Zeitschrift: Plan : Zeitschrift für Planen, Energie, Kommunalwesen und

Umwelttechnik = revue suisse d'urbanisme

Herausgeber: Schweizerische Vereinigung für Landesplanung

Band: 37 (1980)

Heft: 11

Artikel: Wärmeversorgung der Gemeinde Sent GR

Autor: [s.n.]

DOI: https://doi.org/10.5169/seals-781979

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 21.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Wärmeversorgung der Gemeinde Sent GR

Pilotprojekt einer möglichst autarken, wirtschaftlichen und umweltgerechten Wärmeversorgung eines Bergdorfes

Vor vier Jahren haben die beiden dipl. Ing. ETH/SIA Jürg Buchli und Josua Studach als Ingenieurgemeinschaft zusammen mit der Firma Gebrüder Sulzer AG, Winterthur, eine Grundlagenstudie erarbeitet, in welcher sie am Beispiel der Graubündner Berggemeinde Sent den Hypothesen nachgingen, dass gemeinschaftliche Heizanlagen unter gegebenen oder ähnlichen Umständen wirtschaftlicher seien, eher die Möglichkeit des Einsatzes von Alternativen zum Erdöl böten und zu weniger Eingriffen in die Siedlungs-Bausubstanz führten. Aus dieser Studie, unterstützt durch das Bundesamt für Energiewirtschaft und die Schweizerische Stiftung für Landschaftsschutz, erschienen im Herbst 1976, wurde ein Pilotprojekt ausgearbeitet, das nachstehend in einer allgemeinen Kurzfassung publiziert wird. Diese vom Nationalen Energie-Forschungs-Fonds,

NEFF, sowie von der Graubündner Kantonalbank und der Gemeinde Sent selber finanzierte Arbeit soll realitätsbezogen technische und wirtschaftliche Grundlagen liefern, um Entscheide zur Realisierung des beschriebenen oder ähnlicher Wärmeversorgungssysteme zu gestatten.

Allgemeine Kurzfassung des Projektes Zustandserhebung

Im Jahre 1979 wurden die Besitzer von 248 Gebäuden über ihre gegenwärtige Wärmeversorgungsausstattung und ihre Bedürfnisse befragt. Gut 50% der Wohnungen sind noch mit herkömmlichen Holzfeuerungen ausgestattet, wobei davon etwa 60% Zusatzheizungen in Form von Öl- oder Elektro-Öfen aufweisen. Gut 37% der Wohnungen werden mit Öl beheizt. Die Wohnungen mit Elektro-heiztungen machen rund 5% aus. Tab. 1

Bedürfnisse

Mit der gemeinschaftlichen Heizung sollen sämtliche 248 Gebäude des alten Dorfkerns (etwa 13 ha) versorgt werden. *Tab. 2.*

Den kommenden Berechnungen Wird ein Anschlussgrad von 80 % Innerhalb von 18 Jahren zugrunde gelegt. Die Anschlussentwicklung darf aufgrund der Befragung positiv beurteilt werden. Sie hängt von der Zuverlässigkeit der Anlage und

 Die benötigte Energie wird heute sichergestellt durch:

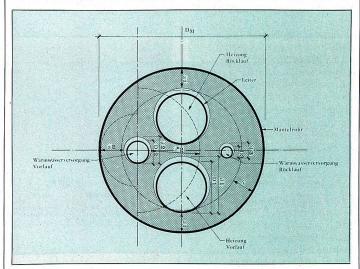
 Holz
 21 % = 1147 Ster
 = 1 260 Gcal/ 5 280 GJ

 Heizöl
 75 % = 522 700 l
 = 4 400 Gcal/18 440 GJ

 Elektrizität
 4 % = 289 300 kWh
 = 249 Gcal/ 1 040 GJ

 total
 = 5 909 Gcal/24 760 GJ

Tab. 1.


	14分类。		dermassen zusammen: Wärmeleistungsbe	darf
262	Wohnungen,	ganzjährig belegt	3,533 Gcal/h	4,10 MW
		Gewerberäume	0,303 Gcal/h	0,35 MW
200	Wohnungen,	temporär belegt	2,067 Gcal/h	2,40 MW
82	Wohnungen,	ausbaubar	1,061 Gcal/h	1,23 MW
544	Wohnungen,	total	6,964 Gcal/h	8,08 MW

Tab. 2.

der Energiepreisentwicklung ab. Der Pilotcharakter dieser Anlage erfordert eine Zusicherung von Anschluss- und Wärmekosten in der Höhe der Kosten einer Ölheizung vor dem Baubeschluss.

Der baldige Anschluss der Gebäude mit ölgefeuerten Heizanlagen ist im Gesamtinteresse erwünscht.

Die Anschlussaussichten wurden individuell beurteilt und ergaben, dass etwas mehr als 10% der Gebäude so bald wie möglich, das heisst sobald das Netz vorhanden ist, angeschlossen werden möchten, währenddem 60% in Zusammenhang mit grösseren Reparaturen oder Umbauten oder einfach in

Die nachstehenden Zahlen zeigen den Vergleich der erforderlichen jährlichen Mitte der Netztemperaturen zwischen den konventionellen und den hier vorgeschlagenen und untersuchten Systemen IV und V:

System 0, I:		٧	= 76,7°C	
		R	= 47,1°C	Konventionelle
	Mittel	V+R	= 61,9°C	Systeme
System II:		٧	= 61,7°C	2-Leiter-Systeme
		R	= 41,0°C	
	Mittel	V+R	= 51,3°C	
Systeme III, IV, V:		٧	= 56,6°C	
		R	= 41,0°C	4-Leiter-Systeme
	Mittel	V+R	= 48,8°C	

Tab. 3.

den nächsten 5–10 Jahren anschliessen würden. Für den Rest liegen keine konkreten Hinweise über Anschlussaussichten vor.

Bei den Berechnungen des jährlichen Wärmeverbrauchs müssen im Fall von Sent die Einflüsse der temporär belegten Wohnungen überlagert werden. Heute sind 43% der Wohnungen nur temporär belegt, der entsprechende Geschossflächenanteil liegt bei etwa 40%. Die Belegung der Ferienwohnungen schwankt stark. Mit der Ausweitung des Heizkomforts wird der mittlere jährliche Wärmeverbrauch einer temporär belegten Wohnung von heute etwa 25 % auf rund 50% einer ganzjährig belegten Wohnung anwachsen.

Wärmeverteilung

Im Hinblick auf den kommunalen Charakter der gemeinschaftlichen Heizanlage wurde möglichst das ganze Siedlungsgebiet mit dem Verteilnetz erfasst, welches aus topographischen Gründen in eine untere und eine obere Druckzone aufgeteilt wird.

Auf der Suche nach einer Verteilung mit möglichst kleinen Netzverlusten, auf möglichst tiefem Temperaturniveau und nach einer möglichst einfachen Wärmeübergabe wurden sehr umfangreiche Untersuchungen möglicher Netzsysteme gemacht. Sie führten zu einer 4-Rohr-Fernwärmeleitung, wo Heiz- und Brauchwasser getrennt, je mit Vor- und Rücklauf, geführt werden. *Tab. 3.*

Die jährlichen Mehrverluste des Systems 0, verglichen mit dem System V, betragen 420 Gcal, was multipliziert mit einem entsprechenden Wärmepreis und kapitalisiert mit 7% eine Investition von Fr. 720000,- rechtfertigen würde. Das gewählte 4-Leiter-System erlaubt eine Beschränkung der gebäudeinternen Steuerung auf thermostatische Ventile an den Radiatoren, einen Verzicht auf die Warmwasseraufbereitungsanlage, die Wärmemessung mit nur zwei Wasseruhren durchzuführen und auf elektrische Uminstallationen wie auch in den meisten Fällen auf eine Umwälzpumpe zu verzichten. Ein Vergleich mit dem in der Grundlagenstudie für die Hausstationen vorgesehenen Betrag zeigt, dass deren Elimination als wesentlicher Punkt des ganzen Systems zu betrachten ist. Erfahrungen mit dem gewählten unkonventionellen Netzsystem sind in Skandinavien gemacht worden. Ausserdem sind in Zusammenhang mit der vorliegenden Arbeit Tests durchgeführt worden.

Von gesamthaft 10 Bauetappen betreffen 5 den Netzausbau. Die Stranglänge bei einem Anschlussgrad von 80% beträgt schliesslich 4497 m mit einem Wasservolumen von 99191 I für die Heizung bzw. 4497 m und 6749 I Wasservolumen für die Warmwasserversorgung.

Für den Wasserdurchsatz sorgen Zirkulationspumpen, die so gewählt werden, dass sie bei minimalem Kraftaufwand und minimalen Investitionen die gewünschte Wassermenge mit dem zugehörigen Druckgefälle liefern. Die Lösung für die Heizkreisläufe sieht zwei Phasen vor:

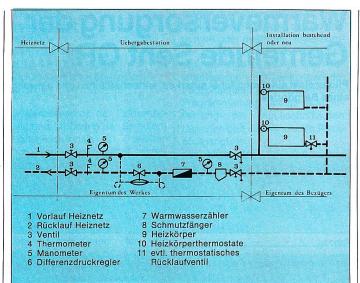
- den vorläufigen Einbau einer kleinen Zwillingspumpe für jede Druckzone.
- nach einigen Jahren Betriebszeit Ersetzen der kleinen durch grössere Zwillingspumpen.

Wärmeübergabe, Hausstation, Verteilung im Gebäude

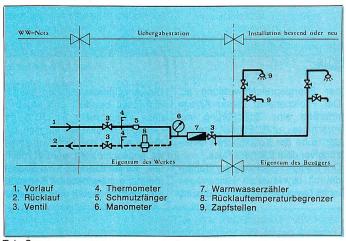
Die Niedertemperaturstrategie und die Temperaturspreizungsbestrebungen werden im Gebäude konsequent angewendet.

Die Übergabe und Messung von Warm- und Heizungswasser erfolgen getrennt und direkt.

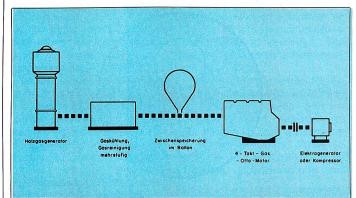
Die Darstellung der Heizwasserübergabe (Tab. 4) zeigt, dass sie im wesentlichen aus einem Differenzdruckregler besteht, der das vorhandene Druckgefälle zwischen Vor- und Rücklauf im Netz auf die erforderliche Grösse reduziert und dadurch den gewünschten konstanten Durchfluss im Gebäude bestimmt.


Bestehende Kesselanlagen werden hinter dem Mischventil und der Pumpe angeschlossen, völlig ausser Betrieb gesetzt und stromunabhängig gemacht.

Der Wärmeverbrauch für die Raumheizung wird mit einem Warmwasserzähler ermittelt. Saisonal verschiedene Tarife sorgen für eine gerechte, dem Temperaturniveau und der gelieferten Wärme angepassten Abgeltung.


Die Warmwasserübergabe erfolgt direkt nach nebenstehendem Schema (*Tab. 5*).

Wärmeerzeugung


Hier geht es darum, die fossilen Brennstoffe möglichst zu reduzieren und die einheimischen Ressourcen bei einer gewissen Zurückhaltung mit dem Verbrauch eigener produzierter hochwertiger hydroelektrischer Energie bestmöglichst einzusetzen.

Tab. 4.

Tab. 5.

Tab. 6.

Eine Maximierung der Nutzenergie erfordert erhöhte Ansprüche der Technologie und führt daher wie im vorliegenden Fall zur zentralen Wärmeerzeugungsanlage mit entsprechendem Verteilnetz. Für die Grundlastdeckung wird das Energieholz in der kommunalen Anlage über die Wärme-Kraft-Kopplung eingesetzt, das heisst es wird vergast und mit anschliessender Gasverbrennung im Gas-Otto-Motor unter Nutzung aller Abwärmen aus der Holzgas-, Zylinderkopf- und Abgaskühlung zum Wärmepumpenantrieb genützt (Tab. 6).

Der Standort der Wärmezentrale hat gegenüber der Grundlagenstudie keine Änderungen erfahren. Der Ausbau erfolgt in mehreren Etappen und umfasst die Grunderschliessung mit Zufahrt, Wasserversorgung, Kanalisation, Stromversorgung sowie die Gebäulichkeiten selbst, deren Dächer als Verdampfer/Absorberelemente ausgebildet werden, und Lager, Betriebseinrichtungen und Jauchespeicher beinhalten.

Bezüglich der Betriebseinrichtungen stellt die 1. Etappe mit dem anschliessenden Betrieb die Ausdehnung und Weiterführung der eingeleiteten Versuche der Holzgas-Wärmekraftkopplung dar. So läuft die Anlage bis zum Abschluss der 2. Etappe (Netzbau) als reine Versuchsanlage. Sie ist aber von allem Anfang an so konzpiert, dass sie später als Warmwasseraufbereitungsanlage eingesetzt werden kann. Bis zum Weiterausbau in der 3. Etappe umfasst die Anlage folgende Hauptbestandteile:

- Holzgasgenerator G 1¹, Leistung etwa 200 000 kcal/h
- Holzgasmotor M 1¹, Leistung etwa 50 kW
- Wärmepumpeneinheit WP 1¹,
 Heizleistung inkl. Nachkühler etwa 90000 kcal/h (Verdampfung –10°C; Kondensation +60°C)
- Verdampferfläche Kollektor-Luftwärmetauscher-Elemente (KL-Elemente) etwa 150 m²
- Wasserspeicher 40 m³

Die nächste Ausbauphase (3. Etappe) umfasst im wesentlichen die Vergrösserung der Wärmeerzeugungseinheiten samt Holzlager. Die Nennleistung liegt sodann gesamthaft bei 1,5 MW bzw. bei 2,2 MW unter wärmepumpengerechten Bedingungen.

Die Hauptbetriebseinrichtungen werden im wesentlichen sein:

- 1 Holzgasgenerator G 2
- 2 Holzgasmotoren M 2 und M 3
- 2 Wärmepumpeneinheiten WP 2 und WP 3
- Erweiterung der Verdampferfläche
- 1 Holzgaskessel GK 1 mit einem Holzgasbrenner
- 1 Spältekessel SK 1

In der 5. Etappe wird die Leistung der Zentrale mit einem weiteren Holzgasgenerator und einem entsprechenden Holzgaskessel weiter auf etwa 3,8 MW erhöht. Die Realisierung der Biogasanlage kann bereits in dieser Etappe ins Auge gefasst werden.

Die Etappe 8 bringt die Wärmeerzeugungsanlage schliesslich auf den endgültigen Ausbaustand.

Wärmepumpenanlage

Allgemein wird die Eignung von gasmotorbetriebenen Wärmepumpen in Fällen von bivalenten kommunalen Wärmeversorgungen bejaht, sofern die Wärmeträgertemperaturen den angestrebten Charakter (ganzjährig gleitender Vorlauf, tiefer Rücklauf usw.) aufwelsen, die Nachkühlerwärmen dank der getrennten Brauchwasserversorgung genutzt werden können und die kombinierte Wärmequelle die erhoffte Qualität erreicht.

Die Auswahl von geeigneten Wärmequellen im vorliegenden Fallwar klein. Grundwasservorkom-

¹ G 1, M 1, WP 1 = Numerierung der Hauptanlageteile, übereinstimmend mit den Bezeichnungen im Plan Nr. 010.05.

men, Oberflächengewässer und Erdreich kamen nicht in Frage. Möglichkeiten bieten sich beim ausserordentlich grossen Überlauf der neuen Wasserversrogung. Mit dem Überlauf stehen täglich 2000 bis 3000 m3 Wasser zur Verfügung, die ohne Hilfsantriebe als Wärmeguelle pro Kelvin Abkühlung täglich 2 bis 3 Gcal liefern. Die gleichzeitige hydraulische Nutzung dieser Wassermenge wurde im Zusammenhang mit der Wärmeversorgung ebenfalls ins Auge gefasst. Die Nutzung des Überlaufwassers ist in einer späteren Ausbauphase vorgesehen.

Als Wärmequelle im Vordergrund steht die kombinierte Nutzung der Luft und Sonnenstrahlung mittels Kollektor-Luftwärmetauscher-Elementen. Ein Prototyp hat das Versuchsstadium bereits hinter sich und kann befriedigende Resultate vorweisen.

Die Verdampfer sollen, wie erwähnt, als Direktverdampfer auf den erforderlichen Dachflächen untergebracht werden. Die Gebäulichkeiten sind gestaffelt am Hang angeordnet und mit einem ausgedehnten, nach Süden ausgerichte-

Der Gesamtwärmeertrag muss dem Wärmebedarf angepasst werden. Obwohl die vorgesehene Wärmepumpenleistung einen verhältnismässig kleinen Anteil am Wärmeleistungsbedarf ausmacht, kommt es in der Übergangszeit vor, dass die WP-Anlage zu viel Wärme liefern würde. Somit wurde die maximale stündliche WP-Gesamtleistung (inkl. Abwärmen) auf 1/6 des Tagesbedarfes bei der jeweiligen Aussentemperatur beschränkt. In der Praxis bedeutet dies, dass gegebenenfalls eine der Maschineneinheiten abgeschaltet werden muss.

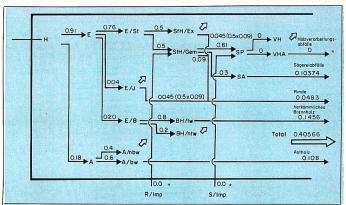
Holzgas

Die Holzgasproduktion wird mit je einem Holzgasgenerator in der ersten, dritten, fünften und eventuell achten Etappe sichergestellt. Das Gas kann während des Produktionsprozesses je nach Bedarf gereinigt den Gasmotoren oder ungereinigt den Gaskesseln zugeführt werden. Die Beschickung der Holzgasgeneratoren mit Hackgut und Klötzen geschieht mit einem Landwirtschaftstraktor mit hydraulischem Frontlader über einen Tagestrichter.

		Strom-Wärme	Gas-Heizkessel		
	Elektrisch	Netto-	Öläqui-	Brutto-	Netto-
	Erzeugung kWh/d	Wärme MJ/d	valente kg/d	Wärme MJ/d	Wärme MJ/d
Januar	866	6720	214	10 340	7860
Februar	866	6770	216	10 340	7900
März	866	6940	221	10 340	8080
April	866	7130	227	10 340	8260
Mai	771	6730	214	9 2 1 0	7740
Juni	372	3290	105	4 440	3780
Juli		-300 -	-10	2.0	-300
August	20 to 10 10 10 10 10 10 10 10 10 10 10 10 10	-310	-10		-310
September	372	3260	104	4 440	3750
Oktober	771	6620	210	9 2 1 0	7630
November	866	6960	222	10 340	8100
Dezember	866	6780	216	10 340	7920

d = täglich

Die Integration in die gesamte Wärmeerzeugung erlaubt die Beheizung des Fermenters mit dem Heiznetzrücklauf, wodurch die Ausbeute verbessert werden kann.


Tab. 7.

ten, 45° geneigten Dachflügel versehen. Mittels der stündlichen klimatischen und meteorologischen Grundlagen der Station Davos und mit Hilfe eines eigenen Rechenprogramms wurden die zu erwartenden Erträge dieser Wärmequelle zusammen mit den Wärmepumpenerträgen und den Abwärmen berechnet.

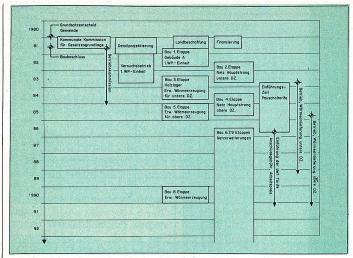
Das Programm berücksichtigt nur die Tagesstunden, an denen die Strahlung einen Beitrag leistet. Eine teilweise Ausdehnung des Betriebes auf Abend- und Nachtstunden ist durchaus möglich.

Spitzendeckung und Reservehaltung

Der Spitzenlastdeckung kommt grosse Bedeutung zu. Sie wird durch holzgasbefeuerte Kessel und Spältekessel sichergestellt. Letzterer bietet nebenbei die wichtige Möglichkeit, Sperrgut, Papier und zum Hacken oder Kappen ungeeignete Brennholzsortimente zu verwerten. Das Werk strebt die Betriebsbereitschaft von möglichst vielen herkömmlichen privaten Holzfeuerungsanlagen an, die so einen ansehnlichen Teil der Reservehaltung übernehmen.

Tab. 8.

Flussdiagramm der Energieholzanteile als Funktion des Hiebsatzes und der Importe der Gebietseinheit.


- Hiebsatz: Vorgesehene nachhaltige Nutzung der eingerichteten Waldungen inkl. die gutachtlich angenommene Nutzung von nicht eingerichteten kleinen Waldungen und Feldgehölzen.
 Stehendmass Tfm transformiert in m³.
- Holzernte: Liegende Holzernte im Wald. Schaftholz in Rinde ohne Äste bis zum Durchmesser von etwa 10–12 cm Liegendmass m³.
- A Astmaterial inkl. Doldenstück: ab Zopfende soweit es nicht dem herkömmlichen Brennholzsortiment zugeordnet werden muss, inklusiv transportresistenter Reisiganteil. Umgerechnet in feste Masse als Prozente des Stehendmasses m³.
- E/ST Stammholzernte: Ernte in Form von Stammholz in Rinde in m³.
- E/I Industrieholzernte: Ernte in Form von Industrieholz in Rinde in m³.
- E/B Brennholzernte: Ernte in Form herkömmlichen Brennholzes aus dem Stammaterial und Ästen von mehr als 12 cm Durchmesser, in m³.
- A/bw Bringungswürdiges Astholz: Astholz, welches aufgrund des Vergleichs von Brennwert und Bringungskosten als bringungswürdig erscheint. Umgerechnet in feste Masse m³.
- A/nbw Nichtbringungswürdiges Astholz: sinngemäss A/bw.

 StH/Ex Exportstammholz: Aus der Gemeinde exportiertes Stammholz in Rinde m³.
- StH/G **Sagholz aus Gemeinde:** für eigene Sägerei; in Rinde m³. R/Imp **Rundholzimporte** in Gemeinde: für Sägerei; in Rinde m³.
- R/Imp Rundholzimporte in Gemeinde: für Sägerei; in Rinde m S/Imp - Sägereiprodukteimport in Gemeinde. Feste Masse m³.
- BH/tw Transportwürdiges Brennholz: sinngemäss A/bw.
- BH/ntw Nichttransportwürdiges Brennholz: sinngemäss A/bw.
- SP Sägereiprodukte: zur Weiterverarbeitung oder direkten Verwendung. Feste Masse m³.
- SA Sägereiabfälle: hauptsächlich Sägemehl, Schwarten und Spreisel. Rinde soweit unter StH/G als unentrindet angenommen. Feste Masse m³.
- VH Verarbeitetes Holz: als Konstruktions- und Bauholz oder für Verpackungen, Möbel, Werkzeuge usw.
- VHA Abfälle des verarbeiteten Holzes der Holzverarbeitungsbetriebe: hauptsächlich Sägemehl, Späne, kleine Holzteile.
- Fällt als Energieholz ausser Betracht.

Aufgrund dieser Anteile ergeben sich folgende Energieholzmengen:

In % des Hiebsatzes	m³
0 %	0
10,37 %	ca. 480
4,83 %	ca. 220
14,56 %	ca. 680
10,8 %	ca. 500
40,56 %	1880
	0 % 10,37 % 4,83 % 14,56 % 10,8 %

Tab. 9

Tab. 10.

Biogasanlage

Hier fallen das Bedürfnis für eine Jauchebeseitigung und die energetischen Nutzungsmöglichkeiten zusammen, so dass sich der Bau einer Biogasgewinnungsanlage in der 5. oder 8. Etappe rechtfertigt. Langfristig wird mit etwa 350 angeschlossenen GVE gerechnet.

Die Frischgülle wird in einer Vorgrube gesammelt und gestapelt und dann dem Gärbehälter zugeführt. Das Betriebsergebnis zeigt *Tab. 7.*

Energieholz

Das Energieholz hat gemäss erstellter Energiebilanz entscheidenden Stellenwert.

Die Waldbestände sind erfasst und eingerichtet. Die Simulation der vorgesehenen Holznutzung in die weitere Zukunft zeigte waldbaulich zielgerechte Reaktionen. Das nachhaltige Energieholzpotential wurde gemäss Flussdiagramm (Tab. 8 und 9) erhoben.

Die voraussichtlichen Bedarfsspitzen benötigen etwas mehr als 2000 m³ Energieholz, so dass die fehlende Menge mit Rücknahmezusicherungen für Abfälle von Senter Holz von holzverarbeitenden Betrieben der näheren Umgebung wettgemacht werden muss. Die Beschaffung des Energieholzes muss mit der Nutzholzernte gekoppelt werden. Die mittleren Kosten für die Energieholzsortimente betragen daher für den

Fr. 55.50 pro m³ fest.
Negative ökologische Auswirkungen einer erhöhten Energieholznutzung sind nicht zu erwarten. Die betrieblichen Voraussetzungen für die Bewältigung der Energieholzbeschaffung sind vorhanden und die arbeitsmarktmässigen Auswirkungen regionalwirtschaftlich durchaus erfreulich.

der

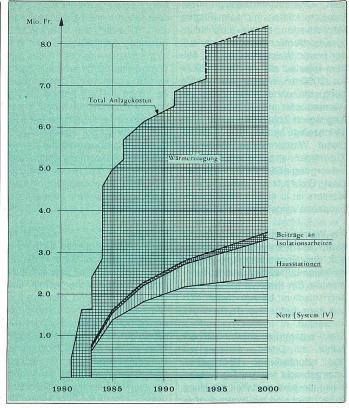
Sortimente

Realisierung

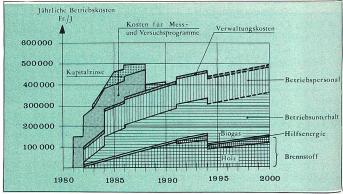
Das Bauprogramm präsentiert sich gemäss *Tab. 10.*

Als Trägerschaft kommt vermutlich eine öffentlich-rechtliche kommunale Anstalt in Frage.

Die Wärmelieferungsbedingungen sollen sich folgenden Zielsetzungen anpassen:


- Rasche Anschlussentwicklung
- Beschränkung des beheizten Raumes
- Sparsamer Wärmeverbrauch
- Erhöhung der Temperaturspreizung des Wärmeträgers
- Berücksichtigung der saisonal unterschiedlichen Energieverfügbarkeit
- Mittelfristiges Erhalten der funktionstüchtigen privaten Ölfeuerungsanlagen
- Langfristiges Beibehalten von funktionstüchtigen privaten Holzöfen

Die Leistungen des Werks sollen mit einer einmaligen Anschlussgebühr (Leistungspreis) und einem Arbeitspreis (Wärmepreis) entschädigt werden.


Als integrales Wärmeversorgungsprojekt umfasst es auch Massnahmen zur Reduktion der Wärmeverluste. Eine Einflussnahme des «Werks» auf die Wärmebezüger durch Beratung und finanzielle Förderung in bescheidenem Rahmen ist in folgenden Punkten vorgesehen:

- Anordnung und Umfang des beheizten Volumens
- Wärmeisolation der Aussenhülle
- Zustand der Fenster und Türen
- Dauernde Kontrolle der Raumtemperaturen
- Isolation der Leitungen im Gebäude

Die Anlagekosten gemäss Kostenvoranschlag sind in *Tab. 11* aufgezeigt

Tab. 11.

Tab. 12.

Der Vergleich mit den Einzelheizungen ergibt folgende Hauptergebnisse:

- Langfristig fällt der Vergleich eindeutig zugunsten der kommunalen Wärmeversorgung aus. Im Jahr 1988 versorgt die Einzelgebäudeheizung bei den getroffenen Annahmen etwa 35 % teurer, im Jahr 2000 etwa 74 % teurer
- Der Ölpreis ist ausschlaggebend für die Wärmegestehungskosten der Einzelgebäudeheizung.
- Der an sich relativ stabile Holzpreis beeinflusst nur unwesentlich die Wärmegestehungskosten der kommunalen Anlage.
- Der Vergleich wird problematisch, wenn Energieeinsparungen durch Mehrinvestitionen berücksichtigt werden müssen. Die Zusammenhänge sind heute weitgehend unbekannt.

 Erst anhand eines realisierten Pilotprojektes kann zuverlässig gesagt werden, mit welchen Wärmegestehungskosten ein Dorf auf diese Art und Weise versorgt werden kann.

Die gänzliche oder teilweise Übertragbarkeit des Projekts auf andere Siedlungen dürfte oft möglich sein und hängt sehr stark von den Energieholzvorkommen und von der Dichte der Siedlung (Wirtschaftlichkeit des Fernwärmenetzes) ab-

Auszug aus der Broschüre «Wärmeversorgung Sent»
Verfasser und Verlag:
IGEK Ingenieur-Gemeinschaft für Energiehaushalt im kommunalen Bereich dipl. Ing. ETH/SIA Jürg Buchli und Josua Studach CH-7000 Chur

Durchschnitt

100 Mio. Dollar für Windenergieforschung

Ein Gesetz über die Bereitstellung von 100 Mio. Dollar im Haushaltjahr 1980/81 für ein neues Forschungs-, Entwicklungs- und Demonstrationsprogramm «zur beschleunigten Nutzbarmachung von Windenergie» wurde von Präsident Carter unterzeichnet. (Im Jahr 1979/80 lagen die Regierungsaufwendungen für solche Projekte bei 60 Mio. Dollar.) Damit soll erreicht werden, dass schon im Jahr 1988 Windkraftwerke mit einer Kapazität von insgesamt 800 Megawatt verfügbar sind. Etwa 700 Megawatt sollen aus grossen Generatoranlagen mit Kapazitäten von jeweils mehr als 100 Kilowatt, die restlichen 100 Megawatt von kleinen Windkraftwerken kommen. Mit Hilfe des Programms will man ausserdem die Stromkosten von Windenergie so weit senken, dass sie mit den Stromkosten bei der Anwendung konventioneller Produktionsverfahren könkurrieren können. Gleichzeitig sollen der Privatwirtschaft Anreize gegeben werden, sich stärker auf dem Sektor «Windenergie» zu engagieren.

Windkraft ist nur eine von verschiedenen Formen der Sonnenenergie, die nach dem Nationalen Energieprogramm der USA im Jahr 2000 etwa 20% des amerikanischen Energiebedarfs decken soll. Gegenwärtig liegt in den Vereinigten Staaten der Anteil der Windkraft an der gesamten Energieproduktion bei knapp 1 %. Er könnte sich nach Ansicht von Regierungsvertretern noch innerhalb dieses Jahrzehnts verdoppeln und bis Ende des Jahrhunderts auf 8 bis 10 % anwachsen. Die Bereitschaft von Bürgern, Windkraftanlagen «für den Hausgebrauch» zu installieren, unterstützt der Staat mit Steuervergünstigungen, wodurch die

Anschaffungskosten bis zu 40% reduziert werden. Die elektrische Leistung der modernen Windmühlen liegt im Durchschnitt bei 1,5 Kilowatt. Hausbesitzer und Farmer machen, sofern sie in windreichen Gegenden oder am Rande oder ausserhalb grosser Ortschaften leben, in zunehmendem Masse von den vorhandenen Angeboten Gebrauch. Das Problem der Geräuschbelästigung durch Windmühlenpropeller ist allerdings noch nicht gelöst, und viele Bürger wehren sich dagegen, dass das Landschaftsbild durch die Errichtung von zu vielen Windkraftwerken verdorben wird.

Kompaktheizungsregler ERTJ 10 hilft Energie sparen

Mit dem Heizungsregler ERTJ 10 werden nicht nur die Heizkosten niedrig gehalten, eingespart wird auch bei der Montage und der Installation. Das Kompaktgerät – elektronischer Regler und Stellmotor bilden eine Einheit – lässt sich

leicht auf schon vorhandene handelsübliche Mischer aufbauen, entsprechende Anbauteile stehen zur Verfügung. Damit ist das Gerät für alte Anlagen, Altbauten und auch für Neubauten geeignet.

Die quarzgesteuerte Schaltuhr senkt die Raumtemperatur ab und

erhöht diese automatisch wieder, entsprechend der eingestellten Zeiten.

Als zusätzliche Sparmassnahme kann der Regler die Umwälzpumpe ausschalten. Das Gerät ist eine witterungsabhängige Vorlauftemperaturregelung; bei Einfamilienhäusern kann zur individuellen Temperaturbeeinflussung zusätzlich eine Fernverstellung angeschlossen werden.

Fr. Sauter AG, 4056 Basel

Biogasanlagen

Seit mehreren Jahren befasst sich die Inventa AG, eine Tochter der Chemie Holding Ems AG, mit der Entwicklung von Prozessen für die wirtschaftliche Nutzung von Alternativenergien. Ein Beispiel ist die Entwicklung von Biogasanlagen für mittlere bis grosse Landwirtschaftsbetriebe. Der wirtschaftliche Einsatz dieser Biogasanlagen ist überall dort gewährleistet, wo das erzeugte Biogas vollständig, in einer sinnvollen Anwendung als

thermische oder elektrische Energie, verwertet werden kann.

Diese Voraussetzung erfüllen heute speziell mittlere bis grosse Milchwirtschaftsbetriebe oder, wie im Fall Sent, eine einzige grössere Anlage, die die Landwirte dieses geschlossenen Bergdorfes gemeinsam betreiben werden.

Die Foto zeigt eine standardisierte Griogas®-Anlage der Firma Inventa AG

Inventa AG CH-7013 Domat/Ems

Solarstrom für Georgetown-Universität

Mit einer Solarzellen-Belegfläche von 16275 m² erhält ein neues Institut der Georgetown-Universität in Washington das grösste Sonnendach, mit dem je ein Gebäude ausgestattet wurde. Kleine Siliziumplättchen wandeln Licht in elektrischen Strom um, der in das Versorgungsnetz der Universität eingespeist wird. Das neue Intercultural Center mit Abteilungen für Fremdsprachenstudien und Linguistik, Diplomatenschule, Studium der Kultur des arabischen, lateinamerikanischen, russischen und deutschen Sprachraums, Wirtschaftsdiplomatie und Amerikanistik ist ein sechsstöckiges Gebäude, das mit finanzieller Unterstützung eines Privatunternehmens sowie des US-Energieministeriums ein Demonstrationsprojekt für die Nutzung fotovoltaischer Zellen werden soll. Die Solargeneratoren auf dem Dach sind Teil eines langfristigen Planes, die Georgetown-Universität von Energiezufuhr von aussen unabhängig zu machen. Dazu soll unter anderem eine Kesselanlage beitragen, die nach dem Verfahren der Wirbelbettverbrennung arbeitet und mit Kohle abgasfrei geheizt wird.

ADVICO •

Flumroc-Isolierprodukte aus Steinwolle machen jeden Bauteil hochgradig wärmedämmend, schützen vor Lärm und beugen Brandgefahren

vor.

Flumroc-Spezialisten lösen Ihnen jedes Isolierproblem, sei es wärmetechnischer, konstruktiver oder bauphysikalischer Art – von der Planung bis zur Arbeitsvollendung.

Ein Haus ist mehr wert mit einer

Flumroc AG, 8890 Flums, Tel. 085/3 26 46