Zeitschrift: Prisma: illustrierte Monatsschrift für Natur, Forschung und Technik

Band: 3 (1948)

Heft: 4

Artikel: Unruhige Sternenwelt

Autor: Jordan, Pascual

DOI: https://doi.org/10.5169/seals-653645

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 27.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

frieden sein können. Was bedeutet ein regnerischer Sommer oder ein harter Winter gegen das regnerische Bergen in Westnorwegen – als ich vor 15 Jahren dort war, hatten die Kinder gerade Schulferien, weil es einmal nicht regnete, und das wird dann als Festtag begangen! – oder die Kälte von Werchojansk, das vor Oimekon den Kälte-

rekord innehatte! Auch der «ewige Frühling» der Insel Irland würde uns nicht behagen und gerade der Wechsel im Wettergeschehen sorgt auch für unsere Gesundheit und – macht es so interessant, daß man auf seine weitere Entwicklung wie auf die Fortsetzung eines spannenden Romans warten kann.

Unruhige Sternenwelt

Von Prof. Pascual Jordan

Wenn wir in dunkler Nacht die Sterne über uns leuchten sehen, dann erscheinen sie uns wie Symbole des Ewigen, des Unveränderlichen, die in erhabener Ruhe auf unsere bewegte kleine Welt herabsehen. Aber in Wahrheit ist der Sternenraum ein Schauplatz unerhörter Ereignisse. Nur uns kurzlebigen Menschen erscheint der Sternenhimmel in unbewegter Ruhe, weil die räumlichen und zeitlichen Maßstäbe des dortigen Geschehens sich nicht mit unseren kleinen irdischen Maßstäben vergleichen lassen.

Aber gelegentlich geschieht doch am Fixsternhimmel etwas, was auffällig genug ist, um selbst dem unbewaffneten Auge sichtbar zu werden. So trat im Jahre 1572 für einige Wochen ein vorher niegesehener Stern am Himmel auf, der heller als alle anderen strahlte (Bild 2). Tycho Brahe, der große Wegbereiter Keplers, hat diesen «neuen Stern» vermessen und durch Monate überwacht, bis er mehr und mehr verblaßte und schließlich

der Beobachtung verloren ging. Bis vor wenigen Jahren war es selbst modernsten Hilfsmitteln nicht möglich, ihn wieder aufzufinden. Kepler selbst hat später, im Jahre 1604, eine ähnliche Erscheinung beobachten können; und wir wissen heute, daß es in historischen Zeiten noch einen dritten ähnlichen Fall gegeben hat, der freilich - da er sich im Jahre 1054 zutrug - von keinem europäischen Gelehrten wahrgenommen wurde. Aber in alten chinesischen Schriften hat man Hinweise auf diesen Stern gefunden, und Angaben seiner Stellung, die genau genug waren, um modernen Astronomen seine Wiederauffindung zu ermöglichen: Heute ist er ein Stern von ganz normaler, in keiner Weise auffälliger Helligkeit; aber deutlich erkennbar umgeben ihn noch jetzt gewaltige Staub- und Gasmassen, die er bei jener damals stattgefundenen Explosion ausgestoßen hat, und die seitdem noch immer in ihrer forteilenden Bewegung begriffen sind.

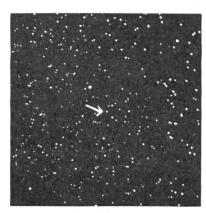


Bild 1: Der Variable R Coronae im Minimum und Maximum seiner Helligkeit. (Aufnahme von Prof. M. Wolf, Heidelberg)

«Neue Sterne», die überraschend sehr schnell aufleuchten, und dann in wenigen Wochen oder Monaten zu normalen Sternen mittlerer Leuchtkraft verblassen, haben die Astronomen seither in großer Menge gefunden und sorgfältig unterManche von ihnen haben einen solchen Durchmesser, daß die ganze Erdbahn darin Platz finden würde; gelegentlich sind sie sogar so groß, daß auch noch die Bahnen von Mars und Jupiter eingeschlossen würden.

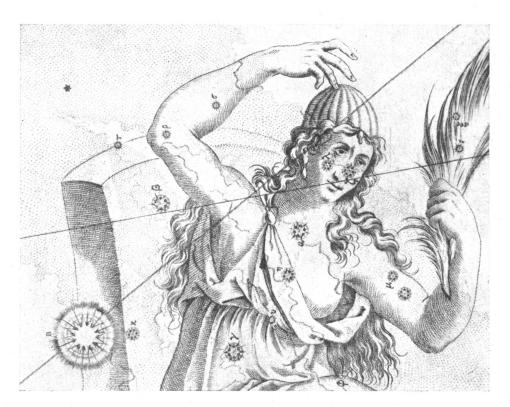


Bild 2: Der Tychonische Stern von 1572 (unten links). Ausschnitt aus dem Kartenblatt «Cassiopeia» des 1603 erschienenen Sternatlas von Joh. Bayer.

sucht. «Novae» werden sie genannt – aber nur aus historischen Gewohnheitsgründen. Denn wir wissen längst, daß es sich in Wahrheit keineswegs um neue Sterne handelt, sondern um solche, die schon vorher vorhanden waren, aber als unauffällige Normalsterne, die sich nicht unterschieden von der großen Menge anderer Sterne. Aus Gründen, die uns noch teilweise rätselhaft sind, erfolgt in einem solchen Stern eine gewaltige Explosion. Ungeheure Mengen von Strahlungsenergie brechen aus seinem Innern hervor, blasen kurzzeitig den Stern zu riesiger Größe auf und treiben gewaltige Wolken gasförmigen Stoffes in den Raum hinaus.

Man kennt eine Anzahl von Sternen, welche dauernd Strahlungsenergien von ähnlicher Größe aussenden, wie eine normale Nova während ihres Ausbruchs. Solche «Riesensterne» sind ständig zu riesigen Gaskugeln aufgebläht, trotzdem ihre Massen nur von der Größe der Sonnenmasse sind. Aber es gibt noch mannigfache Arten von «veränderlichen Sternen». Bei vielen ist die Veränderlichkeit sozusagen nur eine vorgetäuschte, durch äußerliche Umstände bedingte. Auffallend häufig erweisen sich Sterne, die zu genaueren Untersuchungen nahe genug sind, als Doppelsterne – als Systeme von zwei eng benachbarten, einander umkreisenden Sternen. Liegt ihre Bahnebene derart, daß sie sich bei ihrem Umlauf – von uns aus gesehen – wechselseitig zeitweise verdecken, so kommt ein periodischer Helligkeitswechsel zustande, obwohl tatsächlich jeder der beiden uns sichtbaren Sterne für sich in unveränderlicher Leuchtkraft strahlt (Bild 3).

Viel merkwürdiger aber als diese «Bedeckungsveränderlichen» sind andere Sterne, bei denen ebenfalls ein periodischer Wechsel geringerer und größerer Helligkeit vor sich geht, aber aus inneren Gründen heraus. Zahllose mühselige und scharfsinnige Untersuchungen haben im Ver-

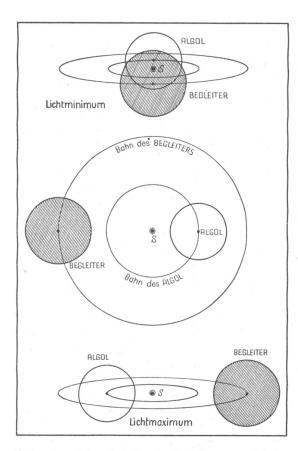


Bild 3: Die Bahnverhältnisse des Bedeckungsveränderlichen Algol im Sternbild des Perseus.

laufe der letzten Jahrzehnte ergeben, daß diese Sterne eine rhythmische «Pulsation», eine periodische Veränderung des Durchmessers ausführen, mit welcher der regelmäßige Helligkeitswechsel in ursächlichem, teilweise noch rätselhaftem Zusammenhange steht.

Eine große Zahl solcher pulsierender Sterne (Bild 1) sind heute eingehend untersucht, aber es fehlt bisher eine Theorie, welche diese seltsamen Erscheinungen physikalisch begreiflich macht und alle Gesetzmäßigkeiten aufklärt, welche das vorhandene, reiche Beobachtungsmaterial vorläufig nur empirisch festgestellt hat. Erwähnen wir hier, daß die Periodenlänge der Pulsationen in sehr weiten Bereichen schwankt: Es gibt Sterne, welche innerhalb weniger Stunden ihre regelmäßige Pulsation vollführen; andere, größere und hellere, brauchen Tage oder gar Wochen dazu; manche führen ihre periodischen Durchmesserveränderungen jeweils im Laufe von mehreren Jahren aus.

Für die Sternforschung von allergrößter Tragweite war das Auffinden der Tatsache, daß die absolute Leuchtkraft eines pulsierenden Sterns – eines Delta-Cepheus-Sterns – und seine Periodendauer gesetzmäßig verknüpft sind. Damit hat man ein äußerst wertvolles Hilfsmittel zur Entfernungsbestimmung in der Hand. Pulsierende Sterne sind die Meilensteine im Weltenraum.

Alle bisherigen Erklärungsversuche sind - obwohl sie teilweise schon Fortschritte bedeuten noch ziemlich unbefriedigend. Jedenfalls scheint die neuere Entwicklung der Beobachtungsergebnisse immer deutlicher in die Richtung zu weisen, daß wir für die Pulsationen einerseits und für die Nova-Ausbrüche andererseits verwandte Grundursachen anzunehmen haben: Kernreaktionen im Sterneninnern. Aber alle Einzelfragen werden erst dann geklärt werden können, wenn wir über die inneren Energiequellen der Sterne mehr wissen als heute. Wir kennen zwar seit einigen Jahren die Quellen, aus denen die Strahlung unserer Sonne gespeist wird - und die große Mehrzahl aller anderen Fixsterne zeigt ähnliche Verhältnisse wie unsere Sonne: Der Energie liefernde Vorgang ist eine Atomkern-Reaktion, welche Wasserstoff auf komplizierten «katalytischen» Umwegen in Helium verwandelt. Für die noch viel gewaltigeren Leuchtkräfte der Riesensterne und der Nova-Ausbrüche scheint diese Energiequelle nicht auszureichen. Zweifellos sind hier andere mit größerer Geschwindigkeit ablaufende Atomkernreaktionen am Werk.

Vor noch ernstere Probleme aber stellen uns jene besonderen Fälle, die wir eingangs erwähnten. Hier handelt es sich um Leuchtkräfte, welche die der normalen Nova-Ausbrüche in so gewaltigem Maße übertreffen, daß jeder Fall einer solchen Super-Nova eine eigene Deutung verlangt.

Unser empirisches Wissen darüber hat sich in den letzten zwei Jahrzehnten sehr erweitert. Wenn auch unter den Sternen unserer Milchstraße außer jenen drei erwähnten Beispielen keine weitere Supernova in historischen Zeiten aufgetreten ist, so konnten doch in anderen Milchstraßensystemen, den außergalaktischen Nebeln, inzwischen mehrere Dutzend solcher Fälle beobachtet werden. Sie sind alle sehr auffällig; denn eine Supernova ist zur Zeit ihrer größten Helligkeit etwa ebenso hell, wie die Gesamtheit der anderen einhundert Milliarden Sterne des betreffenden Spiralnebels zusammen genommen. Zu den Ergebnissen, die auf diese Weise gewonnen wurden, gehört übrigens die statistische Feststellung, daß im Durchschnitt in jedem Spiralnebel alle paar Jahrhunderte einmal eine Supernova erscheint, während normale Novae durchschnittlich mehrere pro Jahr zu erwarten sind.