diameters of a given wire type would break at the same pitch
when mounted on a given length.

The different lengths used for the different notes on a Pythagorean scale
would also not change the stress level, because the increase in length (going
down) is always perfectly balanced by the decrease in pitch, keeping tension (for

21 See Goodway/Odell, pp. 61-63 for quotes from Adlung and Corrette. Julius Bliithner, in his
Lehrbuch des Pianofortebaues (Leipzig, 1872) also recommends stretching the scale in the
treble “as much as the quality of the wire will allow”.
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each diameter) equal. Putting it all together, we arrive at the conclusion that if
the scale is Pythagorean, all diameters of a given wire type are equally stressed
everywhere on the scale. Therefore, it should be possible to assign a “maximum
breaking scale length” (at a given pitch level) to each kind of wire, expressing
these absolute scale lengths by citing the length of one standard note: c2.%
Much organology of the late 20th century has in fact proceeded based upon
these assumptions. Unfortunately, they are simply not true.

The truth is that the relative strength of a given wire type is not constant
for all diameters. As wire is drawn to smaller sizes, the physical act of forcing it
through successively smaller holes in the drawplate causes it to “work harden”,
exactly as when we “cold form” metal with a hammer and anvil. This means that
the smaller the diameter, the harder the wire, and the greater the strength rela-
tive to cross-sectional area. The result is that smaller diameters can withstand
alonger absolute scale than thicker diameters before they break, or vice-versa,
larger diameters will break at shorter scale lengths. Thus, for any given wire
type, each diameter has its own unique maximum scale length. Chart 7 shows
how much the breaking scale length changes for various diameters of Malcolm
Rose “English Iron Type A” wire. Much as we would like, we simply cannot talk
about the stress level of a certain wire type at a given pitch level and scale length
unless we also specify the diameters being used. This inescapable fact means
that many of the conclusions of 20th century organology about pitch level and
scale length will have to be reexamined.

One such conclusion is the idea that ancient builders chose scale lengths
which produced stress levels that were very close to breaking. This idea can
only be true under a limited set of circumstances, conditions which are in fact
not true for many instruments. The problem arises from the ubiquitous use of
progressively smaller diameters in the treble. If the scale is Pythagorean, the
inescapable result is that wire stress drops significantly in the treble. These
two graphs illustrate the effect of scale shape on stress level, using the degree
of “tensile strength pick-up” exhibited by Rose “A” iron.?3

22 The system is further “enhanced” by using “c2 equivalents” to express the lengths of notes
other than c2. This number is the length of the note c2 in whatever Pythagorean scale the
note in question would be found.

23 Littleis known about the “tensile strength pick-up” rate of 17th and 18th century wire, though
there is no reason to suspect it would have been radically different from modern ferrous
wire. To my knowledge, only one test has been done on several diameters of wire known to
be of consistent origin and assumed to be pre-1800, by Michael Latcham and Alphons Huber
using strings from a Hofmann piano; see Latcham, The Stringing, Scaling and Pitch of Ham-
merfliigel built in the Southern German and Viennese Traditions 1780-1820, Miinchen-Salz-
burg (Katzbichler) 2000, p. 86 and table 74. This test indicates a slightly higher pick-up rate
than for modern Rose wire, which would require an even greater degree of scale stretching
to maintain consistent stress among all diameters.
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Chart 7 — Scale lengths required for consistent stress levels for Rose “A” iron wire.
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diameters (gauge 7 to 11) in a non-Pythagorean Main Sequence (octave ratio 1:1.93).
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Chart 8 shows the inequality of stress levels caused by using progressively
smaller diameters when the Main Sequence is Pythagorean (from about c1
upward). Gauge 7 starts in the foreshortend tenor zone at 2 semitones below
breaking, but because the scale is rapidly getting longer, it quickly reaches a
dangerous 1 semitone below breaking at b, the bottom of the Main Sequence.
From this point upward, the scale remains Just, and at every change to a smaller
(and stronger) diameter, the stress drops, until we reach gauge 11 which is
“under-stressed” at almost 3 semitones below breaking. These drops in stress
are unavoidable unless each change to a smaller gauge is compensated by a
corresponding increase in scale length. Since sudden kinks in the bridge shape
are not very practical, the individual jumps needed to compensate the wire
changes are averaged over the whole Main Sequence by using a non-Pythago-
rean octave ratio (Chart 9), in this instance 1:1.93. Note that while each indi-
vidual gauge exhibits a slight rise in stress within its own region, all gauges are
now kept near the recommended maximum stress level of 2 semitones below
breaking over the entire treble portion of the instrument. Note also how the
use of a non-Pythagorean scale can increase the size of the Main Sequence,
that is, that portion of the scale which follows a regular proportion. Because
scale “stretching” going up is the same as “foreshortening” going down, the
non-Pythagorean scale reaches the same “shortness” at tenor f without any
deviation from the overall scale ratio. Thus real foreshortening — the straight
run of the tenor bridge — often begins much lower in the compass when non-
Pythagorean scaling is used.

So —let’s consider the case of an old builder who wanted to keep all his wire
as evenly stressed as possible. Let’s also suppose that he had done monochord
experiments and discovered the strength pick-up phenomenon, and that he
therefore knew that the only way to keep stress constant is by using a stretched
scale. How would he go about designing such a scale? Naturally, the first thing he
would need to know is which gauges of wire he was going to use, because each
choice of diameter is also a choice of strength. This would mean he would have
to know the final stringing schedule before the instrument was constructed. This
is an idea which many modern makers might find strange; but this is because we
are copiers and not originators. We start with a preexisting original instrument
which we either copy or restore. Only after the instrument is complete do we
set about devising a stringing schedule based upon our knowledge, experience,
and taste (in the absence of original gauge markings, that is). The old makers
had the advantage of working in long-established traditions, and also having
a production level far beyond that of most modern shops. This exposure to a
high number of instruments per year gave them the experience to know how
they wanted to string an instrument — even a new model — long before it came
into existence.

How might a maker establish a stringing schedule for an as yet non-existent
instrument? Some organologists adopt the late-19th century piano builder’s
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fixation upon tension levels, and think there is some magic “ideal tension
curve”. We often read about “typical French” or “typical Italian” tension curves,
and sometimes even encounter the assertion that it is possible to devise the
stringing schedule for one instrument by carefully reproducing the tension
levels of another. None of these theoretical approaches hold up to careful
scrutiny, though; one need only calculate and compare the tension levels of
original instruments which have survived with gauge markings in order to
become convinced that ancient builders simply did not think this way. This
lesson becomes especially clear with Classical Viennese and South-German
fortepianos, where the number of extant instruments provides us with a rela-
tively large data set. The evidence of these instruments shows that while old
builders were experimenting with scale shape, there appears to be no attempt
whatsoever to keep tension and/or stress levels in agreement with any sort of
ideal curve.

What we do see, on pianos and harpsichords alike, is a gradual reduction of
string mass from bass to treble. Several theories have been offered up as why this
is so; some propose that thicker strings are needed to compensate for foreshort-
ening in order to “keep the tension up”, while others suggest that thicker bass
strings are the result of soundboard inefficiencies at lower frequencies. Again,
none of these theories hold up to any sort of sophisticated broader examination.
The real reason why mass is tapered from bass to treble is because that is how
our ears work: we need to receive more acoustic power for lower frequencies
to sound as loud as higher frequencies. Psycho-acousticians have studied and
charted the unequal response curve of our ears, and have developed a unit of
measure to express it: the Phon. Chart 10 shows the Phons curve at a moderate
volume level over the range of the modern keyboard:
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The similarity of this power curve to the ubiquitous distribution of stringing
mass should be immediately obvious. Basses are always strung with strings
significantly thicker than in the treble, reducing rapidly at first before leveling
off somewhat for the upper half of the instrument. Other factors unique to the
basic design of each instrument, such as soundboard resonances and efficien-
cies, case resonances, and overall timbre preference?* may well contribute to
each builder’s final stringing solution. However, if a maker does not generally
taper mass so as to follow the Phons curve, the various registers of an instru-
ment will sound out of balance with one another.

As we might expect, old builders devised innumerable ways of distribut-
ing mass so as to approximately balance the response curve of our ears. Some
simply used equally-sized groups of gauges, smaller groups in the bass and larger
groups in the treble. Such a stringing might begin with several groups of two
notes per gauge in the deep bass, followed by several slightly larger groups of
three notes/gauge in the low tenor, and then suddenly jumping to much larger
blocks of eight (or even nine or ten) notes/gauge from about tenor f up (the
point at which the Phons curve becomes relatively level). The success of such a
semi-linear approach was enhanced by the logarithmic reduction of diameter
which characterized most ancient gauge systems; the linear distribution of such
gauges produced a logarithmic reduction in mass. Other builders “tapered the
taper”, gradually increasing the size of each gauge block from bass to treble.
One particularly clever example of how this could be done was devised by J.H.
Silbermann; he simply let the gauge number dictate the number of notes strung
with that gauge. He started by tapering the bass rapidly, using one note each of
gauge 3/0, 2/0, and 0, and then continued with one note of gauge 1, two notes
of gauge 2, three notes of gauge 3, etc, all the way up to ten notes of gauge 10,
until the system finally “fell off the edge of the world” after only four notes of
gauge 11.2° -

So - let’s assume that our hypothetical builder knew how he was going to
string the instrument before it was built; how did he design a scale to fit the
stringing? The next step would have been to test the strength of the available
wire and determine the scale length which will produce the desired stress
level at the required pitch level. Without getting into all the debates about how
high stress levels should be, let’s just assume that our builder wanted a “safe
maximum” stress level, much like Malcolm Rose recommends: 80% of breaking
tension, or about two semitones below breaking. How would he proceed?

24 The overall heaviness of a stringing has an undeniable effect upon timbre, especially in the
treble; thick strings sound loud and dull, while thin strings sound more focused and ringing
though less loud. These general differences are caused primarily by stiffness as it is affected
by the diameter/length ratio.

25 TIam indebted to John Phillips for pointing this out to me.
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This is where we see how a Pythagorean spline curve template can be used
to design a non-Pythagorean scale. Here’s the process a builder might follow:
(1) Position the bridges of a monochord at a length which matches a length on

the scaling template, somewhere near the middle. Which length one chooses

is not important, though one too long would waste wire and one too short
would be difficult for testing large diameters. Let’s take a length of 1 foot.

Exactly how long that particular “foot” may have been is completely irrel-

evant, as long as the template was constructed using the same units of feet

and inches.

(2) Decide which note will define the bottom of the main sequence — say tenor
f —and take the gauge of wire to be used there —say gauge 7. Mount a string
of this size on the monochord and tune it up until it breaks, continuously
comparing the pitch against an external pitch source — a pitch pipe, an
organ — whatever, as long as it gives the pitch level desired for the instru-
ment. Suppose the string breaks at about d#2. Count down two semitones
for the desired safety margin, and we find that 1 foot is the ideal length for
the note c#2 when strung with gauge 7.

(3) Position the note ruler on the template so that the mark for c#2 is precisely
above the 1-foot line, and then look down the ruler and find tenor f. Beneath
this mark lies the line with the ideal length for tenor f when strung with
gauge 7 — that is, the length that will give the desired two semitone safety
margin. Make some sort of mark on this line so that it can easily be found
again later.

(4) Using the same 1-foot length on the monochord, repeat the strength test
with the thinnest gauge to be used, gauge 11. This string, being relatively
stronger, will break at a slightly higher pitch — let’s say it breaks at {2, two
semitones higher than the gauge 7 string. Counting down again for safety
margin, we learn that 1 foot is the ideal length for the note d42 when strung
with gauge 11.

(5)Return to the scaling template, and reposition the note ruler so that the
mark for d42 is precisely over the 1-foot line. Look up the ruler and find the
mark for 3, beneath which lies the ideal length for the top note.

(6) Keeping the f3 mark above this line, rotate the bass end of the note ruler
upward, letting the ruler run at a shallow angle, until the mark for tenor
f is again over the “ideal length” line for tenor f determined in step 3. The
lengths of any other notes between tenor f and f3 can now be taken directly
from the template at the positions indicated by the note ruler. If the mark
on the ruler for a given note falls between lines on the template, position
the scaling stick accordingly, keeping it parallel by eye to the nearest visible
line.

The whole process takes less than ten minutes (assuming the template is
already made). Even we began with a rational length of 1 foot, all of the resul-
tant string lengths are irrational numbers, and will confound any attempts to
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Figure 8 — Canting the note ruler to find the lengths of all reference notes between

tenor fand f"' for a regular non-Pythagorean scale.

Figure 7 — Using the note ruler to find the length of f"" on the template.
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subjugate them to the Tyranny of the Whole Zoll. Using the simplest of tools
and no mathematics whatsoever, our builder has designed a regular logarithmic
non-Pythagorean scale perfectly suited to the stringing and pitch circumstances
of the particular instrument. Should he later decide to alter his distribution of
mass, to increase or decrease overall stringing weight, to make an instrument
for another pitch level, or use wire from a new unfamiliar source, he simply
repeats the process again, perhaps coming up with a slightly different tapering
scheme.?®

We now have a reason for why a builder would want to use a regular non-
Pythagorean scale as well as a holistic methodology for how he could design
and apply such a scale. In this light, we might well ask ourselves, “Why aren’t
all scales non-Pythagorean?” In the case of instruments strung wholly in brass,
this may be due to the fact that the amount of strength increase exhibited by
brass wire is much lower than that for iron, and the amount of scale stretching
made possible by successively thinner treble strings is almost nil. This supports
the usual assumption that scales which are completely Pythagorean (excepting a
few notes at the bottom) were intended to be strung entirely in brass. Nonethe-
less, some instruments assumed to have been strung in brass do indeed have
stretched scales. The Beurmann Sodi?” has a large Main Sequence from bass C to
f2 which follows the non-Pythagorean proportion of 1:1.91. Above 2, the scale
is stretched even more, being 2 semitones longer at f3. Perhaps this instrument
was not brass strung at all, but rather iron strung at a high pitch.

In addition to the instruments mentioned here, there are other harpsichords
from northern building traditions which also have Main Sequence scales which
deviate significantly from the assumed norm of Pythagorean proportions. Two
late French instruments by Taskin, for example, actually have a significantly
stretched scale, though not of the continuous type seen with Tibaut and Grabner.
The Russell Collection instrument is Pythagorean for only 1 %2 octaves, from
middle c to f2. By ¢3, the scale has been stretched by 1 semitone, and at 3, by
two semitones. The Portuguese Taskin?® has a very similar scale, except that the
Pythagorean area is even smaller yet; the Main Sequence doesn’t begin until f1,
and remains Pythagorean only until f2, from which point the scale is stretched
almost exactly like the Russell. Thus Taskin was in fact stretching his treble scale
by an amount similar to Tibaut and Grébner, except through a different means.

26 My method is essentially that described by the Viennese piano maker Jakob Bleyer in a
newspaper article of 1811. He began by using a monochord to determine the “best” lengths
for tenor f and f4, between which he derived the lengths of the intervening notes so that
they described a “geometric” (i.e. logarithmic) progression. See Latcham, op. cit., p.60 for
Bleyer’s text. The only thing [ have added to Bleyer is a practical method by which he could
have easily determined the intervening notes.

27 Now in the Museum fiir Kunst und Gewerbe, Hamburg, Inv. No.2000.521.

28 See Bernard Brauchli, The 1782 Taskin Harpsichord, Colares, Portugal, The Galpin Society
Journal LIII (April 2000), pp. 25-50.
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His practical methodology could also have involved the use of a scaling template
of either kind, deriving the stretched lengths for ¢3 and f3 by adding one and
two semitones respectively, i.e. by taking the theoretically-correct lengths for
b2 and d43 (relative to his c1 or f1 length) directly from the template.

Despite all this, many instruments do exhibit pure Pythagorean scaling over
the entire Main Sequence. The unavoidable conclusion is that some builders
simply did not care about keeping wire consistently close to breaking, and that
they were quite happy to allow their treble strings to become gradually "under-
stressed". This flies in the face of much of modern organology, but the truth of
the matter is undeniable. However, when we reexamine the scaling of extant
instruments using analysis methods which more clearly illustrate aberrations
from strict Pythagorean curves, we may well find that the number of instruments
which fit this standard assumption is smaller than we now think.

Finally, [ want to stress one point — in fact, if you remember but one thing
from this whole workshop, I would hope that it were this. Look again at the two
graphs (Charts 8 &9) showing the effect of scale shape upon stress levels. In
both cases the hypothetical scale length is c2 = 360 mm. Note that the stretched
instrument could be tuned one semitone higher than the Pythagorean instru-
ment before it would reach the same maximum stress level. Looking at it the
other way around, the Pythagorean instrument would have to be pitched one
semitone lower in order to have the same maximum stress level. This dem-
onstrates a very important phenomenon: if the scale is Pythagorean, the most
dangerously stressed note will always be near the bottom of the Main Sequence,
usually middle c or tenor f — not c2! The length of c2 will not reflect the stress
level found in the tenor; unless the scale is stretched, c2 will always be at a lower
stress level, often significantly lower. The length of c2 is therefore completely
untrustworthy as an overall indicator or shorthand expression for matters of
pitch/scale/wire-type, despite the fact of its ubiquitous use therefore. Much
as we would like it to be so, the questions of pitch level, stress level, and scale
length are not as simplistic as traditional organology would have us believe,
and the probability is high that a number of past conclusions based upon the
use of c2 lengths will eventually be proven to be untrue. Perhaps the only thing
we can say with any certainty is that a complete reexamination of the topics of
stringing, scaling, and pitch of historical keyboard instruments will undoubt-
edly hold some surprises for us.
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