Zeitschrift: Plan : Zeitschrift für Planen, Energie, Kommunalwesen und

Umwelttechnik = revue suisse d'urbanisme

Herausgeber: Schweizerische Vereinigung für Landesplanung

Band: 30 (1973)

Heft: 10

Artikel: Wieweit ist Lärmschutz möglich? [Fortsetzung]

Autor: Schmitz, C. J.

DOI: https://doi.org/10.5169/seals-782102

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 26.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Die Minderung von Lärm:

Wieweit ist Lärmschutz möglich?

Von C. J. Schmitz, Düren, Bundesrepublik Deutschland (2. Teil)

Lärmschutz in Hallen und Werkstätten dient vorwiegend zur Verbesserung der Arbeitsbedingungen und zur Verminderung der Gefahr von Gesundheitsschäden durch Lärmbelästigung. Auf Anfragen verschiedener Unternehmungen, deren Produktionsablauf im geschlossenen Raum besonders hohe Lärmbelästigung erbringt, wurde ein verhältnismässig einfaches System vorgeschlagen. Die lärmabsorbierenden Wandelemente werden kabinenförmig, nach vorn offen, um den Arbeitsplatz herumgestellt, möglichst an der Hallenwand befestigt. Sie erhalten nach oben zum Ablenken des Lärmschwalls entweder einen Winkel von 50 $^{\circ}$ oder einen Winkel von 90 $^{\circ}$, ausserdem nach Möglichkeit an beiden Enden eine zusätzliche Wand von 1 m Breite oder individuell je nach Raumerfordernissen nur eine Doppelwand zum Mittelgang hin. Vaturgemäss können diese Konstruktionen durch die Bedarfsträger selbst gebaut werden. Die Grundkonstruktion ist ein Doppel-Γ-Profil, an den Kanten umlaufend, und als ıntere Auflage ein U-Profil, hier kann aber such ohne weiteres eine leichtere Konstruktion genommen werden. Allein schon vegen der Wartungserfordernisse würde ich hier in den meisten Fällen ein entprechendes Aluminiumprofil empfehlen.)as gesamte Element sollte eine feste, tarre Verbindung sein, an dem oben anebrachte Befestigungspunkte ein Verseten mit dem Kran ermöglichen. Als besoners erwähnenswert ist noch, dass die chutzvorrichtung mittels dieser Konstrukon bei Vorbereitung der Tragkonstruktion n wenigen Tagen zu ersteleln ist und danit eine völlige Aenderung der bisher chwerbelasteten Verhältnisse möglich wä-

löglichkeiten zur Unterteilung von Beriebsräumen

iegen die einzelne Lärmquelle kann auch ier eine kleine Schale gesetzt werden, die en hinter ihr liegenden Raum in höherem lasse abschirmt, als das mit einer glatten /and möglich wäre. Es wurde bei Kontruktionen dieser Art die Erfahrung gesacht, dass der Techniker des Betriebs ittels der ineinanderzuschachtelnden Elesente sehr schnell die richtige Baukontruktion für sein Problem erkannte. In der idustrie muss immerhin neben der Erwäung der Lärmminderung die der Siche-

rung des einzelnen Arbeitsplatzes und die Möglichkeit der Sicherheitsüberwachung im Vordergrund bleiben. Die Zusammenhänge in diesen Fragen aber kennt der Betrieb am besten. Es genügt daher meist, dass der Anwendungstechniker für Lärmschutz die Hauptvoraussetzungen nennt und die Empfehlungen für richtigen und dichten Verbau der Elemente gibt.

Extremfälle, in denen teilweise Umbauungen der Lärmquellen nicht möglich sind, sind oft problematisch. Nach Festlegung einer auf den speziellen Fall zugeschnittenen Konstruktion ist es aber auch wieder so, dass der Betriebstechniker die Bauausführung selbst machen kann, wodurch auch die erforderlichen Rücksichtsmassnahmen auf den normalen Betriebsablauf leichter möglich sind. In solchen Fällen empfiehlt sich die Anlage von lärmabsorbierenden Schürzen im Deckenbereich. Die Verkleidung der zumeist stark reflektierenden Betonwände sowie der Bau einer grossmaschigen Gitterkonstruktion in einem Zwischenbereich zwischen Werksboden und -decke.

Anschliessend sollen noch einige Anwendungsbeispiele gebracht werden, die zeigen, wie an verschiedenen Stellen mit der hier erörterten Konstruktion zufriedenstellende Lösungen erreicht werden konnten. Hieraus können vielen Industriebetrieben, denen ähnliche oder gleiche Problemstellungen zu schaffen machen, Rückschlüsse auf Lösungsmöglichkeiten deutlich werden

Lärmschutzmassnahme an der Kühlanlage eines Kaufhauses

Da die Umkleidung in wenigen Monaten versetzt werden soll, wurde die tragende Konstruktion, auch angesichts der statischen Erfordernisse, nicht in Stahl, sondern in Holz ausgeführt. Das zur Aufnahme der Elemente verwendete Doppel-T-Profil wurde in seinen Abmessungen in Holz nachempfunden. Die Elemente wurden in die Konstruktion in einer Höhe von 4 m in gleicher Weise eingesetzt, wie das bei einer Stahlkonstruktion geschieht.

Die Kühlanlage zeigte in 1m bis 1,50 m Entfernung, in einer Höhe von 1,5 m gemessen, einen Wirkpegel von 85 bis 88 dB(A). Hierbei traten die Antriebsmotoren, in unmittelbarer Nähe gemessen, mit ihren Spitzen sogar noch hervor. Die Kühlanlage hat eine Breite von 9 m und eine Tiefe von 2 m. Sie wurde mit einer Kammer in 11 m Breite und 3 m Tiefe im Rechteck umbaut. Gleichfalls wurde ein Dach bis zur Hauswand um $^4/_5$ aus lärmabsorbierenden Elementen, mit der Perforation nach innen zur Lärmquelle gewendet, ausgeführt. Zur Frischluftansaugung diente ein Schlitz von 50 cm Breite, der aber zur Vermeidung eines Ueberschlages über die ganze Breite mit einer 25 cm hohen, um 45 $^\circ$ schräggestellten Schürze verkleidet wurde.

Nach Fertigstellung der Anlage wurde bei gleichen Witterungsverhältnissen gemessen. In der äussersten Ecke war der Lärm noch mit 67 bis 68 dB(A) zu messen, da hier nur lose eine Bende für eine Einstiegluke zu eventuellen Reparaturen aufgestellt ist. An der linken äusseren Kante wurden nunmehr 64 gegenüber früher 88 dB(A), in der Mitte 62 gegenüber früher gleichfalls 88 dB(A) gemessen. Die Messungen wurden dann in den Wohnungen der beschwerdeführenden Anlieger weitergeführt.

Auf einer Terrasse, auf der früher 76 dB(A) Lärmentwicklung gemessen wurden, war jetzt nur noch ein Wirkpegel von 50 bis 51 dB(A) festzustellen. Dieser Wirkpegel, das muss betont werden, ist aber auch im Umkreis um den Gebäudekomplex herum allenthalben feststellbar. Die zweite Messung fand vier Häuser weiter statt. Bei offenem Fenster im zweiten Stockwerk wurde hier ein Lärmpegel von 55 bis 56 dB(A) festgestellt. Auch hier sollen bei früheren Messungen 76 dB(A) registriert worden sein. Bei diesen Ergebnissen, die für das gemischte Wohngebiet unter dem Rahmen des nach TAL-Lärm vorgeschriebenen zulässigen Wirkpegels liegen, wird es nur über längere, unter verschiedenen Tageszeiten laufenden Messungen möglich sein, festzustellen, woher der Zusatzlärm kommt, denn dieses Hausgrundstück mündet direkt an der Hauptgeschäftsstrasse, von der aus der Strassenlärm mit seiner Reflexion von einem quergebauten, mit Naturstein verkleideten Gebäude, das die Strasse 25 m überbrückt, durch eine Baulücke zurückgeworfen werden dürfte. Demzufolge dürften sich bei dieser ungünstigen Stelle Umweltlärm von der Strasse, Lärm aus verschiedenen Höfen und von Laderampen mit dem Restlärm der Kühlanlage vermischen.

und endet bei 9 bzw. 11 m, zum Ausgleich des Niveau-Unterschiedes, der zwischen Wandbeginn und -ende besteht. An beiden Flanken ist die Wand offen, weil nach Fertigstellung des Hauptbauabschnittes durch diese Messungen festgestellt werden soll, durch welche Abschlussmassnahmen die bestehende Lärmbelästigung noch weiter abgebaut werden kann.

Bei den Messungen wurde der Lärmpegel durch Mikrofon oder Pegelschreiber an folgenden Messpunkten registriert bzw. aufgezeichnet:

- in Höhe von 1,50 m auf der Montagestrasse unmittelbar an der Abscheideanlage I:93 dB(A)
- in gleicher Höhe unmittelbar vor der Abscheidegruppe II: 90—92 dB(A)
- Mikrofon 5 m vor der Wand auf der Böschungskante in 6 m Höhe, in der Mitte der beiden Abscheidegruppen: zwischen 82 und 84 dB(A)

Hier waren vor Errichtung der Wand am gleichen Punkt: 88 dB(A)

- an der linken Aussenkante Wandende: 80 dB(A)
 - an der rechten Aussenkante Wandende: 76 dB(A)
 - Hinweis: Das linke Wandende ist 3 m im Winkel von 90 $^{\circ}$ von der geraden Wand zur Lärmquelle hingezogen, das rechte Wandende 6 m.
- am Ende der Wand gegenüber einer abseits stehenden Absaugvorrichtung: 64 dB(A)

Dieser Wert ging früher in dem Pegel der anderen Abscheideanlage unter.

 in der Mitte hinter der Wand in einer Entfernung von 6 m: 55—56 dB(A)

Entfernung von 10 m: 56 dB(A) Entfernung von 20 m: 56 dB(A) Entfernung von 50 m: 56 dB(A)

Entfernung von 60 m: 56 dB(A)

In diesen Werten sind aber andere Umweltgeräusche mitenthalten. So wird zurzeit an 5 Neubauten in rund 300 m Entfernung gearbeitet. Das Nageln der Dachdecker sowie die auf dem hinter der Wand liegenden Feld ausgeführten Erntearbeiten haben diese Werte mitbe-

- Zwischen 11.45 Uhr und 12.30 Uhr wurde im Anschluss in 350 m Entfernung bei den Anliegern am äussersten Siedlungshaus gemessen: 51—52 dB(A)
- in der Mitte der Siedlung: 54 dB(A) Hier wurden durch den TÜV bei erster Messung 67 dB(A) festgestellt. Alle Werte sind beeinflusst worden durch die Bauarbeiten im Umkreis von 25 bis 50 m, durch automatische Förderbänder, die diese in Betrieb hatten, und durch spielende Kinder.

Sobald die Wand bei der jetzt noch belassenen Lücke geschlossen ist, können an allen Punkten wesentlich günstigere Werte erwartet werden.

Nach Ausführung des Anschlusses an die Hallenwand verminderte sich der Wirkpegel am Messpunkt i auf 54 dB(A), am Messpunkt h auf 49 dB(A), am Messpunkt g auf 48 dB(A).

(Schluss in der nächsten Ausgabe)

Finanziell günstig bauen und gestalterische Freiheit haben. Da gibt es nur eines:

Schulbau mit System! Peikert Contract AG

Das Peikert-Schulbausystem ist eine typisierte Betonskelett-Bauweise. Es gliedert sich in tragende, umhüllende und raumtrennende Elemente, vorfabriziert.

Lärmschutzmassnahme an einer Tonmö-

Hinter dem Fabrikgebäude wurde zur Ab-

schirmung der Lärmentwicklung durch die

grossen Abscheideanlagen unter Einbezie-

hung einer 5 bis 6 m hohen Böschung auf

dieser Böschungskante eine lärmabsorbie-

rende Schutzwand errichtet. Die Wand ist

100 m lang und an beiden Seiten zur Er-

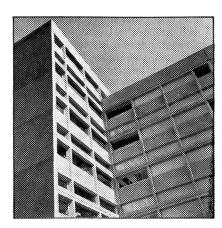
langung der Schalenkonstruktion in voller Höhe in 90 $^{\circ}$ zum Fabrikgebäude vorgezo-

gen. Dies in einer Länge von 3 bzw. 6 m.

Ueber die gesamte obere Wandkante wur-

de aus Elementen ein Winkel von 50 cm,

der Lärmquelle um 30 ° zugeneigt, aufge-


setzt. Die Wand verläuft in der oberen

Kante gerade. Ihre Höhe beginnt bei 6 m

belfabrik

Mit diesen Elementen können die verschiedensten Schulhäuser für verschiedenste Ansprüche gebaut werden. Einfache Kleinschulen und grosse Schulbauten in konzentrierter oder aufgelöster Anordnung. Erweiterungen sind jederzeit möglich, sowohl vertikal als auch horizontal. Die innere Gliederung ist weitgehend variabel und es können die unterschiedlichsten Raumtypen erstellt werden.

Grundlagen, Planmaterial und Dokumentation stehen allen, die sich mit Schulbauten befassen müssen, zur Verfügung. Schreiben Sie uns oder rufen Sie uns an.

PEIKERT

Peikert Contract AG Industriestrasse 22 6300 Zug Telefon (042) 213235

Die Generalunternehmung der Peikert-Gruppe mit der Garantie für Preis, Termin und Qualität. Primarschulanlage Rüti, Ostermundigen

MB & Co P5