Zeitschrift: Plan : Zeitschrift für Planen, Energie, Kommunalwesen und

Umwelttechnik = revue suisse d'urbanisme

Herausgeber: Schweizerische Vereinigung für Landesplanung

Band: 16 (1959)

Heft: 1

Artikel: Reorganisation der deutschen hüttentechnischen

Brauchwasserwirtschaft im Dienste des Gewässerschutzes

Autor: Vogel, H.E.

DOI: https://doi.org/10.5169/seals-783605

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 04.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Reorganisation der deutschen hüttentechnischen Brauchwasserwirtschaft im Dienste des Gewässerschutzes

Von Dr. H. E. Vogel, Geschäftsführer der «Föderation Europäischer Gewässerschutz», Zürich

Infolge der starken Industrialisierung und der aus natürlichem Zuwachs und Flüchtlingskontingenten aus den Ostgebieten resultierenden Bevölkerungsvermehrung ist der Wasserbedarf in der Bundesrepublik Deutschland im letzten Jahrzehnt gewaltig gestiegen. So wurden im Jahre 1955 auf dem gesamten Bundesgebiet 9,6 Milliarden m³ Wasser gefördert; für das Jahr 1960 werden indessen voraussichtlich 13 Milliarden m³ benötigt, die sich folgendermassen verteilen werden:

Oeffent liche	Was	serv	erso	rgu	ng	$4\ 000\ 000\ 000$	\mathbf{m}^3
Industriewas	serve	rsor	gun	g		$7\ 000\ 000\ 000$	\mathbf{m}^3
Landwirtscha	aft					2 000 000 000	m^3

Der heutige Industriewasserbedarf (Stichjahr 1955) beträgt etwa 6 Milliarden m³; deren Hauptkonsumenten folgenden Industriezweigen angehören:

		Mil	lionen m³
Chemische Industrie			1617
Hochöfen, Stahl- und Walzwerke			1036
Kohlenbergbau			719
Zellstoff- und Papierindustrie			678
Mineralölverarbeitung			277
Textilindustrie			250
Industrie der Steine und Erden			149

Regional verteilt sich dieser Wasserverbrauch der deutschen Industrie in der nachfolgenden Weise:

Bundesland		Betriebe	Verbrauch Total	h in m ³ pro Betrieb im Mittel
Schleswig-Holstein		1 610	86 389 376	53 000
Hamburg		1 541	204 516 452	$132\ 500$
Niedersachsen .		4 084	368 519 851	90 000
Bremen		480	48 172 082	$100\ 000$
Nordrhein-Westfalen		14 331	2 897 740 538	202 000
Hessen		4267	453 498 898	$106\ 000$
Rheinland-Pfalz .		2 927	739 375 282	253 000
Baden-Württemberg		9 342	574 261 844	61 500
Bayern		7 237	583 828 854	81 000
Bundesgebiet .		45 819	5 956 303 177	130 000

Trotz dieses hohen Industriewasserbedarfs wäre auch heute in Deutschland noch genügend Wasser vorhanden, wenn nicht durch Einleitung von Abwasser, von Oel und Benzin, von Hausmüll und Industrieabfall in die Vorfluter die Menge des sonst ohne weiteres verwendbaren Wassers zusätzlich erheblich reduziert würde. Das Ausmass der durch Industriebetriebe verursachten Gewässerverschmutzung tritt so richtig in Erscheinung, wenn dafür mittels der Methode des BSB¹ die entsprechenden Einwohnergleichwerte fest-

gehalten werden. Wir besitzen darüber für die verschiedenen Industrie- und Gewerbesektoren folgende statistischen Angaben:

Industriesektor		Produkt	$Ein wohner gleich wert^2\\$
Molkerei: ohne Käse		1000 l Milch .	. 30— 80
mit Käse		1000 l Milch .	. 100— 200
Brennerei		1000 1 Getreide .	. 1500—2000
Brauerei		1000 l Bier	. 300—2000
Stärkefabrik:		1000 l Mais	. 500
		1 t Weizenmehl	. 860
Schlachthof		1 Ochse	. 70— 200
		$2\frac{1}{2}$ Schweine .	. 70— 200
Zuckerfabrik		1 t Rüben .	. 120— 400
Bleicherei		1 t Ware	. 250— 350
Färberei mit Schwefelf	arbe	1 t Ware	. 2000—3500
Papierfabrik		1 t Papier .	. 100— 300
Holzschleiferei .		1 t Holzschliff	. 50— 80
Sulfitzellstoffwerk .		1 t Zellstoff .	. 3000—4000
Flachsrösterei		1 t Flachsstücke	750—1150
Wollwäscherei		. t Wolle	. 2000—3000
Gerberei		1 t Häute	. 1000—4000
Lohgerberei		1 t Häute	. 2500—4500
Wäscherei		1 t Wäsche .	. 700—2300
Zellwollfabrik		1 t Zellwolle .	. 500— 700

Es bedarf seitens der deutschen Industrie noch grosser Anstrengungen und bedeutender finanzieller Mittel, um zu erreichen, dass all diese organisch verschmutzten Abwässer in mechanisch-biologischen Kläranlagen gesammelt und gereinigt werden.

Daneben existieren verschiedene gewerbliche Abwässer, die nur zum Teil oder gar nicht dieser Reinigungstechnik zugänglich sind, da sie vorwiegend anorganisch verunreinigt sind. In die erste Kategorie fallen die textil-, papier- und holzverarbeitenden Industrien, in die letztere die Kaliindustrie, die Bergwerke, die metallverarbeitenden Betriebe und die chemischen Fabriken.

So erklärt es sich, dass Trink- und Brauchwasser in der Bundesrepublik Deutschland, wie in andern hochzivilisierten Ländern, zu einer ausgesprochenen Mangelware zu werden beginnt und dass von überall her Bestrebungen im Gange sind, der angespannten Lage im Wassersektor zu begegnen; dabei soll durch prophylaktische Massnahmen der Abwasseranfall schon vor dem Reinigungsverfahren auf dem kleinstmöglichen Volumen gehalten werden

Zu diesen vorbeugenden Techniken gehört unter anderem die vom Vorfluter unabhängige Brauchwasserkreislaufwirtschaft deutscher, und besonders nordrhein-westfälischer Hüttenwerke.

Aus den zitierten Statistiken ist klar ersichtlich, in wie hohem Masse einerseits der Industriesektor der

¹ BSB: Biochemischer Sauerstoffbedarf = Sauerstoffmenge in mg/l, die notwendig ist, um die im Wasser enthaltenen organischen Stoffe durch Mikroorganismen innerhalb einer bestimmten Zeit abzubauen.

 $^{^2}$ Einwohnergleichwert: der durch häusliche Abwässer verursachte BSB: 54 g/Einw./Tag.

Hochöfen, Stahl- und Walzwerke, andererseits, regional gesehen, das Bundesland Nordrhein-Westfahlen am Industriewasserbedarf beteiligt sind, wie wichtig hier daher auch eine Neuregelung des Brauchwasserkonsums einzuschätzen ist.

Die bisherige Brauchwassertechnik war darauf ausgerichtet, unter bestimmten Bedingungen häusliche und industrielle Abwässer miteinander zu vermischen, da dies für ihre Aufbereitung vorteilhaft erschien.

Heute hat sich diese Einstellung grundlegend geändert, und wiewohl darüber noch keine Richtlinien
und technisch festgelegte Regeln bestehen und sich
auch noch keine technisch-wissenschaftliche Institutionen planmässig mit der Aufgabenstellung befassen,
beginnt sich die Ueberzeugung Bahn zu brechen, dass
die zur Deckung des Brauchwasserbedarfs benötigte
Trinkwassermenge wie auch die Abwasserlast der Vorflut um so geringer seien, je vollkommener sich eine
umfassende Brauchwassertechnik einführen lasse.

Die Eisenhütten beanspruchen bei ihrem Wasserbedarf das Oberflächen- und Grundwasser in um so kleinerem Ausmass, je grösser der über Kreisläufe versorgte Anteil an der gesamten Wasserversorgung einer Hütte ist. Bei Eisenhütten, die ausschliesslich auf den Bezug von hochwertigem Trinkwasser angewiesen sind, stehen Wasserkreisläufe übrigens, wegen der Kostenfrage, schon seit vielen Jahren im Gebrauch, denn eine auf häuslich-industriell gemischtem Abwasser basierende und auf reine Durchlauf- (im Gegen-

satz zu Kreislauf-)Wirtschaft eingestellte Eisenhütte benötigt für eine Jahreserzeugung von einer Million Tonnen Stahl ein Mindestangebot von 200 Millionen m³ Wasser.

Der Ausbau der Kreislaufwirtschaft zieht weitere Umstellungen nach sich: Wurden früher Vorfluter in die Kreislaufwirtschaft miteinbezogen, so sucht man sich neuerdings davon zu befreien. Dies bedeutet den Verzicht auf:

- Ableitung belasteter Abwässer in den Vorfluter;
- unmittelbare Verwendung des der Hütte zugeführten Wassers für Kühlzwecke;
- Benutzung von Wassertürmen und Hochbehältern;
- Benutzung von Kanälen (und ihres natürlichen Gefälles für den Wassertransport) innerhalb des Kreislaufes und als Verbindung zum Vorfluter.

In einer Veröffentlichung «Das Wasserhaushaltsgesetz in der Sicht des in der hüttentechnischen Brauchwasserwirtschaft tätigen Ingenieurs» unterzieht dipl. Ing. Hermann Poehlmann, Ratingen, die Brauchwasserwirtschaft beim Bochumer Verein für Guss-Stahlfabrikation, und besonders die in dieser Hinsicht im Werkteil Höntrop bestehenden Verhältnisse einem nähern Studium, deren Ergebnisse hier statistisch festgehalten seien:

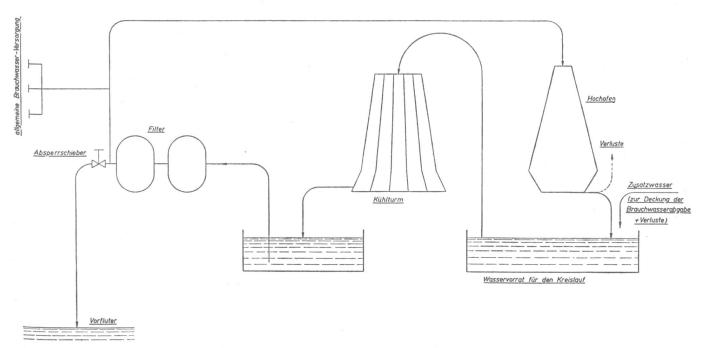


Abb. 1. Grundsatzschema des «vom Vorfluter unabhängigen Kreislaufs» im Verbund mit der allgemeinen Brauchwasser-Versorgung.

 $^{^{\}rm 1}$ Ein Sonderdruck ohne Angabe des Verlagsortes, des Verlegers oder des Erscheinungsjahres wurde uns vom Verfasser zugestellt.

Wasserbedarf und Rohstahlerzeugung der gesamten Hütte

Geschäftsjah	r		Wa	sserbezug	Rohstahlerzeugung		
Monatsdurchschnitt		m^3	% m	³ /t Rohstahl	t	%	
1950/51			536 000	100	10,4	$51\ 479$	100
1951/52			606 000	113	10,6	$57\ 432$	112
1952/53			$646\ 000$	121	10,6	64 829	126
1953/54			$526\ 000$	98	7,7	68 650	133
1954/55			606 000	113	6,7	90 735	176
1955/56			$625\ 000$	117	6,4	98 038	190
1956/57			630 000	118	6,3	99 633	194
Monatsdurch- schnitt Oktober							
1957—März 1958		$647\ 000$	121	5,9	108 798	211	

Wasserbedarf und Stahlerzeugung des Werkteils Höntrop

(mit Erzeugung von Spezialstählen: LD- und SM-Stahl 1)

Geschäftsjahr	W	asserbezi	Stahlerzeugung			
Monatsdurchsch	nitt	${f m^3}$	%	m³/t Stahl	t	%
1950/51 .		$21\ 000$	100	0,7	$28\ 214$	100
1951/52 .		27 000	129	0,9	30 569	108
1952/53 .	٠.	53 000	252	1,8	28 292	100
1953/54 .		27 000	129	1,0	28 208	100
1954/55 .		25 000	119	0,7	35 618	126
1955/56 .		28 000	133	0,7	38 221	136
1956/57 .		29 000	138	0,7	40 900	145
	_					
Oktober 1957	7.	37 000	176	0,9	$42\ 000$	149
November 1	957	38 000	181	0,7	52 600	186
Dezember 19	57	39 000	186	0,7	56 300	200
Januar 1958		38 000	181	0,6	$63\ 562$	225
Februar 1958	8.	36 000	171	0,6	57 166	203
März 1958 .		36 000	171	0,7	53 660	190
Monatsdurch schnitt Okto	_					
1957—März	1958	37 000	176	0,7	$54\ 215$	192

Wie aus den Tabellen hervorgeht, hat sich die Stahlerzeugung der ganzen Bochumer Hütte mehr als verdoppelt, während der Wasserbezug sich dank der Einführung hochentwickelter Wasserkreisläufe nur um 21 % erhöhte.

Im Werkteil Höntrop konnte der spezifische (d. h. von aussen her zugeführte) Wasserbezug trotz Errichtung eines neuen Spezial-Stahlwerkes auf 0,7 m³ pro Tonne Stahl gehalten werden; dabei wurde neuerdings noch der durch das Frischen des Stahles mit Sauerstoff entstehende braune Rauch durch diesen Wasserkreislauf beseitigt. Beim gesamten Bochumer Werk sank hingegen der spezifische Wasserbezug von 10,4 m³/t Rohstahl im Jahre 1950 auf 5,9 m³/t im März 1958, wiewohl im alten Werk, wo sich die Hochofenanlagen befinden, die Umstellung noch nicht in Angriff genommen werden konnte.

Nach dem heutigen Stand der hüttentechnischen

Brauchwassertechnik könnte der spezifische Wasserbezug auf etwa 4 m³/t Stahl und somit weit unter den Gesamtbedarf des Geschäftsjahres 1950/51 der ganzen Bochumer Hütte (von 536 000 m³ pro Monat) gesenkt werden, was zu einer fühlbaren Entlastung bei der allgemeinen Wassernachfrage führen würde.

In dieser Reduktion sind zwei weitere Möglichkeiten von Brauchwassereinsparungen noch nicht miteinbezogen: einerseits die Ausweitung des Brauchwasserangebotes über die Kreisläufe hinaus, anderseits die Anwendung der Heisskühlung.

Eine mit geringfügigen Mitteln herstellbare technische Ergänzung würde genügen, um den hüttentechnischen Kreisläufen ein hygienisch einwandfreies Brauchwasser für den allgemeinen Bedarf entnehmen zu können, sofern ihnen keine häuslichen Abwässer (auch keine aufbereiteten) und kein Wasser mit nachteiligem Chemismus zugeführt würden. Dies wäre z. B. zu erreichen durch Einschaltung eines hygienischen Schutzes (Filter, Chlorung usw.) unmittelbar vor der Entnahmestelle für die allgemeine Brauchwasserversorgung.

Nach den praktischen Erfahrungen der nordrheinwestfälischen Industriebetriebe sind auf Eisenwerken mit «gemischter» Produktion und einer monatlichen Erzeugung von 100 000 t Stahl die mittleren Stundenleistungen der Brauchwasseraufbereitungsanlagen mit genügender Wassergüte für allgemeine Verwendung mit mindestens 5000 m³ zu veranschlagen. Bei vorsorglicher Regulierung der Geschwindigkeit des Filterprozesses könnten davon 500 m³ für den allgemeinen Bedarf abgezweigt werden. Bei 600 Monatsstunden ergäbe dies 300 000 m³ hochwertiges Brauchwasser, welches ausserhalb der Kreisläufe und zu einem gewissen Teil auch ausserhalb des betreffenden Eisenwerkes für den allgemeinen Bedarf Verwendung finden dürfte.

Auf dem Sektor der Kühlung des zu erzeugenden Stahles war man bisher auf die Verwendung von Brauchwasser angewiesen. Man war von der Kühlwassertemperatur ebenso abhängig wie von seinem Reinheitsgrad und hatte ausserdem bei der Rückkühlung wärmebelasteter Wasser Rücksicht auf die Temperatur der Luft zu nehmen.

Heute ist man bestrebt, vom Klima und von dem dadurch bestimmten engen Temperaturbereich unabhängig zu werden, und zwar durch Einführung der Verdampfungs- oder Heisskühlung, bei welcher Methode sich der Kühlvorgang bei Temperaturen oberhalb des Siedepunktes des Wassers abwickelt.

Die seit Jahren auf dem Markt verkauften Dampfstrahlkälteanlagen sollen nun auch bei Eisenhütten Verwendung finden: In den neuen Anlagen wird dem von oben in einen Verdampfer eintretenden Brauchwasser unter Vakuum Verdampfungswärme entzogen. Das gekühlte Wasser tritt unten aus, während der freiwerdende verunreinigte Wasserdampf, der sog. «Brüden», durch Dampfstrahler, sog. «Brüdenverdichter», auf einen Druck verdichtet wird, der es gestattet, ihn nach Eintritt in einen Kondensator niederzuschlagen.

Die Technik bleibt auch bei dieser Phase nicht

 $^{^{\}rm 1}$ SM-Stahl: Siemens-Mertens-Stahl; LD-Stahl: Linz-Donauwitz-Stahl.

stehen: Während für die Dampfstrahlkälteanlage wie oben beschrieben noch Kühlwasser benötigt wird, soll nach einem geschützten Verfahren in Zukunft das Kühlwasser durch Luftkühler ersetzt werden, die mit Dampfstrahlkälteanlagen gekoppelt sind.

Luftkondensatoren der GEA-Luftkühler GmbH, Bochum, für Turbinenleistungen bis 32 000 kW wurden bereits in Betrieb genommen; solche mit doppelter Leistung sind in Planung. Beim GEA-Luftkühler saugt der in einer Mittelachse angeordnete Ventilator einen Luftstrom durch die den untern Teil des Kühlers umgebenden Kühlelemente, welche von dem zu kühlenden Wasser durchflossen werden. Dabei kann der Luftkühler zwecks Platzersparnis seinen Standort auch auf dem Dache eines Gebäudes finden.

Aus dem Vorangegangenen dürfte ersichtlich sein, dass dank fortschreitender Verbesserung der technischen Methoden in der Brauchwassertechnik der nordrhein-westfälischen Hüttenindustrie Abwässer nicht nur beseitigt, sondern ihre Entstehung überhaupt verhindert werden und dass des weitern dank der Anwendung geschlossener Brauchwasserkreisläufe der spezifische Industriewasserbedarf wesentlich gesenkt werden kann. Bei den bisherigen hohen Verbrauchsziffern dürfte dies für die gesamte Wasserwirtschaft des Bundeslandes Nordrhein-Westfalen stark ins Gewicht fallen.

Positive Resultate dürften die Einführung dieser neuen Betriebsformen auch unter andern technischen und wirtschaftlichen Vorbedingungen und in andern Ländern als empfehlenswert erscheinen lassen.

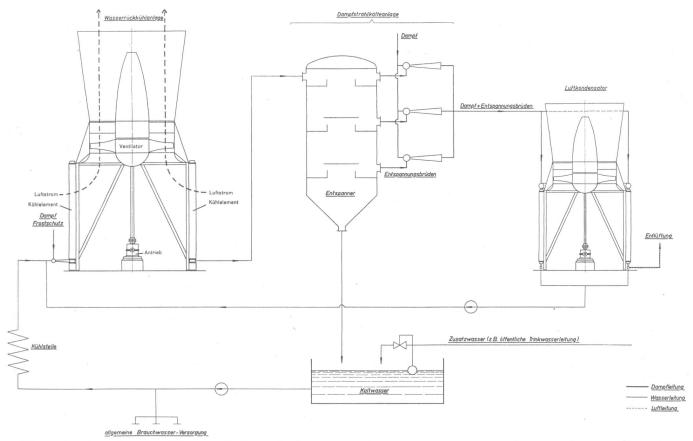


Abb. 2. Grundsatzschema der Wasserrückkühlung durch den «vom Vorfluter unabhängigen» Verbund von Luft. und Dampfkühlung.