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ZW EINMALEINS 4»
htOdcCHCH KOSMOLOGIE

Von Univ.-Doz. Dr. Konradin Ferrari d'Occhieppo

Es gehört schon zu den Gemeinplätzen der
astronomischen Populärliteratur, daß man sich
gewisse Eigenschaften der vierdimensionalen
Welt bis zu einem gewissen Grade veranschaulichen

könne, indem man dem Raum in
Gedanken eine seiner drei Dimensionen wegnimmt,
ihn also zu einer (im allgemeinen Fall gekrümmten)

Fläche macht, wobei dann die dritte
Dimension als Analogon zu der sonst nicht
vorstellbaren vierten verfügbar wird. Nun ist es

keineswegs so, als gäbe es zwischen dem Stehenbleiben

bei dieser auf bloßer Anschauung
beruhenden Darstellungsweise einerseits und ihrer
hochmathematischen, alle Finessen der Tensor-
analysis benutzenden Durchführung andrerseits
keinen Mittelweg. Vielmehr lassen sich einige
grundlegende Tatsachen, die aus dem einfachen
Analogiebild nicht mehr ohne weiteres ablesbar
sind, ohne Schwierigkeit mit dem mathematischen

Rüstzeug eines Mittelschülers quantitativ

begründen. Ein kleiner Einblick in dieses

„Einmaleins der modernen Kosmologie" wird
sicher vielen willkommen sein, die zwar nicht
Zeit haben, ein Hochschullehrbuch der
Relativitätstheorie durchzuarbeiten, aber den Vorzug

durchsichtiger mathematischer Formeln
vor umständlichen Umschreibungen zu schätzen
wissen.

I. Die Kugelfläche

Um an allgemein Bekanntes anzuknüpfen,
sei mit einer Betrachtung der gewöhnlichen
Kugelfläche begonnen. Die Abbildung stellt einen
Querschnitt durch eine solche dar und bedarf
wohl kaum einer besonderen Erläuterung; doch
sei eigens hervorgehoben, daß r die Bogen-
länge PB (nicht etwa die zugehörige Sehne)
bedeuten soll. Um den beliebigen Punkt P
seien konzentrische Kreise gelegt, deren einer
durch B' und B hindurchgeht und als Radius
(im gewöhnlichen Sinne des Wortes) r hat,
während man r seinen „sphärischen" oder auch
„geodätischen" Radius nennen könnte, der
längs der Kugeloberfläche die kürzeste Ver-

(1)

DK 513.44:513.811.3

bindungslinie von der Mitte zu einem Randpunkt

darstellt.

Drückt man die
Größe des Winkels

X im „natürlichen

Bogenmaß"
aus, dessenEinheit
gleich (180°/tu)
57,3° ist, so gelten
offenbar folgende

Beziehungen
zwischen r, r, R
und X sowie deren
Differentialen:

r R sin X; dr R cos X dX;
r R X; dr R dX;
dr drjcos X

Die Fläche eines sehr schmalen
Kreisringes auf der Kugelfläche (auch Kugelzone

genannt) von der Breite dr wird mit
diesen Bezeichnungen

dFzone 2 7zr dr, (2)
eine Formel, die nebeneinander die Größen r
und r enthält, aber vermöge (1) leicht auf die
einzige unabhängige Veränderliche X
umgerechnet werden kann. Nach dieser ist dann
auch zwecks Berechnung der ganzen innerhalb
des Kreises B'B gelegenen Kalottenfläche

die Integration, d. h. die Summierung
aller dieser unendlich schmalen Kreisringe,
durchzuführen. Das Ergebnis ist ^Kalotte

2 7T R2 j"f"sin X dX 271 R2 (cos „ — cos X)
2nR2(l — cos X) (3)

Dies läßt sich unter Verwendung der
bekannten Forme]

x w
X X

cos X cos2 — sin2 — 1 — 2 sin2 —
2. 2 2

weiter vereinfachen zu

Fiiaiotte 4 tt R2 sin2 (5)

Da die Sehne PB 2 R sin V/2 ist, kann
man den Inhalt von (5) in Worten so aus-
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sprechen: die Oberfläche einer Kugelkalotte
ist gleich der Fläche eines ebenen Kreises,
dessen Radius gleich der vom Pol der Kalotte
zu einem beliebigen Randpunkt gezogenen
Sehne ist. — Mit X - ergibt sich schließlich

die bekannte Formel für die Oberfläche
einer Kugel

-^Kugel 4 7T ß2 (6)

II. Die Hypersphäre

Die vorstehenden Überlegungen, die für die
meisten unserer Leser nur die Auffrischung von
Kenntnissen ihrer Schulzeit sein dürften, wurden

absichtlich in einiger Ausführlichkeit
gebracht, um die jetzt zu besprechende Analogie
zur „Hypersphäre" deutlicher herausarbeiten
zu können. Zunächst einmal bleiben die
Formeln (1) ihrer äußeren Gestalt nach
unverändert auch für die Hypersphäre in Geltung.
Ihre Bedeutung ist jedoch insofern eine andere,
als jetzt nur noch r in den anschaulichen drei
Raumdimensionen liegt, während ß, r und X
die Hinzunahme der vierten Dimension
erfordern. Genauer gesagt sei r eine gewisse
Bogenlänge längs einer „geodätischen Linie",
ß der „Krümmungsradius" des sphärischen
Raumes. Beide zusammen bestimmen gemäß
der zweiten Zeile in (1) den Winkel X und durch
diesen auch r.

Ebenso wie für den Kreis auf der gewöhnlichen
Kugel die bekannte Umfangsformel U 2 tc r
gültig blieb, wobei der zu verwendende Radius r
nicht auf der Kugelfläche, sondern in der
dritten Dimension zu messen war, so gilt für
die Maßzahl der Kugeloberfläche auch im
sphärisch gekrümmten Raum die Formel (6),
wenn an Stelle von ß (das jetzt eine andere
Bedeutung erhalten hat) ein der vierten
Dimension angehöriges r gemäß den eben
getroffenen Festsetzungen eingesetzt wird.

Die Analogie zur Zone (Kreisring) auf der
zweidimensionalen (gewöhnlichen) Kugelfläche
bildet im Dreidimensionalen eine dünne
Kugelschale, deren Dicke dr natürlich i m
dreidimensionalen Raum zu messen ist. Ihr
Volumen (zwischen zwei benachbarten
konzentrischen Kugelflächen) wird daher

(IVSchale 4 7i r2 dr (7)

Unter Verwendung von (I) wird auch dies auf
die einzige Veränderliche X zurückgeführt und
integrierbar gemacht. In Analogie zur Kalottenfläche

steht jetzt das Volumen einer dreidimensionalen

Vollkugel im sphärisch
gekrümmten Raum

VKugel 4 ~ P3 jx sin2 X dX-

2 7i ß3 {X — i- sin 2 X) m
Auf den ersten Blick scheint der Unterschied
gegenüber der geläufigen stereometrischen Formel

des Archimedes 4 tt r3/3 fast
unüberbrückbar. Würde man aber an Stelle von
sin 2 X die entsprechende Potenzreihe
einsetzen, so bliebe in der Klammer als Differenz

2
gegen X als erstes Glied — X3 stehen, so daß

sich, wie es nicht anders sein kann, für sehr
kleine Werte von X genau die Archimedische
Formel ergibt, wenn man berücksichtigt, daß
ß3 X3 r3 ist. Geht man indessen bis zu
X 7T, so verschwindet der Subtrahend in der
Klammer von (8) und man findet für das
Volumen der hypersphärischen Welt die oft
zitierte Formel

Vweit 2 n2 ß3 (9)

in der das sonst gänzlich ungewohnte ti2 am
fremdartigsten anmutet.

III. Anwendungen auf die Kosmologie

Die geschlossenen Formeln (8) und (9) haben
den Nachteil, daß zu ihrer Anwendung die
Kenntnis des Weltradius Voraussetzung wäre.
Tatsächlich besteht aber das Problem gerade
darin, diesen womöglich auf mehreren,
voneinander unabhängigen Wegen zu bestimmen.
Dazu ist eine kleine Umgestaltung der Formel

(7) zweckmäßig. Man macht sich dabei
den Umstand zunutze, daß die bisher verfügbaren

Beobachtungen sicher nur einen mäßigen
Bruchteil des gesamten Weltvolumens
erfassen. Ist nun der Winkel X nicht allzu groß,
so darf man in (4) annähernd setzen

2 sin2! ~ 7 sin2Z= j(i)-
Mit einer weiteren unter derselben Voraussetzung

zulässigen Vereinfachung erhält man
schließlich an Stelle der letzten Gleichung (1)
annähernd

+ HiT(Fr dr • (10)

Damit wird aber aus (7) eine übersichtliche
Näherungsformel für das Volumen einer K u-

J) Wem die Kunstgriffe des Integrierens nicht mehr
gelaufig sind, wird die Richtigkeit dieser Formel dennoch leicht
durch Differentiation des Klammerausdruckes zur Rechten
und Umformung des Ergebnisses mit Hilfe von (4)
verifizieren: es entsteht dann wiederum der Integrand sin4 X <IX,
wie es sein muß.
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gclschale im sphärisch gekrümmten Raum

rfhschaie » 4 tt r2 1 j dr (11)

aus (1er R berechnet werden kann, falls r, dr
und dV bekannt sind.

Um etwa auftauchenden Bedenken zu
begegnen, mag noch kurz zahlenmäßig
nachgewiesen werden, daß alle in (11) vorgenommenen

Vernachlässigungen zusammen sicher
weniger als 0,3% Fehler in d V ausmachen,
solange r/R < 0,3 bleibt. Es ist nämlich für
diesen Höchstwert streng 0,3 rjR sin 17° 28';
hiermit 1/cos 17° 28'= 1,048. Dagegen wird

1 +"^"|o,3j j 1,045. Das Beispiel zeigt zu¬

gleich auch, daß bis zu der genannten
Entfernung der Einfluß (1er Raumkrümmung auf
(las Volumen einer dünnen Kugelschale im
ganzen noch nicht einmal volle 5% erreicht.

Die Frage liegt nahe, weshalb (11) auf r
und nicht auf die vom Lichtstrahl
durchlaufene „geodätische" Entfernung r eingerichtet
worden ist. Eine Überlegung über (lie
Methoden der astronomischen Entfernungsbestimmung

wird dies rechtfertigen. Diese lassen
sich nämlich, so vielgestaltig sie im einzelnen
sein mögen, auf nur zwei verschiedene
Grundgedanken zurückführen: entweder man
mißt clen Winkel, unter dem eine Strecke von
bekannter Länge in normaler Daraufsicht
erscheint, (las ist die trigonometrische Methode;
oder man mißt die scheinbare Helligkeit einer

Lichtquelle, deren auf eine bestimmte
Einheitsentfernung bezogene „absolute Leuchtkraft"
als bekannt angesehen werden darf, die
photometrische Methode. Nur mittelbar kommt bei
den extragalaktischen Sternsystemen noch eine
dritte Art von Entfernungskriterium in Betracht,
die Größe der Rotverschiebung der Spektren.

Den Grundgedanken der trigonometrischen
Methode im Falle des gekrümmten Raumes
kann man recht gut anschaulich an der Analogie
auf der gewöhnlichen Kugelfläche betrachten.
Zwei Lichtstrahlen, die den voraussetzungsgemäß

„zweidimensionalen Raum", d. h. die
Kugelfläche, nicht verlassen können, also
Großkreise (z. B. Meridiane) beschreiben, mögen
in P unter dem Winkel p zusammenlaufen;
ihre Ausgangspunkte sollen auf einem Parallelkreis

um P liegen und den gegenseitigen
Abstand d haben, während die sphärische
(geodätische) Entfernung von P gleich r sei. Man
sieht sofort, daß d — 2 tc r p/360 ist (wenn p

in Grad gemessen würde). Wertet man also
eine solche Messung ohne Rücksicht auf das
Vorhandensein einer Raumkrümmung aus — wie
man mangels genauer Kenntnis der letzteren zu
verfahren genötigt ist —, so erhält man nicht f,
sondern r als Entfernung. Diese Überlegung
könnte ebenso und mit gleichem Ergebnis im
Vierdimensionalen angestellt werden.

Zu demselben Resultat führt aber auch die
photometrische Methode. Nach Berücksichtigung

allfälliger störender Einflüsse anderer Art,
wie interstellarer Lichtabsorption usw., rechnet
man mit einer Abnahme der scheinbaren
Helligkeit umgekehrt proportional dem Quadrat
der Entfernung, oder — anders ausgedrückt —
so, als ob sich das von einer Lichtquelle
ausgehende Licht auf Hohlkugeln ausbreitete,
deren Oberflächen genau proportional dem
Quadrat ihrer Radien zunehmen würden. Gemäß
(7) trifft dies aber wiederum nicht für den
geodätischen Radius r, sondern für r zu. Wollte
man wortklauberisch sein, so dürfte man also
den Entfernungen, die auf diese oder jene Art
gemessen wurden, gar nicht die Benennung
„Lichtjahre" geben, da sie im „positiv"
gekrümmten Raum unter allen Umständen kürzer
sind, als der vom Licht zurückgelegte Weg.
Nur nebenbei sei gesagt, daß bei „negativer"
Raumkrümmung, (1. h. wenn R2 < 0 sein
sollte, das Entgegengesetzte der Fall wäre,
nämlich r > r.

Noch einer Merkwürdigkeit des sphärisch
gekrümmten Raumes sei in diesem Zusammenhang
gedacht: vorausgesetzt, daß etwa aus (11) oder
auf anderem Wege R gefunden und für ein
bestimmtes Objekt r gemessen sei, liefert
offenbar die erste der Formeln (1) hierzu
zwei verschiedene Werte von X, nämlich
und 7T — Xu und demgemäß gibt es auch zu
jedem r zwei verschiedene r. Dennoch dürfen
wir sicher sein, daß sich unter den
Spiralnebeln mit kleiner „Entfernung" r keine
„.Gespenster" aus der Antipodengegend des
Weltalls befinden. Denn die Rotverschiebung
der Spiralnebelspektren als Folge des
beständigen Anwachsens von R würde auch
über X tt/2 hinaus weiter zunehmen; große
Rotverschiebungen bei kleinen r wurden aber
bisher niemals beobachtet. Ob man aus irgendeinem

Grund Objekte von der Gegenhälfte
der Welt nicht sehen kann, oder ob es sie

gar nicht gibt, braucht hier als eine noch
gänzlich offene Frage nicht erörtert zu werden.

Die größte Schwierigkeit für die Ermittlung
des Weltradius aus (11) bietet aber jedenfalls
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die einwandfreie und hinlänglich genaue
Bestimmung des Volumens dV. Man muß dazu
auf eine Teilaussage des sogenannten
Weltpostulates zurückgreifen, wonach der Raum
unbeschadet einer gewissen statistischen
Schwankungsbreite im großen Durchschnitt
überall gleichmäßig dicht mit Materie (bzw.
Spiralnebeln) erfüllt ist. Dann wird also die
Anzahl der extragalaktischen Systeme in einem
bestimmten Raumsektor und zwischen
bestimmten Entfernungsgrenzen nach
Multiplikation mit einem konstanten Faktor als
Maßzahl des entsprechenden Volumens
genommen werden dürfen. Die Berechtigung
zu dieser Annahme darf man dann als gegeben
ansehen, wenn in jenen Gegenden des Himmels,
welche nicht durch vordergründige interstellare

Absorption gestört sind, keine
richtungsabhängigen Unterschiede
auftreten, die das zulässige Maß zufälliger Schwankungen

überschreiten.
Sobald man die im vorletzten Absatz

erwähnte zeitliche Änderung des
Krümmungsradius der Welt mit in Betracht
zu ziehen versucht, wird die Sache dadurch
verwickelter, daß nunmehr Bewegungs-
zustände zu behandeln sind, was wieder
die Berücksichtigung der Relativitätstheorie
verlangt. Gewiß ließe sich auch da noch manches

mit verhältnismäßig leichten mathematischen

Hilfsmitteln bewältigen; doch dürfte das
„Kleine Einmaleins der Kosmologie" wohl mit
der Behandlung des statischen Universums zu
Ende sein.

DIE MAGNETPUMPE
Eine Pumpe ohne bewegliche Teile

Zum erstenmal in der Geschichte der Technik
ist es nunmehr gelungen, eine Pumpe zu
entwickeln, die ohne bewegliche Teile absolut
kontinuierlich arbeitet. Dies ist um so
überraschender, als das Prinzip, auf dem die Erfindung

beruht, schon seit mehr als 100 Jahren
allgemein bekannt ist. Wahrscheinlich dürfte

Abb. 1

Von Alois Schönherr

DK 621.09:538.69:621.039.445

die Ursache hierfür darin zu suchen sein, daß
die Industrie erst seit einigen Jahren
Verwendungsmöglichkeiten für ein derartiges Gerät
geschaffen hat. Bei dem neuen Gerät handelt
es sich um eine in den Laboratorien der General
Electric konstruierte Pumpe für flüssige
Metalle.

Die Pumpe besteht aus einem Rohr (Abb. 1),
in das bei a das flüssige Metall eintritt. Das
Rohr befindet sich zwischen den Polen N und S
eines Elektromagneten, der ein in Pfeilrichtung
verlaufendes starkes elektromagnetisches Feld
erzeugt. Senkrecht zu diesem Feld und senkrecht

zur Längsachse des Rohres wird nun ein
Gleichstrom so durch das Rohr geleitet, daß
das in ihm enthaltene flüssige Metall vom
Strom durchflössen wird. Nun wird aber ein
stromdurchflossener Leiter im Magnetfeld
beschleunigt, eine Erscheinung, die schon lange
bei Drehspulmeßgeräten praktisch ausgenutzt
wird. Auch das im Rohr R befindliche flüssige
Metall erfährt eine solche Beschleunigung, da
es ja auch ein Leiter ist. Die Richtung der
Bewegung, in diesem Falle also des Metallflusses,
kann mit der bekannten Linkehandregel von
Fleming leicht ermittelt werden.

Durch Verändern der Stromstärke im Metall
oder der Feldstärke des Magneten läßt sich
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