Zeitschrift: Plan : Zeitschrift für Planen, Energie, Kommunalwesen und

Umwelttechnik = revue suisse d'urbanisme

Herausgeber: Schweizerische Vereinigung für Landesplanung

Band: 37 (1980)

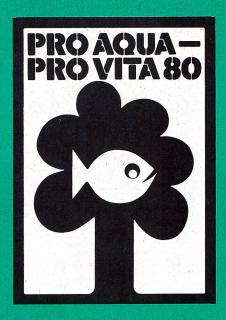
Heft: 5

Rubrik: Pro Aqua - Pro Vita 80

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation


L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 21.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Pro Aqua – Pro Vita 80

Ausstellungsort

CH-4021 Basel in den Hallen der Schweizer Mustermesse

Dauer

17, bis 21 Juni 1980

Organisation

Pro Aqua AG CH-4021 Basel Telefon 061 26 20 20

Fachtagungen

I: Luft- und Lärmprobleme
II: Abwasser: Moderner
Gewässerschutz
III: Die Auswirkungen alpiner
Speicherseen auf die Umwelt
IV: Wasser: Desinfektion der
Trinkwasser

Sonderschau

Optimale Energienutzung – Beitrag zu einer umweltbewussten Energieversorgung für die Zukunft

Kongress

Unter dem Patronat der Société Internationale de Technique Hydrothermale (SITH) und unter Mitwirkung der Mineral- und Thermalwasserkommission der Internationalen Assoziation der Hydrogeologen (IAH) findet zudem vom 16. bis 21. Juni in den Kongressräumen der Schweizer Mustermesse in Basel der 16. Internationale Kongress für Heilbädertechnik statt.

8. Fachmesse für Umweltschutz

Vom 17. bis 21. Juni findet in den Hallen der Schweizer Mustermesse in Basel die 8. Internationale Fachmesse für Umweltschutz «Pro Aqua – Pro Vita» statt. Aus der ersten Fachmesse, die 1958 lediglich das Problem Wasser und Abwasser zum Gegenstand hatte und als erste internationale Veranstaltung auf diesem Gebiet Neuland betrat, ist im Verlaufe der 22 Jahre eine der bedeutendsten Manifestationen auf den Gebieten Trinkund Brauchwasser, Abwasser, Luft und Lärm und feste Abfälle geworden. An der diesjährigen Messe werden 283 (1977: 360) Aussteller aus 15 Ländern auf wiederum über 11 000 m² Ausstellungsfläche Erzeugnisse von über 400 Lieferwerken zeigen. Dazu kommt die Sonderschau «Optimale Energienutzung – ein Beitrag in einer umweltbewussten Energieversorgung für die Zukunft», die eine Woche länger offen sein wird als die eigentliche Ausstellung. Daneben werden vier grosse Fachtagungen und der internationale Kongress für Heilbädertechnik abgehalten.

Vier Fachtagungen

Im Rahmen der vom 17. bis 21. Juni 1980 in den Hallen der Schweizer Mustermesse in Basel stattfindenden Pro Aqua — Pro Vita 80, 8. Internationale Fachmesse für Umweltschutz, werden wiederum verschiedene Fachtagungen durchgeführt

Die Fachtagung I befasst sich mit Luft- und Lärmproblemen, wobei am Mittwoch, 18. Juni, und Donnerstag, 19. Juni 1980, insbesondere das kommende Umweltschutzgesetz der Schweiz und seine Konsequenzen für Industrie, Gewerbe, Verkehr, Bauwirtschaft und Behörden aller Stufen auf dem Gebiet der Lärmbekämpfung und der Luftreinhaltung zur Diskussion steht. Am Freitag, 20. Juni, wird diese unter dem Patronat der Schweizerischen Liga gegen den Lärm (SLGL), der Schweizerischen Vereinigung für Gesundheitstechnik (SVG) und der Schweizerischen Vereinigung für Gewässerschutz und Lufthygiene (VGL) stehende Fachtagung mit einer Exkursion abgeschlossen.

Die Fachtagung II «Abwasser», die unter dem Patronat des Verbandes Schweizerischer Abwasserfachleute (VSA) steht, behandelt Fragen des modernen Gewässerschutzes. Nach einer Exkursion am Dienstag, 17. Juni, zu verschiedenen Kläranlagen im Raume Basel werden an den drei darauffolgenden Tagen die nachstehenden Themen eingehend erörtert:

Mittwoch, 18. Juni: Exportmöglichkeiten für Abwasser-Know-how (Möglichkeiten, Grenzen Erfahrungen)

Donnerstag, 19. Juni:

Geruchs- und Korrosionsprobleme auf Kläranlagen

Neue Techniken der weitergehenden Abwasserreinigung und deren Finanzierung

Freitag, 20. Juni: Messen – Steuern – Regeln in der Abwassertechnik Gewässerüberwachung

Unter dem Patronat des Schweizerischen Wasserwirtschaftsverbandes (SWV) und der Schweizerischen Unesco-Kommission, Sektion exakte Wissenschaften, werden an der Fachtagung III unter dem Titel «Die Auswirkungen alpiner Speicherseen auf die Umwelt» folgende Themen zur Diskussion stehen:

Mittwoch, 18, Juni

Das Erfassen der Umwelteinflüsse von alpinen Speicherseen bei der Projektierung und bei fertigen Anlagen

Die Veränderung der Abflussverhältnisse

Donnerstag, 19. Juni

Die Beeinflussung von Klima, Fischbestand, Wald, Landschaft usw. durch alpine Speicherseen Die wirtschaftlichen Auswirkungen alpiner Wasserkraftanlagen (Touristik, Arbeitskräfte, Steuern, Infrastruktur)

Abgeschlossen wird diese Fachtagung am Freitag, 20, Juni, mit einer Exkursion zu den Speicherseen Hongrin und Lac de la Gruwère

Die Fachtagung IV schliesslich ist dem Wasser, genauer gesagt der «Desinfektion der Trinkwasser» gewidmet. Am Donnerstag, 19. Juni, werden die «Hygiene des Trinkwassers» und «Grundlagen der Desinfektion» erörtert, am Freitag, 20. Juni, Jauten die Themen:

- Zur Virologie des Trinkwassers
- Elementare Grundlagen der Wasserchemie
- Apparative Einrichtungen und sicherheitstechnische Aspekte bei der Desinfektion von Trinkwasser

Diese vierte Fachtagung steht unter dem Patronat des Schweizerischen Vereins von Gas- und Wasserfachmähnern (SVGW).

Die seit 1958 regelmässig durchgeführte internationale Fachmesse für Umweltschutz Pro Aqua – Pro Vita, die sich der Probleme Wasser – Abwasser – Abfall – Luft – Lärm annimmt, wird in ihrer 8. Auflage vom 17. bis 21. Juni 1980 durch eine Sonderschau mit Ausstellungssektor sowie eine Vortragstagung zum Thema «Optimale Energienutzung — Beitrag zu einer umweltbewussten Energieversorgung für die Zukunff» ergänzt.

Grosse Sonderschau und Vortragstagung zum Thema «Optimale Energienutzung – Beitrag zu einer umweltbewussten Energieversorgung für die Zukunft»

Diese hochaktuellen Veranstaltungen, deren Patronat in verdankenswerter Weise Bundesrat Dr. Leon Schlumpf, Vorsteher des Eidgenössischen Verkehrs- und Energiewirtschaftsdepartementes, übernommen hat, wollen neue Anregungen vermitteln und neue Wege zeigen, wie das Energieproblem anzupacken ist.

Wohl wird in jüngster Zeit in vermehrtem Masse über diese Problematik diskutiert; man ist sich in Fachkreisen aber noch uneinig, wie die Energieversorgung tatsächlich zu gestalten ist, damit sie ausreichend und sicher, volkswirtschaftlich optimal und umweltgerecht wird. Das Energiesparen und die Erdölsubstitution stehen im Vordergrund, aber weitere For-

schungstätigkeiten werden notwendig sein, um der zunehmenden Energieverknappung innert nützlicher Frist ohne grösseren Schaden Herr werden zu können. Die Konzeptbasis der Sonderschau bildet der Bericht der Gesamtenergiekommission (GEK), wonach alle verfügbaren Energien gebraucht werden und woraus sich die Postulate ableiten: Sparen – Forschen – Substituieren – Vorsorgen. Nach Klärung der Frage «Was ist Energie?» – anhand detaillierter Erläuterungen über die bestehenden Ressourcen und den heutigen weltweiten Verbrauch – wird die Notwendigkeit für ein Energiekonzept abgeleitet und werden vorhandene und zukünftige Möglichkeiten einer optimalen Energienut-

zung aufgezeigt.

Der Sonderschau angegliedert ist ein Ausstellungssektor, wo Firmen ihre neuesten Fabrikate, Anlagen, Verfahren und Technologien, aber auch Dienstleistungen zeigen können, die den gestellten Zielsetzungen – zur Erbringung einer bestimmten Leistung weniger Energie zu benötigen oder die Verwendung anderer Energien zu ermöglichen – entsprechen.

Zusammen mit der Vortragstagung, die am Dienstag, 17. Juni 1980, im Kongressraum «Paris» der Schweizer Mustermesse abgehalten wird, kann diese Sonderschau bestimmt wertvolle Impulse für Fachleute aus Industrie und Verwaltung einerseits und aller Verbraucher anderseits vermitteln.

Fachtagungen an der Pro Aqua – Pro Vita Kommunale Abwasserreinigung – heute und in Zukunft

Dr. Hermann E. Vogel, Zürich

Gewässerschutz gehört auch heute noch zu den am dringlichsten zu lösenden Aufgaben der Schweiz. Ein Kernproblem bildet dabei die Abwassersgriggung

1. Abwasserableitung

Die Sammlung der Gemeindeabwässer und deren Zuleitung zur zentralen Reinigungsanlage erfordert kostspielige Abwassersanierungsbauwerke. Die dafür nötigen Kanalisationen sind so zu bemessen, dass sie auch das Regenwasser von Dächern, Strassen und Plätzen abzuleiten vermögen. Wird das bei Tankstellen anfallende Schmutzwasser und das Regenwasser in gemeinsamen Kanalisationsnetzen abgeleitet, muss das Mischwasser vor Einführung in den Vorfluter in dazu geeigneten Regenbecken behandelt werden.

Ein generelles Kanalisationsprojekt, das mit den Bauzonen übereinstimmt oder, wo solche fehlen, nach planerisch einwandfreien Gesichtspunkten das zukünftige Baugebiet abgrenzt, gewährleistet die rationelle Gestaltung des Kanalisationsnetzes.

Streubauweise und oft viel zu gross vorgesehene zukünftige Baugebiete verteuern die Investitionskosten der Kanalisationsanlagen nicht unwesentlich. Die strengen Vorschriften des Gewässerschutzgesetzes für die Erteilung von Bewilligungen für Neu- und Umbauten haben dieser Tatsache

Für den Erfolg der industriellen Abwasserreinigung ist die saubere Abtrennung der verschiedenen Abwasserarten auf mehrere Kanalisationsnetze von entscheidender Bedeutung

Auch bei kommunalen Kanalisationsnetzen ist darauf zu achten, dass sauberes Wasser von Brunnen, Bächen und Drainageleitungen separat abgeführt wird.

2. Abwasserreinigung

Im Durchschnitt kann mit 350 Litern an häuslichem Abwasser pro Einwohner und Tag gerechnet werden. Darin sind etwa 250 g Schmutzstoffe enthalten, wovon je 4 g Phosphor, 7 g NH₄-Stickstoff und 45 g organischer Kohlenstoff. Der Sauerstoffbedarf (BSB₅) für den biologischen Abbau der im Abwasser enthaltenen Substanzen beträgt täglich 75 g pro Einwohner. a) Konventionelle Abwasserreinigung: Mit der mechanisch-biologischen Abwasserreinigung

werden die sauerstoffzehrenden Substanzen zu 90 % abgebaut, so dass die Gewässer nur noch mit 10 % an organisch abbauhgren Stoffen helestet sind

- b) Phosphorelimination: Die Phosphate sind massgebliche Verursacher des starken Algenwachstums in stehenden Gewässern. Namentlich im Einzugsgebiet von Seen müssen deshalb die Reinigungsanlagen mit der sogenannten Dritten Reinigungsstufe ausgerüstet
- c) Weitergehende Reinigung: Zur Erhöhung der Leistungsfähigkeit der konventionellen Kläranlagen und zur Elimination schwer abbaubarer Substanzen sollen in Zukunft zusätzlich verbesserte biologische und/oder physikalisch-chemische Verfahren angewendt werden.

3. Schlammbehandlung

Bei der Abwasserreinigung fallen täglich pro Einwohner 1½ Liter Flüssigschlamm an, der nach geeigneter Vorbehandlung, zum Teil hygienisiert, meist landwirtschaftlich verwertet oder in Stadtgebieten entwässert und deponiert oder verbrannt wird; das letzte namentlich dann, wenn der Schlamm für die Landwirtschaft unerwünschte Industrieanteile enthält

Zu den wichtigsten Aufgaben der Zukunft gehört die Suche nach Verfahren, mittels deren diese Rückstände aus' Ger Abwasserbehandlung hygienisch unbedenklich beseitigt werden können.

Bei der Schlammfaulung werden die organischen Bestandteile des Schlammes unter anaeroben Verhältnissen durch Mikroorganismen zersetzt.

Weit verbreitet ist die thermische Pasteurisierung des Schlammes-In anderen Anlagen wird eine Hygienisierung mittels Gamma- oder Elektronenstrahlen erzielt.

Natürliche Schlammentwässerungzum Beispiel in Trockenbeeten, ist heute infolge mangelnder Lagerliächen nicht mehr befriedigend, hingegen wird die Entwässerbarkeit des Schlammes durch chemische oder thermische Konditionierung verbessert.

In letzter Zeit bietet sich die reine Schlammkompostierung als neues Verfahren besonders für kleinere und mittlere Kläranlagen an.

Trotz hoher Investitionskosten wird die Schlammverbrennung im Hinblick auf die starke Volumenreduk tion in Ballungszentren angewendet

4. Abwasserbewirtschaftung

Am 1. Januar 1979 standen in der Schweiz 763 zentrale Abwasserreinigungsanlagen in Betrieb, 110 Anlagen waren im Bau oder galten als baureif projektiert.

Wiewohl etwa 80 % der Bevölke-

rung in Gemeinden leben, die über eine in Betrieb stehende Kläranlage verfügen, wird infolge unvollständigen Ausbaues der Kanalisationsnetze nur das Abwasser von rund 65 Bevölkerungsprozenten gereinigt.

Inklusive Industrie- und Gewerbeabwässern entspricht die gesamte Abwasserlast etwa 20 Millioner Einwohnergleichwerten.

5. Kosten der Abwasserreinigung

Die Investitionskosten der kommunalen Abwassersanierung belaufen sich auf mehr als 2000 Franken pro Einwohner der Schweiz, wovon über 70 % für den Kanalisationsbau aufzuwenden sind. Umgerechnet ergibt dies für die ganze Schweiz einen Kostenaufwand von rund 13,5 Milliarden Franken für die Zeitspanne einer Generation. Die reinen Betriebskosten von kommunalen Abwasserreinigungsanlagen liegen heute bei etwa 15 Franken pro Einwohner und Jahr.

Aufbereitung von Wässern mit dem Lamellenklärer

Dr. Erhard Schmidt, Permutit Gesellschaft mh.H. Berlin,

Einführung

Lange Zeit setzte man für die Aufbereitung von Oberflächenwasser zu Trink-, Brauch- oder Kühlwas-Ser Längs- oder Rundbecken ein, um die Feststoffe abzuscheiden. Die notwendige Kläroberfläche eines Absetzbeckens ergibt sich aus der zulässigen Oberflächenbelastung, die der durchgesetzten Wassermenge in m³/h pro m² Was-Seroberfläche entspricht. Die Sinkgeschwindigkeit der Partikeln muss grösser sein, als die Auf-Stiegsgeschwindigkeit des Wassers, die mit der Oberflächenbelastung identisch ist. Der Gedanke, die Absetzfläche durch Einbau paralleler Platten zu vergrössern, ist alt, jedoch bereitete die gleichmässige Verteilung des Wassers und die Räumung des Schlammes von den verschiedenen Ebenen lange Zeit grosse Schwierigkeiten. Diese Probleme wurden erst in jüngster Zeit gelöst, so dass heute geeignete Konstruktionen zur Verfügung stehen. Der Bedarf an Grundfläche eines klassischen Beckens beträgt

Aufbau und Konstruktion eines Lamellenklärers

Zwischen zwei Seitenwänden befindet sich ein Paket von parallel
geneigten Platten, das unten in
den Schlammsammler mündet. An
beiden Seiten des Lamellenpaketes liegen die Kanäle für Roh- und

^{unter} Umständen das Zehnfache.

O Rohwasserkanal
Eintritt Rohwasser in Lamellenzelle
Aufwatsstromung des Wassers
zwischen den Lamellen
Ü Überlaufrinne Reinwasser
Reinwasserkanal
O Schlammsammler

Reinwasser. Die Trennfläche zwischen beiden Kanälen ist derart geneigt, dass Rohwassereintritt und Reinwasseraustritt jeweils den grössten Querschnitt aufweisen.
An der Unterseite des Rohwasser-

An der Unterseite des Rohwasserkanals befindet sich ein Längsspalt, durch welchen eventuell sedimentierte schwere Teilchen in den Schlammsammler gelangenkönnen. Das Rohwasser tritt von beiden Seiten aus den Kanälen durch seitliche Öffnungen in den unteren Teil der Lamellenzellen ein, strömt zwischen den Lamellen aufwärts und verlässt diese als Reinwasser durch Überlaufrinnen

Das Lamellenpaket ist derart dimensioniert, dass eine laminare und stabile Strömung vorliegt. Mit

einer einfachen Konstruktion wird zellen als auch über die Lamellen erreicht. Wegen der kontinuierlichen Querschnittsveränderung des Rohwasserkanals und der seitlichen Abführung des geklärten Wassers durch Überlaufrinnen verauf die Lamellenzellen. Die Energievernichtung beim Zusammenten in der Mitte der Lamelle bewirkt eine gleichmässige Verteilung Lamellen. Die Qualität des Reinwassers ist besser als bei herkömmlichen Anlagen trotz einer wesentlich grösseren Oberflächenbelastung. Die Lamellen bestehen aus Kunststoff, Edelstahl oder Blechen mit einer Kunststoffbeschichtung und können nach oben herausgezogen werden.

Einsatz der Lamellenklärer

Der Klärer kann grundsätzlich für alle Sedimentationsvorgänge nach entsprechender Optimierung eingesetzt werden. Hauptanwendungsgebiet ist einerseits die Aufbereitung von Oberflächenwässern mit vorgeschalteter Flockung, andererseits die Entcarbonisierung mit Kalk für Kühlwasserkreisläufe.

Vorteil: Das so behandelte Wasser hat weniger als 5 ppm Schwebstoffgehalt, daher können grosse Kiesfilteranlagen mit hohem Spülwasser- und Spülluftbedarf entfallen. Weitere Anwendung findet sich in der Trinkwassergewinnung aus Oberflächenwässern, hier wird eine Flockung vorgeschaltet. Erfolgreich wurde der Klärer auch für die Aufbereitung stark verschmutzten Wassers aus den Nassentschlackern von Kraftwerbecken setzen sich hier sehr schnell zu. Das Eingangswasser 1500 ppm, das Ausgangswasser nur noch ca. 30 ppm.

So ist es möglich, die Verschmutzung der Wasserläufe, in die das benutzte Wasser zurückgegeben wird, stark zu reduzieren.

Nassoxidation – ein Abwasserreinigungsverfahren

Dr. W. Wiedmann, Ciba-Geigy AG, Basel

Für den Grossteil der organisch verschmutzten Abwässer aus Industrie und Haushalt sind heute Abwasserreinigungsanlagen in Betrieb oder in Planung, deren Kernstück eine biologische Reinigungstufe bildet. Viele Industrieabwässer sind jedoch für die Mikroorganismen einer solchen Anlage toxisch und können daher nicht auf diese Weise gereinigt werden. Sie

werden deshalb oft «verbrannt», das heisst die Abwässer werden in Verbrennungsöfen eingeleitet. Bei den herrschenden Temperaturen von etwa 1000 °C wird die organische Verschmutzung oxidiert. Heteroatome wie Schwefel, Chlor, Phosphor, Natrium befinden sich in der Gasphase und müssen anschliessend mit grossem Aufwand aus dem Verbrennungsgas abge-

trennt werden. Dieser Umstand und der hohe Energiebedarf führen zu grossen Verbrennungskosten, um so mehr als die mit Aerosolen verschmutzten Abgase für eine Wärmerückgewinnung wenig geeignet sind. Eine Alternative zum Verbrennen ist die Nassoxidation, die, wie der Name schon andeutet, eine Oxidation in flüssiger (wässriger) Phase ist. Die mit der Ver-

brennung verbundenen Abluftprobleme stellen sich bei diesem Verfahren nicht

Was ist Nassoxidation? Nassoxidation ist eine Methode zur Oxidation von organischen Substanzen, die im Wasser gelöst sind, unter Anwendung erhöhter Temperatur und erhöhtem Druck. Als Oxidationsmittel wird üblicherweise Luftsauerstoff eingesetzt. Beim

Verfahren wird das Abwasser mit Hilfe einer Hochdruckpumpe und die Luft mit Hilfe eines Kompressors in einen ersten Wärmeaustauund Abgas auf eine günstige Reaktionstemperatur vorgewärmt. Im anschliessenden Reaktor werden die organischen Bestandteile weitgehend oxidiert. Mit der überaustretenden Stromes wird in einer Dampf erzeugt. In den folgenden Austauschern wird der Speisestrom (Vorlauf) vorgewärmt und, falls notwendig, das Abwasser auf Temperaturen unter 100 °C gekühlt. Anschliessend wird das Abwasser/Abgasgemisch in die beiden Phasen aufgetrennt und auf Normaldruck entspannt. Druck und 200 ÷ 300 °C. Die Verweilzeit im Die im Abwasser gelösten organischen Moleküle, die neben dem Kohlen- und Wasserstoff auch Atome wie Phosphor, Schwefel, Stickstoff und Chlor enthalten, ergeben die Verbrennungsprodukte Co₂, H₂O, H₃PO₄, H₂SO₄, NH₃, HCl. Als Nebenprodukte entstehen zum Teil kleine organische Verbindungen (z. B. Essigsäure, Äthansulfonsäure u. a.).

Ein Nachteil des Prozesses ist, dass die Oxidation der Organika des chemischen Sauerstoffbedarfs (CSB) beträgt je nach Art der Verschmutzung 95 ÷ 99 %. Die ent-Bruchstücke sind aber in den meisten Fällen für eine biologische Behandlung geeignet. Der CSB des Rohabwassers, welcher ein 30 g/l und 200 g/l liegen. Ist er tiefer, so benötigt der Prozess Fremdenergie. Ist der CSB zu hoch, so muss das Abwasser verim Rohabwasser gelösten oder die während der Oxidation entstehenden Anorganika im Prozessbereich ihre respektive Löslichkeit nicht überschreiten, da ein ausfallender oder gar verunmöglicht. Fein verteilter Feststoff im Rohabwasser kann dagegen toleriert werden. So ist eine Anlage bekannt, die kaolinhaltiges Abwasser durch Nassoxidation regeneriert. Das Kaolin wird prozess zurückgeführt.

Der Umstand, dass die Abwässer Säuren und Salze enthalten und dass praktisch in jeder Prozessphase auch Sauerstoff gegenwärtig ist, ergibt sehr korrosive Bedingungen. Bei den notwendigen Drücken und Temperaturen sind vielfach nur noch Sondermetalle einsetzbar (z. B. Hastelloy, Titan). Aus Kostengründen werden diese Metalle nur zur Auskleidung benutzt. In der folgenden Tabelle sind einige Kenndaten der Nassoxidation (NO) aufgeführt und zu Vergleichszwecken die entsprechenden Daten einer typischen industriellen ARA auf biologischer Basis.

oxidierten Abwässer und Abgase verzichtet werden. Gegenüber dem Verbrennen bietet die Nassoxidation den Vorteil, dass sie mit einem nahezu stöchiometrischen Luftverhältnis auskommt und keine Stützbrennstoffe braucht. Das Abgas enthält nur Gase und keine partikularen Stoffe. Anorganische Salze befinden sich im Wasser und können, falls nötig, direkt aus diesem gefällt werden.

Menge	m ³ /a	10 ⁴	o ÷	5 . 10 ⁵	10 ⁶	Bio ÷	108
CSB	kg/m ³	30	•	200	2	÷	3
Abbauraten	8	95	÷	99	60	÷	70
Investition	Fr/m³/a	50	<u>.</u>	200	_ ^	8	
Betriebskosten	Fr./m ³	20	•	100	٧	2,5	5
Betriebskosten	Fr/kg CSB	0,7	•	2	2	1,5	5

Hervorstechend ist einmal der Grössenunterschied im Durchsatz und die wesentlich höheren Abbauraten der Nassoxidation. Eher überraschend ist, dass für den gleichen CSB-Abbau ähnliche Kosten entstehen (letzte Zeile). Dabei darf aber nicht übersehen werden, dass die beiden Verfahren Abwässer von sehr unterschiedlicher Qualität (CSB) behandeln.

Wo gelangt die Nassoxidation zum Einsatz? Wie eingangs erwähnt, kann sie die Verbrennung ersetzen. Aber auch bei der Nassoxidation kann in den meisten Fällen nicht auß eine Aufarbeitung der Die Nassoxidation eignet sich in idealer Weise als Ergänzung eines biologischen Reinigungsverfahrens. Einerseits können toxische Substanzen mit Hilfe der Nassoxidation durch partielle Oxidation in nichttoxische Bruchstücke überführt und somit ARA-gängig gemacht werden. Anderseits kann der Überschussschlamm nassoxidiert und damit schadlos beseitigt werden.

Die Nassoxidation wird mit Vorteil angewendet, wenn Stoffe aus de^m Abwasser wiedergewonnen werden können, wie dies beim erwähnten Kaolin der Fall ist.

Thermische Reinigung hochbelasteter Industrieabwässer

Hans L. Kühnlein, Bertrams AG, Basel

Einleitung

Unter dem Begriff Abwasserreinigung versteht man zunächst die Klärung von Abwässern aus dem Bereich Haushaltung und Industrie auf biologischer Basis.

Dieses Verfahren kann jedoch bei biologisch nicht abbaubaren Industrieabwässern, wie sie zum Beispiel bei der Herstellung von Waschmitteln, Pflanzenschutzmitteln usw. auftreten, nicht angewandt werden.

Ein wirksames Verfahren zur Reinigung dieser Abwässer ist die sogenannte Abwasserverbrennung, also ein thermisches Verfahren. Effektiv verbrannt wird dabei natürlich nicht Wasser, sondern die darin enthaltenen Rückstände. Voraussetzung ist allerdings, dass diese Verunreinigungen brennbar

sind. Dies trifft für den grössten Teil der die Gewässer gefährdenden organischen Substanzen zu.

Zusammenarbeit

Die Probleme und Aufgabenstellungen eines solchen Verfahrens sind vielfältig. Deren Lösung erfordert nicht nur technisches und physikalisches Know-how, sondern auch Wissen über komplexe chemische Vorgänge. Deshalb ist ein solches Projekt eine ideale Voraussetzung für eine Zusammenarbeit zwischen der chemischen und der Maschinenindustrie.

So haben sich Ciba-Geigy, die seit Jahren grosse Verbrennungsanlagen für flüssige und feste Abfälle betreibt, und Bertrams – schon sehr lange auf dem Gebiet des Eindampfens korrosiver Flüssigkeiten und im Bau grosser Industrieöfen tätig – gemeinsam an die Lösung dieser Probleme gemacht.

Energieeinsparung

Im Gegensatz zur Verbrennung von Feststoffen, analog dem Vorgang in Müllverbrennungsanlagen, muss das im Abfall enthaltene Wasser für die Verbrennung auf 100 °C erwärmt, verdampft und auf Verbrennungstemperatur gebracht werden. Dies geschieht durch Einspritzen in eine heisse Flamme, die in einem Ofen brennt, Der Energieaufwand für diesen Vorgang wäre hoch, würde man nicht dafür sorgen, dass im flüssigen Medium bei der Verbrennung möglichst wenig Wasser vorhanden ist. Dies wird durch Vorein-

dampfung erzielt. Was zurückbleibt, ist ein Konzentrat, das nuf noch einen Bruchteil der Abwassermenge ausmacht.

So spart man Energie für die Verbrennung. Ausserdem wird erreicht, dass die bei der Verbrennung der Verunreinigungen entstehende Wärme im Verhältnis zur verbleibenden Konzentratmenge viel grösser wird, als wenn man die gesamte Abwassermenge verbrennen würde.

Im günstigsten Fall benötigt man für die Verbrennung des Konzentrates überhaupt keine zusätzliche Energie; es «brennt von selbst». Da Verdampfung selbstverständlich Energie braucht, wird beim Bertrams-Ciba-Geigy-Verfahren dafür Wärme verwendet, die beider Konzentratverbrennung ent-

Steht. Man spricht von interner Wärmenutzung.

Wasserreinigung

Neben dem Konzentrat entstehen bei der Eindampfung Dämpfe, die flüchtige organische Verunreinigungen, wie zum Beispiel Lösungsmittel, enthalten. Diese können nicht einfach abgelassen, sondern müssen auch behandelt werden.

Dafür entwickelte Bertrams das eigene Verfahren der Brüdenoxidation. Wie bei der Verbrennung handelt es sich auch hier um eine thermische Oxidation, jedoch ohne Flamme. Das Besondere liegt darin, dass dafür praktisch keine zusätzliche Energie erforderlich ist. Die notwendige Wärme entsteht durch die Oxidation der vorerwähnten organischen Verunreinigungen!

Durch Kondensation entsteht aus den Dämpfen wieder Wasser. Dieses Wasser ist ausserordentlich rein, praktisch unabhängig davon, wie stark verschmutzt das ursprüngliche Abwasser war.

Anwendung

Ein konkretes Projekt für das Konsortium Bertrams-Ciba-Geigy ergab sich aus dem Bedarf des Schering-Unternehmens in Wolfenbüttel (BRD). Die Anlage wurde im Jahre 1979 erstellt. Sie ist ausgelegt für 6250 kg/h Abwasser. Diese Menge wird durch Voreindampfung auf ein Fünftel verringert und verbrannt. Au der Brüdenoxidation erhält man durch Kondensation 4000 kg/h sehr reines Wasser, und die dabei freiwerdende Wärme verwendet man zur Erzeugung von Kaltwasser mittels dampfbetriebener Absorptions-Kältemaschine. Kombination ist ideal und ergibt eine sehr gute Wirtschaftlichkeit des Verfahrens: Es wird wenig Energie verbraucht und davon noch der grösste Teil wieder zurückgewonnen.

Verbrennungsofen

Kernstück der Anlage ist der Verbrennungsofen. Er stellt gewissermassen eine Synthese des chemischen und technischen Wissens der beiden Partner über die Verbrennung von flüssigen Abfällen dar und vereinigt in sich wesentliche Vorteile: Zum Beispiel bietet er die Möglichkeit der Wärmenutzung. Der Korrosionsangriff wird durch Einhalten einer genau bestimmten Temperatur der gekühlten Stahlrohre, aus welchen er gebaut ist, vermieden. Deshalb braucht die Verbrennungskammer auch keine teure, störanfällige begrenzter Ausmauerung mit Standzeit. Dies wiederum bewirkt, dass oft und schnell an- bzw. abgefahren werden kann. Der Aufbau ist einfach und bietet den entstehenden Verbrennungsrückständen wenig Möglichkeit zur Bildung von Ablagerungen. Eine besondere keramische Beschichtung in bestimmten Zonen ermöglicht den einwandfreien Ausbrand der Flamme, das heisst die vollständige Vernichtung von Schadstoffen.

Das erwähnte Einhalten der Ofenwandtemperatur ist, im Gegensatz zu herkömmlichen Öfen, durch den Betrieb mit einem organischen Wärmeträgeröl möglich. Weil die stählernen Ofenwände gegenüber einem gemauerten Ofen verhältnismässig kühl bleiben, nennen wir ihn Kaltwandofen.

Die gekühlten Wände ermöglichen eine weitgehende Abkühlung der Rauchgase. Das vergrössert zwar den Ofen an sich, bringt aber wesentliche Vorteile für die nachgeschaltete Rauchgaswaschanlage mit sich. Diese wird wesentlich kleiner,und ein problematischer Kühlturm erübrigt sich.

Rauchgasreinigung

Durch die Verbrennung von organischen Schadstoffen können in den Rauchgasen unerwünschte Komponenten enstehen. Eine von Ciba-Geigy enwickelte, äusserst wirksame Rauchgaswaschanlage zur vollständigen Reinigung dieser Anlagen gehört daher ebenfalls zum beschriebenen Verfahren.

Labor- und Pilotversuche

Da jedes Abwasserproblem besondere Anforderungen stellt, ist es zweckmässig, vor der Planung einer Anlage im Labor- und Pilotversuch genügend Informationen zu sammeln, um unliebsame Überraschungen mit einer fertigen Anlage zu vermeiden.

Schliesslich sei noch erwähnt, dass, je nach Anforderungen, auch einzelne der beschriebenen Verfahrensstufen für sich allein angewendet werden können, zum Beispiel ein Verdampfer mit oder ohne Brüdenoxidation oder ein Verbrennungsofen mit oder ohne Rauchgaswaschanlage.

Zusammenfassung

Das beschriebene Abwasserreinigungsverfahren besteht aus:

- Voreindampfung
- Brüdenoxidation
- Verbrennungsofen und
- Rauchgaswaschanlage

Seine Vorteile sind:

- geringstmöglicher Energieverbrauch
- weitgehende Rückgewinnung der aufgewandten Wärmeenergie
- Wiedergewinnung von sehr reinem Wasser
- hohe Standzeit

Adsorptionsverfahren in der Abwasserreinigung

Dr. M. Thüer, Ökologie-Technik, Ciba-Geigy AG, Basel

Adsorptionsverfahren finden in der Wasseraufbereitungs- und Abwassertechnik vermehrt Interesse, insbesondere wenn es um die Rückhaltung biologisch schwer abbaubarer sowie toxikologisch bedenklicher Stoffe geht, wie sie seit einiger Zeit in schwarzen, grauen und andersfarbigen Listen zusammengestellt sind.

Die technische Anwendung im grossen Massstab ist aber zurzeit noch vorwiegend der Aufbereitung von Wasser zu Trinkwasserzwekken vorbehalten, während auf der Abwasserseite der Schritt von der Versuchs- zur Grossanlage nur in seltenen Fällen unternommen wird. Dies mag aus verschiedenen Gründen der Fall sein:

Der Nutzeffekt beim Trinkwasser ist viel direkter erkennbar als beim Abwasser, das üblicherweise der Natur zur «Weiterbehandlung» überlassen werden kann.

Die durch Adsorption zu eliminierenden Stoffe sind im Trinkwasser in relativ geringen Konzentrationen vorhanden, so dass das relativ teure Adsorptionsmittel – meist Aktivkohle – weniger häufig ersetzt werden muss. Im Abwasser liegen die Verhältnisse vielfach noch insofern ungünstig, als auch harmlose Stoffe, die nicht unbedingt entfernt werden müssten, adsorbiert werden und damit Kohleverbrauch und Kosten erhöhen.

Das hauptsächlich verwendete Adsorptionsmittel ist nach wie vor Aktivkohle. Sie erfasst ein sehr breites Spektrum von Stoffen und ist damit relativ universell anwendbar. Neben dem bisherigen Einsatz als reines Adsorptionsmittel findet die Kombination von Aktivkohle mit biologischen Prozessen vermehrtes Interesse. Es hat sich nämlich gezeigt, dass mikrobiologische Abbauprozesse, wie sie von biologischen Kläranlagen her bekannt sind, auch in den Poren der Aktivkohle stattfinden. Dies führt zu einer Erhöhung der Adsorptionskapazität der Kohlen, indem adsorbierte abbaubare Stoffe biologisch eliminiert werden, wobei auf der Kohle wieder Platz frei wird für nicht abbaubare. Es scheint sogar,

dass Stoffe, die in einer biologischen Kläranlage nicht abgebaut werden, in Anwesenheit von Aktivkohle echt biologisch abgebaut werden. Dieser Effekt wird genutzt, indem man in biologische Kläranlagen Aktivkohlepulver dosiert, was zu höheren Abbaugraden, allerdings auch zu gesteigerten Kosten führt

In vielen Fällen sind die Kosten einer Aktivkohlebehandlung weitgehend durch die Kosten für den Ersatz der verbrauchten Kohle bedingt. Man trachtet somit danach, diese zu regenerieren, was prinzipiell in Öfen mit Temperaturen zwischen 600 und 800 °C möglich ist. Technisch ist dieser Prozess aber ausserordentlich anspruchsvoll, energieintensiv und nur für sehr grosse Tonnagen wirtschaftlich.

So scheitert denn die Anwendung von Aktivkohle für die Abwasserreinigung vielfach am Problem der Regenerierung, da zu wenig verbrauchte Kohle anfällt für eine eigene Regenerierungsanlage, eine Regenerierung durch Dritte jedoch wegen der hohen Transportkosten (in Europa gibt es nur einige weni-

ge Regenerationsanlagen) sehr teuer wird.

Für spezielle Anwendungen, insbesondere für einseitig belastete Industrieabwässer, sowie für die Trinkwasseraufbereitung Flusswasser können als alternative Adsorptionsmittel Aluminiumoxid oder synthetische Adsorptionsharze in Frage kommen. Insbesondere die Harze (äusserlich vergleichbar mit Ionenaustauscherharzen) sind in der Regel selektiver als Aktivkohle. Sie weisen zwar eine geringere Adsorptionskapazität auf als Kohle, sind aber einfacher zu regenerieren, und oft können sowohl die aus dem Abwasser entnommenen Stoffe wie die Regenerierchemikalien zurückgewonnen werden, was im Sinne des Recycling von Wertstoffen zusätzliche Möglichkeiten eröffnet.

Für die nähere Zukunft ist anzunehmen, dass Adsorptionsverfahren bei Abwasser weiterhin auf Spezialfälle beschränkt bleiben werden und Grosskläranlagen mit Adsorptionsstufe eher als Ausnahmen zu betrachten sind.

Die Vielfalt der heute angebotenen biologischen Abwasserreinigungsverfahren zeigt einerseits die Wichtigkeit, die dieser Reinigungsstufe zukommt, und demonstriert anderseits die Notwendigkeit, eine Vielzahl von Verfahrensvarianten zur Verfügung zu haben, aus denen die optimalste für die zu lösenden Abwasserprobleme ausgewählt werden kann. Die in den letzten Jahren verfolgten Haupttendenzen der Entwicklung verbesserter Prozessführung der biologischen Stufe sind im folgenden anhand der wichtigsten neueren oder verbesserten alten Verfahren kurz zusammengefasst.

Begasung mit angereichertem Sauerstoff

Das vor allem in den USA durch die Union Carbide als Unox-Verfahren eingeführte System, das heute auch in Europa vermehrt zur Anwendung gelangt (als neue Anlage sei zum Beispiel die ARA Birs II in Birsfelden BL genannt), eignet sich bevorzugt für kommunale und hochbelastete, aber leicht abbaubare Abwässer. Der Einsatz von angereichertem Sauerstoff in der Biologie reduziert die zur Versorgung der Mikroorganismen benötigte Gasmenge drastisch, was zu einer entsprechenden Reduktion der von der Belüftung benötigten Energieaufwand für die Herstellung des Sauerstoffs nicht ausser Acht gelassen werden

Die vollständige Abdeckung der Belüftung gestaltet den geruchsfreien Betrieb besonders bei stinkenden Abwässern problemlos.

Geschlossene Luftbiologie

Vermehrt müssen speziell Industriekläranlagen wegen unzumutbaren Geruchsbelästigungen der Umgebung saniert oder entsprechend neu gebaut werden, vor allem, wenn sie sich in der Nähe von Wohngebieten befinden. Falls eine geschlossene Sauerstoffbiologie zum Beispiel aufgrund des dazu ungeeigneten Abwassers nicht eingesetzt werden kann, bietet sich die geschlossene (abgedeckte) Luftbiologie, ausgerüstet be-

Moderne Verfahren der biologischen Abwasserreinigung

Dr. H. Pfenninger, Ökologie-Technik, Ciba-Geigy AG, Basel

vorzugt mit Druckbelüftung, kombiniert mit einer Abgasreinigung als Alternativlösung an. Ein Beispiel einer derartigen Verfahrensführung ist die sich zurzeit im Baubefindliche ARA Ciba-Geigy/Roche in Basel.

Deep-Shaft-System der ICI

Parallel zum Einsatz von angereichertem Sauerstoff zur Verbesserung der Sauerstoffausbeute in der Biologie sind Bestrebungen im Gang, den Luftsauerstoff direkt effizienter zu nutzen. Dies kann durch Erhöhen des Sauerstoffpartialdruckes im Biologiesystem erreicht werden. Ein Beispiel einer entsprechenden Prozessführung ist der Deep-shaft der ICI, der aus einem bis zu 300 m tiefen, doppelwandigen, belüfteten Schacht besteht, durch den das Abwasser/Schlamm-Gemisch zirkuliert. Die Druckerhöhung durch die hohe Wassersäule zieht eine im Vergleich zur konventionellen Belebtschlammbiologie wesentlich höhere Sauerstoffnutzung nach sich.

Hochbiologien

In gleicher, wenn auch weniger extremer Richtung laufen die Entwicklungen von Hochbiologien, zum Beispiel der Turmbiologie von Bayer oder des Bio-Hochreaktors von Hoechst, die bei konventionellen Biologien um die 10 % liegt, von 60 % und mehr erreichen. Die grosse Tiefe der Reaktoren bringt den Vorteil eines kleineren Flächenbedarfes, was wiederum die Abdeckung und die Beherrschung von Abluftproblemen einfacher gestaltet. Anderseits müssen diese Vorteile mit einer recht aufwendigen Konstruktion erkauft werden.

Biologien mit Schlammstabilisationsstufen

Auf eine erhöhte Leistungsfähigkeit bezüglich Schmutzstoffelimination zielen Verfahren, die gleichzeitig als Schlammspeicher ausgebaute Schlammstabilisationsstufen in ihre Belebtschlammsysteme miteinbeziehen. Eine solche, zum Beispiel von Sulzer angebotene Verfahrensführung ist bevorzugt bei Abwässern angezeigt, die hohe Festsoffanteile enthalten (z. B. Abwässer aus Papierfabriken). Der Schlammspeicher erlaubt ferner, Belastungsstösse durch eine kurzfristige Erhöhung des Schlammgehaltes im Belüftungsbecken abzufangen. Bedingung für das einwandfreie Funktionieren dieses Prinzips ist ein entsprechend zuverlässiges Mess- und Regelsystem für die entscheidenden Parameter.

Adsorptions-Belebungsverfahren (A/B-Verfahren)

Ahnlich dem Attisholz-System präsentiert sich das von B. Böhnke vorgeschlagene, ebenfalls zweistufig ausgelegte A/B-Verfahren. Dabei wird die als Adsorptionsstufe gedachte 1. Stufe sehr hoch belastet und praktisch im fakultativ anaeroben Bereich gefahren, gefolgt von einer normal belasteten, echt aeroben 2. Stufe. Die Folgen sind hohe Abbauleistungen bei gleichzeitig hoher Prozessstabilität, wie neuere Untersuchungen auf der Kläranlage Kreuztal (BRD) zeigen.

Trägerbiologien

Die triviale Tatsache, dass sich die auf eine Volumeneinheit bezogene Abbauleistung einer reinen Belebtschlammanlage direkt proportional dem Schlammgehalt verhält, lässt sich aus wohlbekannten verfahrenstechnischen Gründen in der Praxis nur bis zu den noch relativ geringen Schlammkonzentrationen von etwa 5 g/l ausnutzen. Eine Verbesserung dieser Verhältnisse bringt der Schritt zur Trägerbiologie.

So arbeitet zum Beispiel das PACT-System der Du Pont mit einer Zugabe von Pulveraktivkohle zum Belebungsbecken einer Belebtschlammanlage. Zu dem von der Kohle zu erwartenden Adsorptionseffekt gesellt sich die Trägerfunktion der sich mit biologischem Material bewachsenden Kohleteilchen. Die Schlammabsetzeigenschaften verbessern sich derart, dass mit wesentlich höheren Feststoffkonzentrationen (bis 20 g/l und mehr) gefahren werden kann, was zu einer Reduktion des Bauvolumens des Belüftungsbeckens führt

Der Schritt zur reinen Trägerbiologie wurde zum Beispiel beim Ecolotrol-System (Ecolotrol Inc.), beim Oxitron-System (Dorr Oliver Comp.) und beim Biosorb-Verfahren (Techfina) verwirklicht, wobei Sand oder granulierte Aktivkohle als Träger der Biomasse und teilweise Sauerstoff als Belüftungsgas eingesetzt werden. Feststoffkonzentrationen bis zu 20 g/l und mehr sind auch mit diesen Verfahren erreichbar.

Berechtigt ist es sicher auch, das Katox-Fällungsverfahren in die Kategorie der Trägerbiologien einzureihen. Ohne biologischen Bewuchs der eingesetzten Katalysatormasse dürfte dieser Prozess kaum optimal funktionieren.

Verschiedene Verfahren

Erwähnenswert sind noch folgende Verfahren, die zumeist altbekannte, aber durch neuere Entwicklungen und Erkenntnisse verbesserte Prozesse darstellen.

So werden die Tropfkörperbiologien heute bevorzugt bei hochbelasteten, leicht abbaubaren Abwässern als Vorreinigungsstufe, zum Beispiel zu Belebtschlammanlagen, eingesetzt. Als Beispiel eines derartig konzipierten Systems gilt die Kläranlage der Hoffmann-La Roche in Sisseln AG.

Tauchtropfkörper zeichnen sich durch ihren günstigen Energieverbrauch und geringen Wartungsbedarf aus und eignen sich besonders für kleinere kommunale Anlagen. Bei richtiger Dimensionierung und Verfahrensführung sind sie auch in der Lage, Stossbelastungen zu verkraften.

Ebenfalls für kleinere Kommunalanlagen (mit schwankenden Belastungen) bieten sich Biologien andie nach dem Batch-System arbeiten, wobei Belüftungs- und Nachklärbecken identisch sind. Der Belüftungszyklus wechselt periodisch mit dem Schlammabsetzvorgang ab.

Der Einsatz von Pflanzen (z.B. Wasserhyazinthen) zur Absasserreinigung zum Beispiel in Teichen beschränkt sich eher auf Länder ausserhalb Europas, die über grössere Landreserven verfügen, zeigt aber bei geeigneten Verhältnissen interessante Anwendungsmöglichkeiten

Als Abschluss dieser kurzen Zusammenfassung soll die auch wohl bekannte Methangärung erwähnt werden, die nicht nur zur anaero ben Schlammfaulung, sondern auch zur Entsorgung sehr hoch belasteter, aber leicht abbaubarer Abwässer (z. B. aus Zucker- odel Hefefabriken) eingesetzt wurde heute aber vermehrt als Vorbe handlung zur Teilreinigung solche Abwasserströme benutzt wird. Die anaeroben Prozesse laufen dabe nicht bis zum maximal möglicher Abbaugrad ab, können dafür abe innerhalb eines wesentlich kürze ren Zeitraumes wirtschaftlich interessant genutzt werden. Als not wendige Folgestufe eignet sich zum Beispiel eine aerobe Belebt schlammbiologie.

Wohin zielt die internationale Gewässerschutzgesetzgebung im Rheineinzugsgebiet?

E. Müller, Sektionschef Bundesamt für Umweltschutz, Bern

Noch vor 50 Jahren verursachte die Belastung der Gewässer mit Schadstoffen aus unserer Zivilisation höchstens lokale Probleme. Diese Situation hat sich in den letzten 30 bis 40 Jahren grundlegend geändert. Gewässerverunfeinigungen bilden heute nicht nur ein nationales, sondern ein internationales, zum Teil sogar globales Problem

Folgerichtig befassen sich heute auch zahlreiche internationale Organisationen und Kommissionen mit Fragen des Gewässerschut-Zes. Die Bemühungen der Staaten m Einzugsgebiet des Rheins, die Sich zum Schutz dieser wichtigen Lebensader Europas in einer internationalen Kommission zusammengeschlossen haben, sind weit über die Grenzen unseres Landes hinaus bekannt. Dabei darf nicht vergessen werden, dass einzelne Rheinanliegerstaaten bereits vor der Jahrhundertwende ein ent-^{Sprechendes} Übereinkommen abgeschlossen haben. Im Vordergrund stand damals die fischereiliche Nutzung des Rheinstromes. Leider kommt der Lachs - dem diese Schutzmassnahmen galten heute im Rhein nicht mehr vor.

Die eigentliche Konstituierung einer internationalen Kommission erfolgte am 29. April 1963 mit dem Abschluss der «Vereinbarung über Internationale Kommission zum Schutze des Rheins gegen Verunreinigung». Für die Schweiz ^{tr}at die Vereinbarung am 1. Mai 1965 in Kraft. Aktiv gearbeitet hat die Kommission jedoch bereits seit 1950. Die Rheinschut2kommission ^{hat} unter anderem die Aufgabe, die ^{hotwendigen} Untersuchungen vor-Zubereiten und durchführen zu las-^{Sen,} um Art, Ausmass und Ursprung der Verunreinigung des Rheins zu ermitteln. Sie wertet die Untersuchungsergebnisse und bereitet besondere Abma-^{chun}gen zwischen den Vertrags-Parteien vor. In Sorge um die damals noch ständig zunehmende Verunreinigung des Rheins wurden Ende der sechziger und vor allem anfangs der siebziger Jahre die konkreten Vorarbeiten für ver-Schiedene, zwischen den Rheinanliegerstaaten abzuschliessende Staatsverträge durchgeführt. Vorrang hatten die Probleme der Belastung des Rheins mit Chloriden und chemischen Stoffen sowie die thermische Belastung. Um dem Schutz des Rheins eine noch grös-Sere Bedeutung beizumessen, Wurden verschiedene Konferenzen auf Ministerebene durchgeführt.

Da sich auch die Europäische Wirtschaftsgemeinschaft EG intensiv mit Gewässerschutzfragen befasste und entsprechende Richtlinien vorbereitete, gingen bestimmte Kompetenzen im Bereich des Gewässerschutzes von den Mitgliedstaaten der Rheinschutzkommission an die Gemeinschaft über. Damit drängte sich in diesen Bereichen eine enge Zusammenarbeit zwischen der Rheinschutzkommission und der Europäischen Wirtschaftsgemeinschaft auf. Mit einer Zusatzvereinbarung wurde deshalb beschlossen, die Europäische Wirtschaftsgemeinschaft als Mitglied in die Rheinschutzkommission aufzunehmen.

Mit dem am 3. Dezember 1976 unterzeichneten und auf den 1. Februar 1979 in Kraft getretenen des Rheins gegen chemische Verunreinigung» wurde ein erstes internationales Instrument geschaffen, das die Anliegerstaaten verpflichtet, Massnahmen zu treffen, um eine bessere - und zum Beispiel für die Trinkwassernutzung genügende - Wasserqualität zu erreichen. Die Vertragsparteien kamen überein, nicht nur die Qualität des Rheinwassers entscheidend den einzelnen Anliegerstaaten bei den verschiedenen Industrien zu treffenden Massnahmen im Hinblick auf eine wirtschaftliche Gleichstellung zu vereinheitlichen. ze des Rheins gegen chemische Verunreinigung» stellt an sich eine Rahmenvereinbarung dar, die noch der Konkretisierung in technischer Hinsicht bedarf. Aufgabe der Rheinschutzkommission ist es. die entsprechenden Konkretisierungen vorzunehmen. Dies geschieht durch die Auswahl bestimmter prioritärer Stoffe, die dem Rhein etappenweise ferngehalten werden sollen. Eine erste Konkretisierung erfolgte mit der Ausarbeitung von Grenzwerten und Fristen für die Ableitung von quecksilberhaltigem Abwasser aus Alkalichloridelektrolyse-Betrieben. Es wird angestrebt, die Ableitungen des gefährlichen Quecksilbers aus den verschiedenen Branchen zu verringern und die Kontrolle durch die nationalen Behörden sicherzustellen. Zurzeit sind die Arbeiten für die Auswahl weiterer prioritärer Stoffe sowie für das Festlegen von Grenzwerten und von Fristen in vollem Gang. Das gesteckte Ziel, die heute noch in den Rheih eingeleiteten gefährlichen Stoffe zu verringern, kann so schrittweise erreicht werden.

Ein seit vielen Jahren hängiges Problem ist die Belastung des Rheins mit Chloriden. Bekanntlich gelangen neben kleinen Chlorideinleitungen grosse Chloridmengen aus den elsässischen Kaligruben und aus dem deutschen Berg-Jahren sind Bestrebungen im Gang, diese Salzbelastung zu verringern. Mit dem Übereinkommen vom 3. Dezember 1976 wollten die Rheinanliegerstaaten das Ziel, die in den elsässischen Kaligruben anfallenden Salze nicht mehr in den das schrittweise Realisieren technischer Massnahmen anderweitig schadlos zu beseitigen, erreichen. Alle Vertragsparteien haben sich bereit erklärt, diese Lösung finanziell mitzutragen. Leider stiess sie bei der betroffenen Bevölkerung weshalb Frankreich das Übereinkommen vom 3. Dezember 1976 dem Parlament nicht zur Ratifizierung vorlegte. Die Zielsetzung der Rheinschutzkommission, mit einem entsprechenden Staatsvertrag die Verminderung der Salzeinleitungen herbeizuführen, ist damit noch nicht erreicht. Nach wie vor ist es jedoch das Bestreben aller Rheinanliegerstaaten sowie Frankreichs im besonderen, das Übereinkommen zur Verminderung der Salzeinleitungen in den Rhein zu verwirklichen. Ob es gelingt, das die Rheinschutzkommission bereits historisch belastende Problem innert nützlicher Frist zu lösen, wird die Zukunft zeigen.

Mit dem Bau, dem Betrieb und namentlich der Planung thermischer Kraftwerke am Rhein und in seinem Einzugsgebiet wuchs auch die Sorge um die starke thermische Belastung. Ausgehend von Ministerbeschlüssen aus dem Jahr 1972, wonach alle zukünftigen Kraftwerke über geschlossene Kühlsysteme oder gleichwertige Systeme verfügen sollten, befasste sich die Rheinschutzkommission mit dem vielschichtigen Problem der thermischen Belastung. Mit Hilfe mathematischer Modelle wird versucht, die technischen Grundlagen für ein internationales Übereinkommen über die thermische Belastung des Rheins zu er-

Zweck einer entsprechenden Gesetzgebung sollte sein, die Wärmeableitung aus thermischen Kraftwerken so weit einzuschränken, dass der Rhein nirgends über das zulässige Mass hinaus erwärmt wird. Nachdem sich sowohl die Planung als auch der Bau von thermischen Kraftwerken am Rhein nicht in dem noch vor wenigen Jahren erwarteten Mass entwickelt haben, erfordern heute die entsprechenden Arbeiten nicht mehr höchste Priorität. Die Rheinschutzkommission strebt indessen an, im Rheineinzugsgebiet vorderhand keine Gegebenheiten zu schaffen, die ein künftiges Übereinkommen in Frage stellen würden.

Bekanntlich hängt die Wirksamkeit internationaler Gesetzgebungen zum Schutz der Gewässer gegen Verunreinigung in entscheidendem Mass vom Willen der einzelnen Staaten ab, die eigenen Probleme zügig zu lösen und auf nationaler Ebene über die entsprechenden Instrumente zu verfügen. Dies gilt auch für die Rheinanliegerstaaten. Die internationale Ge-Rheineinzugsgebiet in Form von speziellen Übereinkommen zielt schutzprobleme zeitlich besser Neben den rein ökologischen Gesichtspunkten sind dabei auch die wirtschaftlichen Aspekte miteinzubeziehen. Endzweck aller Bemühungen und aller staatsvertragli-Qualität des Rheinwassers so zu verbessern und zu erhalten, dass der Rhein als Lebensader Westeuropas wieder uneingeschränkt zu Trinkwasser aufbereitet werden kann, dass er den Namen eines Fischereigewässers wieder ver-Hinsicht demjenigen des sauberen Flusses wieder entspricht.

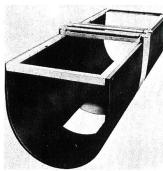
PRO AQUA — PRO VITA 80

Reka-Kupplung

Die Eternit AG kann im Sektor Wasserbau mit mehreren Neuheiten aufwarten. Fine willkommene Neuerung im Druckrohrsystem Eternit dürfte wohl die Reka-Kupplung sein, die mit ihrer Mehrlippendichtung entscheidend zur Vervollkommnung der Betriebssicherheit beitragen wird. Weitere Neuerungen: Gussformstücke mit Flansch sind in Zukunft auch in Duktilguss und die Druckrohrkupplung mit Gewinde auch mit Messingnippel erhältlich; T-Stück mit Flansch und Endstopfen aus Guss können künftig mit der Druckrohrkupplung eingebaut werden, wobei der nachträgliche Einbau des T-Stükkes mit den Gibault-Einbaukupplungen möglich ist; einige Formstücke können fortan auch in Chromnickelstahl geliefert werden; das gesamte Sortiment wurde bereinigt und bisherige Lücken ausgefüllt.

«Vom Hausablauf zur Kläranlage»

könnte das Motto im Abwassersektor des Standes heissen. Der abwasserseitige Teil des Wasserkreislaufes ist in der gewählten Darstellung auch gut erkennbar: Hausentwässerung, Grundstückentwässerung und Kanalisation bis zur Abwasserreinigungsanlage mit AZ-Rohren Eternit. Dazwischen sind Spezialbauwerke eingebaut, die sich alle ohne Fremdmaterialien aus absolut dichten und korrosionsfesten Produkten Eternit vorfabrizieren lassen: Kontrollschächte, Regenrückhaltebecken und als Neuheit die Wirbeldrossel. Ein Grossrohr Eternit, das in Durchmessern bis 2500 mm erhältlich ist, demonstriert im weiteren seine Eignung zum Bau von Reservoirs, Brunnenstuben und Ölabschei-


Eternit AG. 8867 Niederurnen Halle 24. Stand 441

Fertigsysteme im Kunststoffrohrleitungsbau

Die Abteilung Kunststoffe innerhalb der Hans Fehr AG, Fördertechnik-Kranbau, befasst sich mit der Herstellung und der Montage von Fertigsystemen im Kunststoffrohrleitungsbau für Industrie, Gas, Hoch- und Tiefbau sowie mit dem Handel von Rohren und Formstükken aus Kunststoff.

Ausstellungsprogramm

- Rohrpalette aus H-PE von 20-1200 mm Durchmesser
- PP-Rohre und Elemente für spezielle Einsatzbedingungen, zum Beispiel Fussbodenheizleitungen
- gelbes Gasrohrprogramm aus Hart-Polyäthylen
- Produkte für Brückenoberfläund Belagsentwässerungen

Leaping-Weir für Hochwasserentlastung

Aus dem Formstückbau

- Einlaufschacht aus H-PE für Sammlung von Meteor- oder Abwasserleitungen
- Leaping-Weir, Formstück für Hochwasserentlastung
- Formstück für das Relining-Verfahren, das heisst technischund kostengünstige Sanierung von undichten Gas-, Abwasserund Trinkwasserleitungen
- Rohrbefestigungen und Aufhängungen
- Kunststoffrohrverbindungen, Flansche, Steck-Spiegel-Schweissmuffen. schweissverbindungen

Hans Fehr AG, 8305 Dietlikon Halle 24, Stand 331

Kanalschacht

Programm der Alfa-Ingenieurbureau AG

Schwerpunkte

Schlammentwässerungsanlagen, Schnelldekanter (Dekantierzentrifugen), Bandpressfilter, Rotationsbegaser und Tauchbelüfter für die Abwasserbelüftung, konventionelle und Rauchgas-Neutralisationsanlagen, Flockungsmittelaufbereitungsanlagen, Sandseparatoren, Vibrationssiebmaschinen. Elektrorührwerke, Fass- und Behälterpumpen, Edelstahl-, Freistrom-, Kreisel- und Kapselpumpen, Industriearmaturen

Flottweg-Schnelldekanter und Bandpressfilter

werden seit Jahren im Kommunalbereich sowie auch in der Industrie mit Erfolg eingesetzt. Am Messestand ist ein Flottweg-Schnelldekanter Typ Z23-3/401 in «Plexiglasausführung» zu sehen. Dieses Modell zeigt das Entwässerungsprinzip sowie den Aufbau der Produktionsmaschinen.

Wo werden Flottweg-Schnelldekanter als 2- und 3-Phasen-Trennmaschinen sowie auch Bandpressfilter eingesetzt?

Zur kontinuierlichen Trennung und Eindickung von Abwasserschlämmen, Entfernung von Verunreinigungen aus Altöl und Raffinerieschlämmen, Eindickung der Gülle Landwirtschaftsbetrieben. aus Trennung des Schlamm-Wasser-Gemisches aus Nassentstaubungsanlagen, Eindickung von Neutralisationsschlämmen. wässerung der Abwässer aus der Papierindustrie, um nur einige Beispiele zu nennen

Einzelmaschinen für Leistungen bis zu 50 m³/h aus Normalstahl, rostfrei und in Sondermaterialien werden angeboten.

Hersteller: Flottweg-Werk, Vilsbiburg/BRD

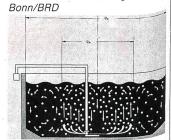
Alfa-Anlagentechnik

Alfa plant und erstellt komplette Anlagen für die Abwassertechnik, so zum Beispiel für die Schlammbehandlung, wobei selbstverständlich Flottweg-Schnelldekanter und Bandpressen den Schwerpunkt der Anlagen bilden. Im weiteren konventionelle und Rauchgas-Neutralisationsanlagen, Anlagen für die Abwasserbelüftung (Biologie), Schlammstabilisierung und -hygienisierung.

Stelzer-Rotationsbegaser System Rotabega

wurden als Neuentwicklung auf der letzten Pro Aqua - Pro Vita 1977 vorgestellt. In der Zwischenzeit

wurde der Rotationsbegaser technisch verbessert. Das Einsatzgebiet erstreckt sich von der Abwasserbelüftung, der Schlammstabilisierung und -hygienisierung über die Rauchgasneutralisation bis zur Fischteichbelüftung. So wird zum Beispiel am Messestand in einem Plexiglasbehälter ein Rotationsbegasungsgerät gezeigt, welches zur Sauerstoffversorgung der eingesetzten Forellen Verwendung findet. Rotationsbegaser in Sonderausführung werden für die Eintragung von Gasen in Reaktionstanks wie zum Beispiel CO2 oder Ozon angeboten.


Stelzer-Rührtechnik, Hersteller: Warburg/BRD

Frings-Tauchbelüfter

für die Belüftung von Wasser und Abwasser. In einem grössren Wasserbecken ist ein Frings-Tauchbelüfter installiert, um die Lufteintragsmöglichkeiten zu demonstrieren. Gute Durchmischung des Beckeninhaltes und wirksamer Sauerstoffeintrag sind Standardber dingungen für Belüftungssysteme in Abwasseranlagen. Mehr als 1000 bis heute weltweit eingesetzte Tauchbelüfter haben sich bewährt und die Wirksamkeit bestätiat.

Sie arbeiten in Flüssen, Lagunen, Belebtschlammbecken, in der Schlammstabilisierung und in Ozonisierungsanlagen.

Der Frings-Tauchbelüfter ist eine Kombination eines Tauchmotors und eines selbstansaugenden Rührers. 7 Baugrössen mit Moto ren von 2-55 kW werden gefertigt. In niedrigen Becken und Tanks bis ca. 4 m Wassertiefe werden die Geräte ohne Gebläse betrieben. Hersteller: Heinrich Frings GmbH,

Stelzer-Rührtechnik

Die Firma Stelzer-Rührtechnik hat sich seit Jahren auf die Fertigung von Rühr- und Mischsystemen für die chemische, pharmazeutische und Nahrungsmittelindustrie sowie auch für die Wasseraufbereitung und Abwasserbehandlung spezialisiert. Rührwerke mit einer Antriebsleistung von 0,02–100 kW

Neues von der

PRO AQUA – PRO VITA 80

^können geliefert werden. Auf dem Gebiet der Wasseraufbereitung Werden unter anderem auch Spezialrührwerke für die CO2-Eintragung angeboten. Für die rührtechnische Behandlung von Abwäs-Sern sind schnell- und langsamlaufende Rührwerke für Schlammsta-Pel-, Puffer- und Neutralisationsbecken im Lieferprogramm. Ebenso Rührwerke für Flockungsmittel- und Kalkmilchaufbereitung. Hersteller: Erwin Stelzer, Rührtechnik, Warburg/BRD

Sweco-Vibrationssiebmaschinen

für die Trockenfraktionierung sowie die Fest-Flüssig-Trennung
Werden in den verschiedensten Industriezweigen eingesetzt. Die am
Messestand gezeigte Siebmaschine Scalper ist zur Trennung der
Abwassermaische in einem Distilleriebetrieb bestimmt. Kombinierte
Anlagen mit Zyklonbatterien für die
Grobstoffabscheidung (Sandsepalation) können angeboten werden.
Hersteller: Sweco-Europe SA, NiVelles/Belgien

Lutz, elektrische Fass- und Behälterpumpen

für Säuren, Laugen und dickflüssige Medien. Verschiedene Baugrössen, dichtungslose Pumpwerke, Motoren auch in ex-geschützter Ausführung, SEV-geprüft. Hersteller: Karl Lutz, Wertheim/

Fristam-Pumpen

aus rostfreiem Stahl. Normalan-Saugende und selbstansaugende Kreiselpumpen, Freistrompumpen und Kapselpumpen für die Förderung aggressiver Medien werden mit Erfolg auf dem Gebiet der Abwasser- und Wasseraufbereitung eingesetzt.

Beispiele aus der Praxis: Förderung von leicht verschmutztem Abwasser, speziell mit schwankendem pH-Wert zwischen sauer und alkalisch.

Freistrompumpen zur Förderung von Gülle

Kreiselpumpen als Umwälzpumpen zur Förderung von Eisen-Il-Chlorid, Fluss- bzw. Trinkwasser

Hersteller: F. Stamp KG, Hamburg/

Alfa-Industriearmaturen

Das Industriearmaturenprogramm umfasst eine komplette Reihe von modernen Absperrorganen für alle industriellen Anwendungen im Nennweitenbereich von 10 bis 1200 mm. Einsatzgebiete: Chemie, Kraftwerke, Gas- und Wasserwerke, Abwasseranlagen, Nahrungsmittel- und Getränkeindustrie, Energieanlagen, Papierindustrie.

Hersteller: Keystone Valve, Breda/ Holland; Absperr- und Drosselklappen, hand-, pneumatisch und elektrisch betätigt

Worcester Valve Co Ltd., Haywards Heath/England, Kugelhahnen, hand-, pneumatisch und elektrisch betätigt

Alfa-Ingenieurbureau AG, 4310 Rheinfelden Halle 24, Stand 225

Textile Filtermedien für den Umweltschutz

Die Huyck Fez zeigt sowohl Filter-Nadelfilze als auch Filtergewebe für Entstaubungsanlagen, darunter Huyglas™, den ersten aus 100 % Glasfasern hergestellten Filter-Nadelfilz mit Glasfasergrundgewebe der Welt. Dieses neue Filtermedium revolutioniert die Heissgasfiltration. Nicht nur hohe Temperatuten von 260 °C und Spitzen von 285 °C sondern auch die Hydroly-Sebeständigkeit, der hervorragende Abscheidegrad und die hohe Chemische Beständigkeit sowohl in alkalischen als auch sauren Bereich ermöglichen neue Anwendungsmöglichkeiten. Huyglas™ ist Vorläufig in erster Linie für Düsenfilter Vorgesehen und weist bisher Filtermedien ungekannte Reissfestigkeitswerte auf. Ausgestellt sind auch für Entstau-

bungsanlagen alle anderen Arten von Filter-Nadelfilzen (zum Teil mit neuartigen Oberflächenbehandlungen) sowie Filtergewebe für spezielle Einsatzzwecke.

Auf dem Sektor Filtermedien für die Nassfiltration werden neue Abwasserfiltertücher für Filterpressen mit hohen Reissfestigkeitswerten gezeigt, welche guten Kuchenabfall gewährleisten.

Ein vollständiges Programm an Siebbändern für Siebbandpressen in Breiten bis zu 5 m in allen Dichtheitsgraden rundet die Reihe der ausgestellten Filtermedien ab.

Huyck Fez Gesellschaft mbH, A-1060 Wien Generalvertretung für die Schweiz: Angst + Pfister, 8052 Zürich Halle 26, Stand 143

Ultraschall überwacht und misst Niveau, Durchfluss und Schlammdichte

Die Bestobell Mobrey AG zeigt eine ganze Reihe von Ultraschall Messgeräten im praktischen Einsatz. Ob man das Niveau in offenen oder geschlossenen Behältern überwachen oder dauernd messen, ob man die Trennschicht zwischen zwei Flüssigkeiten erfassen oder die Schlammdichte ermitteln will - mit den Ultraschall-Messgeräten ist dies einfach und betriebssicher. Das Ausnützen des Dopplereffektes in Verbindung mit Ultraschall gibt neuerdings sogar die Möglichkeit, die Strömungsgeschwindigkeit von feststoffhaltigen Flüssigkeiten zu überwachen und zu messen. Dank dieser Messmethode sind keine Messschikanen nötig, die Geräte können also problemlos, ohne jeden Betriebsunterbruch, in bereits bestehende Anlagen eingebaut werden zum Beispiel als Pumpenschutz.

Die Bestobell Mobrey AG zeigt auch, wie das neue Arkon-System 10 Durchflussmengen misst und registriert. Praktisch erproben kann der Besucher zudem den IER-Universaltrübungswächter sowie ein Niveausteuergerät der gleichen Firma

Bestobell Mobrey AG, 8600 Dübendorf Halle 27, Stand 347

Produktionsprogramm von Altometer und Krohne

Die Rheometron AG zeigt an der Pro Aqua – Pro Vita das eigene Produktionsprogramm von Altometer Produktiebedrijf van Rheometron AG, Sliedrecht (Holland):

- magnetisch-induktive Durchflussmesssysteme Altoflux in den Nennweiten DN 2...3000 mit den Verstärkervarianten TIV 50 (Wechselfeld), TIV 60 (geschaltetes Gleichfeld 3½ Hz) oder Digitiv T 900 (geschaltetes Gleichfeld 7½ Hz)
- magnetisch-induktive Durchflussanzeige – Kompaktgeräte – der Baureihen IDA 22 und Altoflux K 300 in den Nennweiten DN 25 . . . 300
- Ultraschall-Durchflussmessgeräte Altosonic in den Nennweiten DN 50...3000 als Kompaktgerät

und als Vertretung für die Schweiz das gesamte Produktionsprogramm Krohne-Messtechnik, Duisburg:

- Schwebekörper Durchlfussmessgeräte mit Glas- und Metallmesskonen (Sonderausführungen mit elekrischem oder pneumatischem Signalausgang)
- Durchflusskontrollgeräte
- Füllstandsmessgeräte
- Radiometrische Dichtemessung
- Optoelektronische Bausteine und Arbeitsschutzgeräte (GaAs-Wechsellichtgitter)
- Umwelttechnische Messsysteme für Emission, Immission und Wasserqualtiätsmessung

Rheometron AG, 4003 Basel Halle 27, Stand 341

Trennung von Mineralölemulsionen

Die Trennung von stabilen und nichtstabilen Mineralölemulsionen ist ein komplexer und komplizierter Vorgang, und die bisherigen Verfahren sind zum Teil recht aufwendig.

Neben den bekannten Verfahren wie Säure- und Alkalibehandlung, Sorption mit Hilfe eines porösen Materials und Aussalzen, Ultrafiltration, Umkehrosmose, Hitzeeinwirkung oder Verdampfen der einen Komponente, stellt nun die Firma Aquasant-Ölabscheider AG in Wettingen ein völlig neues und einfaches Verfahren vor.

Für die Trennung von Abwasser mit Motorenreiniger (Kaltreiniger), für ölhaltige Abwässer sowie für Metallbearbeitungsmittel eignet sich dieses neue Verahren. Die Abwasserwerte liegen innerhalb der geforderten Werte für die Einleitung in Kanalisation oder Vorfluter. Das Verfahren arbeitet im Durchlauf und benötigt sehr geringen Energie- und Arbeitsaufwand.

Aquasant-Ölabscheider AG, 5430 Wettingen Halle 26, Stand 571