Zeitschrift: Schatzkästlein: Pestalozzi-Kalender

Herausgeber: Pro Juventute

Band: - (1984)

Rubrik: Chemie

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 19.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

CHEMIE

1. Allgemeines

Der Chemiker untersucht Eigenschaften und Aufbau der Stoffe und Stoffumwandlungen.

Stoffe (Substanzen) nehmen einen Raum ein und sind wägbar.

Stoffumwandlungen (chemische Reaktionen) führen zu neuen Stoffen mit neuen Eigenschaften. Dabei werden die kleinsten Teilchen der Substanzen, die Atome, Moleküle oder Ionen, neu gruppiert.

Chemische Reaktionen sind erkennbar:

an Farbänderungen

an der Bildung von Gasen

an der Ausfällung fester

Niederschläge

an Wärmeabgabe (exotherme Reaktion)

an Energieverbrauch

(endotherme Reaktion)

Eisen rostet, Holz wird beim Verbrennen schwarz

Brausetabletten in Wasser, alkoholische Gärung

Kalkablagerungen in Pfannen

Verbrennung von Kochgas, Benzin usw., Lösen von Säuren in

Wasser

Zerlegung von Verbindungen mit Wärme, Zerlegung von Wasser

mit elektrischem Strom

Chemische Reaktionen verlaufen schneller:

bei erhöhter Temperatur

Klebstoffe werden schneller hart, warme Säuren zersetzen Metalle schneller, wechselwarme Tiere (Schlangen, Frösche) sind bei warmem Wetter lebhafter

Faustregel: Bei Temperaturerhöhung um 10 °C verlaufen chemische

Reaktionen doppelt so schnell

on Verbrennungen verlaufen in reinem Sauerstoff rascher als in der Luft, fre konzentrierte Gifte oder Medikamente wirken schneller

Holzspäne verbrennen rascher als ein Holzklotz, aufgelöste Tabletten werden schneller aufgenommen

Katalysatoren sind Stoffe, welche die Geschwindigkeit einer chemischen Reaktion beeinflussen, ohne dabei selbst verbraucht zu werden. Katalysatoren für chemische Vorgänge in Lebewesen nennt man Enzyme oder Fermente.

Versuch:

Entzünde mit einem Feuerzeug auf einer feuerfesten Unterlage (Alufolie) ein Stück Würfelzucker.

Bestreiche einen zweiten Würfelzucker zuerst mit Zigarrenasche und wiederhole das Experiment.

bei hoher Konzentration der beteiligten Stoffe

bei feinem Zerteilungsgrad der Stoffe

bei Anwesenheit von Katalysatoren

2. Gemische

Die meisten **Rohstoffe in der Natur** sind Gemische verschiedener reiner Stoffe (Meerwasser, Erde, Erdöl, Erdgas, Milch, Blut usw.).

Die Luft ist ein Gemisch.

	Volumen %	Dichte in bei 0°C	g/Liter bei 25°C	Schmelzpunkt °C	Siedepunkt °C
Luft	100	1,293	1,20	-213	-193
Stickstoff (N)	78	1,251	1,17	-210,1	-195,8
Sauerstoff (O)	21	1,429	1,33	-218,8	-183
Wasserstoff (H) Kohlendioxid (CO ₂) verschiedene Edelgase	} 1	0,0899 1,977 siehe Peri	0,08 1,81 odensystem	–259,2 – 78,5 sublimi	-252,8 ert

Legierungen sind Gemische.

Messing

Mischung aus Kupfer und Zink.

Bronze

Mischung aus Kupfer und Zinn.

Münzgeld in der Schweiz:

Silbermünzen bis 1967

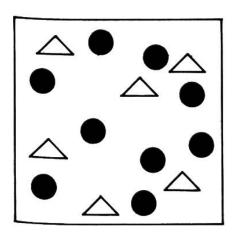
835% Silber + 165% Kupfer

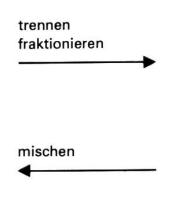
Kupfernickelmünzen 5 Rp. bis 5 Fr.

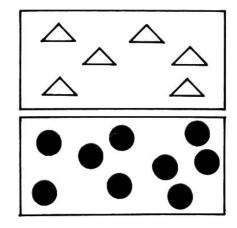
750% Kupfer + 250% Nickel

Bronzemünzen 1 Rp., 2 Rp.

950% Kupfer + 40% Zinn + 10% Zink

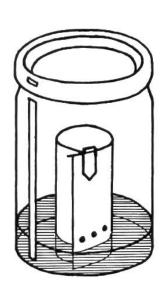

Goldvreneli


900% Gold + 100% Kupfer


3. Fraktioniermethoden (Trennmethoden)

Gemisch

reine Stoffe



Gemisch

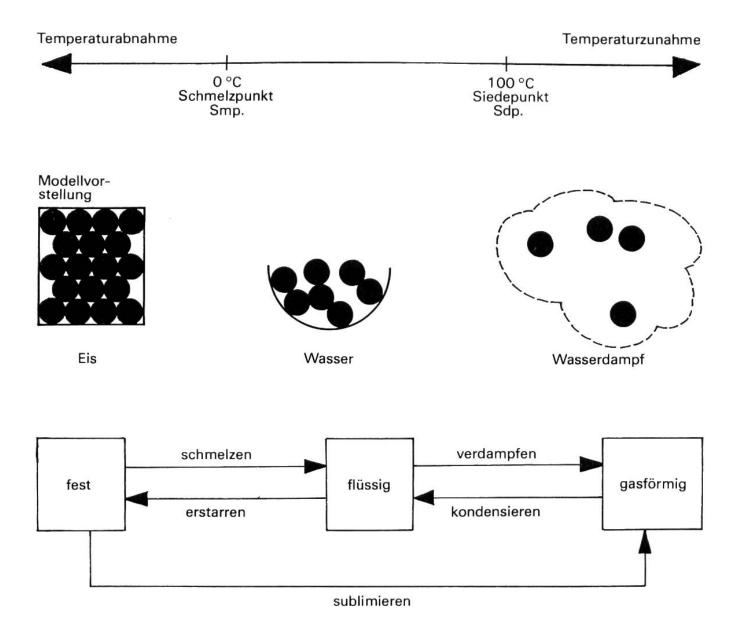
reine Stoffe

schmutziges Wasser	filtrieren	(feste Erdteilchen) + Wasser
Blut	absetzen lassen zentrifugieren	(Blutplasma) + Blutkörperchen
Kochsalzlösung	abdampfen	(Wasser) + Kochsalz
Wein	destillieren	(Rest) + Alkohol
Kochsalz im Boden	extrahieren herauslösen	Kochsalzlösung
Tinte, Filzstiftfarben, Gifte usw.	chromatographieren	reine Stoffe

Reine Stoffe sind ohne Stoffumwandlung nicht weiter trennbar. Das Herstellen von absolut reinen Stoffen ist oft aufwendig, teuer und nur für wissenschaftliche und medizinische Zwecke nötig.

Versuch: Papierchromatographie

Trage mit wasserlöslichen Filzstiften (am besten schwarz oder braun) kleine Farbflecken etwa 2 cm vom unteren Rand entfernt auf einem Stück Fliesspapier auf. Forme mit dem Fliessblatt eine Rolle, fixiere diese oben mit einer Büroklammer. Stelle nun das Papier gemäss Zeichnung in ein Einmachglas o.ä., in welches du vorher etwa 1 cm hoch Wasser gegeben hast.


In etwa 20 Minuten trägt das Wasser die verschiedenen reinen Stoffe des Farbstoffgemischs verschieden weit mit.

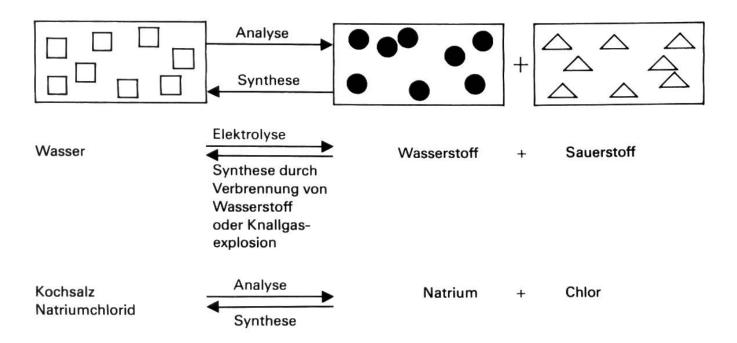
Versuche bei weiteren Farbstoffen herauszufinden, ob es sich um Gemische oder reine Stoffe handelt. Benütze als Fliessmittel auch Essig, Alkohol, Wundbenzin, Pinselreiniger usw. oder Mischungen davon.

4. Aggregatzustände (Zustandsformen)

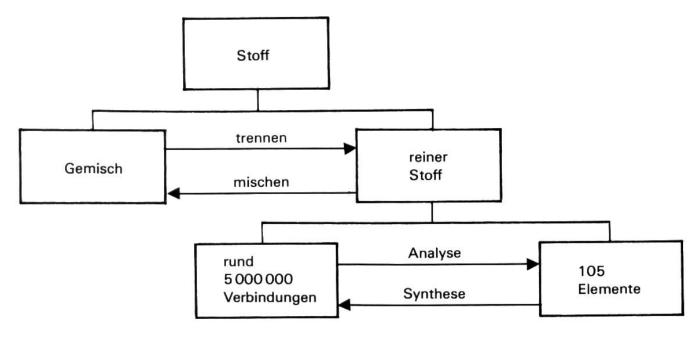
Reine Stoffe können je nach Temperatur und Druck fest, flüssig oder gasförmig sein.

Beispiel: Wasser

Bei nicht reinem Wasser liegt der Siedepunkt höher als 100 °C und der Schmelzpunkt tiefer als 0 °C. Deshalb streut man im Winter Salz auf die Strassen!


Versuch: Gib gleiche Mengen von sauberem Wasser und von verschiedenen Salzlösungen in leere Joghurtbecher und bestimme die Gefrierpunkte (= Schmelzpunkte) oder miss die Zeit bis zum vollständigen Erstarren im Tiefkühlfach.

5. Verbindung und Element


Reine Stoffe sind entweder Verbindungen oder Elemente.

Verbindungen sind durch Analysen (Einwirkung von Wärme, elektrischem Strom oder anderen Stoffen) in neue Stoffe mit neuen Eigenschaften zerlegbar. Sie sind durch Synthesen aus mindestens zwei verschiedenen Atomsorten (Elementen) aufbaubar.

Elemente (chemische Grundstoffe) sind auch chemisch nicht weiter zerlegbar. Sie sind aus einer einzigen Atomsorte aufgebaut.

Zusammenfassung

6. Kleinste Teilchen – Bausteine der reinen Stoffe

Stoffklasse	Baustein	Modellvorstellung	
Metalle	Atom = chemisch kleinstes Masseteilchen	oder o	Atomkern mit positiv geladenen Protonen und Neutronen
			Atomhülle mit negativ geladenen Elektronen
Salze	lon = elektrisch geladenes Atom oder geladene Atomgruppe	Kochsalz in Wasser gelöst oder flüssig:	Kochsalz fest:
	(Beim Kochsalz: Na-Atom gibt 1 Elektron an CI-Atom → positiv geladene Na-Ionen und negativ geladene CI-Ionen)	Na⁺ CI⁻	lonengitter
Flüchtige Stoffe	Molekül = fest verknüpf- ter, abgeschlossener Atomverband	Name Struktur- Summen- formel formel	Modelle
		Wasserstoff H—H H ₂	o⊸o ∞
		Sauerstoff $O = O$ O_2	
		Wasser O H H	
		Kohlen- $O = C = 0$ dioxid CO_2	
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
Hoch- molekulare Stoffe	Riesenmolekül	Grundmolekül: C₂H₄ Äthen (Äthylen)	Riesenmolekül: Polyäthylen (PE)

7. Die Elemente

Name	Symbol	Ordnungs- zahl	mittlere relative Atommasse	Dichte	Smp.	Sdp.
			[u]	[g/ml]	[°C]	[°C]
Actinium	Ac	89	(227)*	10,1	1050	um 3300
Aluminium	Al	13	26,982	2,70	660	2447
Americium	Am	95	(243)*	11,7	1176	um 3000
Antimon	Sb	51	121,75	6,0	630,5	1637
Argon	Ar	18	39,948	1,661	-189,4	-185,9
Arsen	As	33	74,922	5,7	613 sublim	iert
Astatin	At	85	(210)*			380?
Barium	Ва	56	137,34	3,5	710	1638
Berkelium	Bk	97	(247)*			
Beryllium	Be	4	9,012	1,8	1283	2477
Blei	Pb	82	207,19	11,34	327,4	1751
Bor	В	5	10,811	2,5	2027	3927
Brom	Br	35	79,904	3,12	-7,2	58
Cadmium	Cd	48	112,40	8,6	320,9	765
Calcium	Ca	20	40,08	1,55	850	1492
Californium	Cf	98	(251)*			
Cäsium	Cs	55	132,905	1.90	28,6	685
Cer	Ce	58	140,12	6,7	795	3468
Chlor	CI	17	35,453	2,99¹	-101	-34
Chrom	Cr	24	51,996	7,1	1900	2642
Curium	Cm	96	(247)*	um 7	um 1300	
Dysprosium	Dy	66	162,50	8,5	1407	um 260
Einsteinium	Es	99	(254)*			
Eisen	Fe	26	55,847	7,86	1539	2887
Erbium	Er	68	167,26	9,0	1497	um 290
Europium	Eu	63	151,96	5,3	826	1439
Fermium	Fm	100	(257)*			
Fluor	F	9	18,998	1,581	-219,6	-187,9
Francium	Fr	87	(223)*		27?	
Gadolinium	Gd	64	157,25	7,9	1312	um 300
Gallium	Ga	31	69,72	5,91	29,8	2237
Germanium	Ge	32	72,59	5,36	960	2830
Gold	Au	79	196,967	19,3	1063	2707
Hafnium	Hf	72	178,49	13,3	2222	5280
Hahnium	Ha	105	(260)*	-		
Helium	He	2	4,0026	0,171	-269,7	-268,9
Holmium	Ho	67	164,930	8,8	1461	um 260

Name	Symbol	Ordnungs- zahl	mittlere relative Atommasse	Dichte	Smp.	Sdp.
			[u]	[g/ml]	[°C]	[°C]
Indium	In	49	114,82	7,3	156,2	2047
Iridium	lr	77	192,2	22,4	2454	4130
lod	1	53	126,905	4,93	113,6	184,5
Kalium	K	19	39,102	0,86	63,2	766
Kobalt	Co	27	58,933	8,9	1495	2877
Kohlenstoff	С	6	12,0112	2,26	3800 sublir	
Krypton	Kr	36	83,80	3,461	-157,2	-153
Kupfer	Cu	29	63,54	8,92	1083	2582
Kurtschatowium	Ku	104	(257)*			
Lanthan	La	57	138,91	6,2	920	3370
Lawrencium	Lr	103	(256)*			
Lithium	Li	3	6,941	0,53	180,5	1331
Lutetium	Lu	71	174,97	9,8	1652	3327
Magnesium	Mg	12	24,305	1,74	650	1120
Mangan	Mn	25	54,938	7,2	1244	2041
Mendelevium	Md	101	(258)*			
Molybdän	Мо	42	95,94	10,2	2610	4830
Natrium	Na	11	22,9898	0,97	98	890
Neodym	Nd	60	144,24	7,0	1024	3027
Neon	Ne	10	20,179	0,841	-248,6	-246
Neptunium	Np	93	(237)*	19,5	637	um 3900
Nickel	Ni	28	58,70	8,90	1455	2837
Niob	Nb	41	92,906	8,4	2487	4930
Nobelium	No	102	(253)*			
Osmium	Os	76	190,2	22,48	2727	4230
Palladium	Pd	46	106,4	12	1550	3127
Phosphor	P	15	30,974	1,82	44,2	280
Platin	Pt	78	195,09	21,45	1769	3827
Plutonium	Pu	94	(244)*	19,8	640	3235
Polonium	Po	84	(209)*	9,3	254	962
Praseodym	Pr	59	140,92	6,8	935	3127
Promethium	Pm	61	(145)*		1047?	
Protactinium	Pa	91	(231)*	15,4	1800?	
Quecksilber	Hg	80	200,59	13,55	-38,87	357
Radium	Ra	88	226,05*	5?		
Radon	Rn	86	(222)*	um 6¹	-71	-62
Rhenium	Re	75	186,207	21,4	3180	5630
Rhodium	Rh	45	102,905	12,5	1966	3727
Rubidium	Rb	37	85,47	1,53	38,8	701
Ruthenium	Ru	44	101,07	12,2	2427	3727

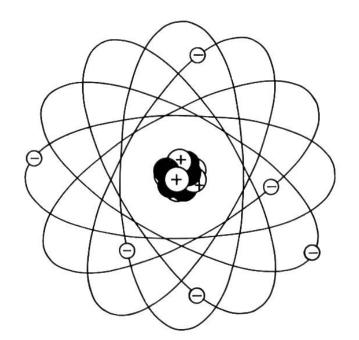
Name	Symbol	Ordnungs- zahl	mittlere relative	Dichte	Smp.	Sdp.
3 -			Atommasse [u]	[g/ml]	[°C]	[°C]
Samarium	Sm	62	150,35	7,5	1072	1900
Sauerstoff	0	8	15,9994	1,331	-218,8	-183
Scandium	Sc	21	44,956	2,5	1423	2480
Schwefel	S	16	32,064	2,07	119	444,6
Selen	Se	34	78,96	4,7	217	688
Silber	Ag	47	107,870	10,5	960,8	2177
Silicium	Si	14	28,086	2,4	1423	2680
Stickstoff	N	7	14,0067	1,171	-210,1	-195,8
Strontium	Sr	38	87,62	2,6	770	1370
Tantal	Та	73	180,95	16,6	2997	5400
Technetium	Tc	43	(98)*	11,5	2127	
Tellur	Te	52	127,60	6,1	450	1087
Terbium	Tb	65	158,93	8,3	1356	2800
Thallium	TI	81	204,37	11,8	304	1470
Thorium	Th	90	232,05*	11,7	1750	3850
Thulium	Tm	69	168,94	9,3	1545	1727
Titan	Ti	22	47,90	4,5	1677	3280
Uran	U	92	238,03*	18,7	1132	3818
Vanadium	V	23	50,942	5,96	1917	3380
Wasserstoff	Н	1	1,00797	0,081	-259,2	-252,8
Wismut	Bi	83	208,980	9,8	271,3	1559
Wolfram	W	74	183,85	19,3	3380	5530
Xenon	Xe	54	131,30	5,5¹	-111,9	-108,1
Ytterbium	Yb	70	173,04	7,0	824	1427
Yttrium	Υ	39	88,905	4,5	1500	3230
Zink	Zn	30	65,37	7,14	419,5	908
Zinn	Sn	50	118,69	6	231,9	2687
Zirkonium	Zr	40	91,22	6,4	1852	4380

^{*} radioaktive Elemente

⁽⁾ Atommasse des stabilsten oder bekanntesten Isotops

¹ Dichte gasförmiger Elemente in g/Liter bei 25 °C und Normaldruck

8. Bemerkungen zum Periodensystem


- Die rund 100 verschiedenen Atomsorten, die Elemente, sind im Periodensystem nach zunehmender Atommasse (früher Atomgewicht) geordnet.
- Die Atommasseneinheit (1 u) ist ¹/₁₂ der Masse des häufigsten Kohlenstoffisotops ¹²C.
- Die Ordnungszahl (Platznummer) entspricht der Anzahl positiv geladener Protonen im Atomkern und der Anzahl der negativ geladenen Elektronen in der Atomhülle.

Beispiel: Kohlenstoff (C) Modellvorstellung:

Ordnungszahl 6

Atomhülle mit 6 negativ geladenen Elektronen ⊖

Atomkern mit 6 positiv geladenen Protonen ⊕ und Neutronen ●

- Isotope sind Atome eines bestimmten Elementes, die sich nur in der Masse unterscheiden (mehr oder weniger Neutronen im Atomkern).
- Bei Zimmertemperatur sind 2 Elemente flüssig (Br, Hg), 11 gasförmig (H, He, N, O, F, Ne, Cl, Ar, Kr, Xe, Rn) und alle übrigen fest.
- Die waagrechten Zeilen im Periodensystem nennt man Perioden.
 Elemente, die verwandte chemische Eigenschaften haben, gehören zur gleichen Gruppe. Sie stehen im Periodensystem untereinander.

Gruppe 1 a: Alkalimetalle

Weiche, sehr reaktionsfähige Metalle mit tiefem Smp., die mit Wasser heftig reagieren und deshalb in Petrol aufbewahrt werden.

In der Natur kommen sie nur in salzartigen Verbindungen vor. Alkalimetalle haben die Tendenz, 1 Elektron abzugeben und dabei einfach positiv geladene lonen zu bilden: Na+, K+,

Gruppe 2a: Erdalkalimetalle

Kommen in der Natur nicht elementar, sondern nur in salzartigen Verbindungen vor. Erdalkalimetalle geben leicht 2 Elektronen ab und bilden dabei doppelt positiv geladene lonen: Mg^{2+} , Ca^{2+} .

Fortsetzung S. 66

9. Periodensystem der Elemente

1									
2	3 Li Lithium	4 Be Beryllium							
3	11 Na Natrium	Mg Magnesium							
	1 a	2 a	3 b		4 b	5 b	6 b	7 b	8
4	19 K Kalium	20 Ca Calcium	21 Sc Scandium		22 Ti Titan	23 V Vanadium	24 Cr Chrom	25 Mn Mangan	26 Fe Eisen
5	37 Rb Rubidium	38 Sr Strontium	39 Y Yttrium		40 Zr Zirkonium	41 Nb Niob	42 Mo Molybdän	43 TC Technetium	44 Ru Ruthenium
6	55 Cs Caesium	56 Ba Barium	57 La Lanthan	58 bis 71	72 Hf Hafnium	73 Ta Tantal	74 VV Wolfram	75 Re Rhenium	76 Os Osmium
7	87 Fr Francium	88 Ra Radium	89 Ac Actinium	90 bis 103	104 Ku Kurtscha- towium	105 Ha Hahnium	106		
			thanic le der seltenen			Ce Cer	59 Pr Praseodym	60 Nd Neodym	61 Pm Promethium
			ctinide	en		90 Th Thorium	91 Pa Protactinium	92 U Uran	93 Np Neptunium

-									
	1								2
	Н								He
	Wasserstoff								Helium
				5	6	7	8	9	10
				В	С	Ν	0	F	Ne
				Bor	Kohlenstoff	Stickstoff	Sauerstoff	Fluor	Neon
				13	14	15	16	17	18
				ΑI	Si	Р	S	CI	Ar
				Aluminium	Silicium	Phosphor	Schwefel	Chlor	Argon
8		1 b	2 b	3 a	4 a	5 a	6 a	7 a	0
27	28	29	30	31	32	33	34	35	36
Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Kobalt	Nickel	Kupfer	Zink	Gallium	Germanium	Arsen	Selen	Brom	Krypton
45	46	47	48	49	50	51	52	53	54
Rh	Pd	Ag	Cd	ln	Sn	Sb	Te	- 1	Xe
Rhodium	Palladium	Silber	Cadmium	Indium	Zinn	Antimon	Tellur	Jod	Xenon
77	78	79	80	81	82	83	84	85	86
lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
Iridium	Platin	Gold	Quecksilber	Thallium	Blei	Wismut	Polonium	Astatin	Radon

62	63	64	65	66	67	68	69	70	71
Sm	Eu	Gd	Tb	Dy	Ήo	Er	Tm	Yb	Lu
Samarium	Europium	Gadolinium	Terbium	Dysprosium	Holmium	Erbium	Thulium	Ytterbium	Lutetium
94	95	96	97	98	99	100	101	102	103
Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
Plutonium	Americium	Curium	Berkelium	Californium	Einsteinium	Fermium	Mendelevium	Nobelium	Lawrencium

- Gruppe 7 a: Halogene

Reaktionsfreudige, leicht flüchtige Nichtmetalle, die in der Natur nicht elementar vorkommen. Sie bilden mit Metallen Salze. Halogene haben die Tendenz, 1 Elektron aufzunehmen und dabei einfach negativ geladene Ionen zu bilden: F-, Cl-, I-.

- Gruppe 0: Edelgase

Sehr reaktionsträge, stabile Nichtmetalle ohne Bindungselektronen.

Häufigkeit der Elemente:

		Anteil in der	Anteil im
		Erdrinde	menschlichen Körper
		[Massenprozente]	[Massenprozente]
Sauerstoff	0	50	65
Silicium	Si	26	_
Aluminium	Al	7	a a
Eisen	Fe	4	sehr wenig
Calcium	Ca	3	2
Natrium	Na	2,5	0,15
Kalium	K	2,5	0,4
Magnesium	Mg	2	_ ^
Wasserstoff	Н	1	10
alle übrigen		2	
Kohlenstoff	С		18
Stickstoff	N		3
Phosphor	Р		1
Schwefel	S		0,3
Chlor	CI		0,15

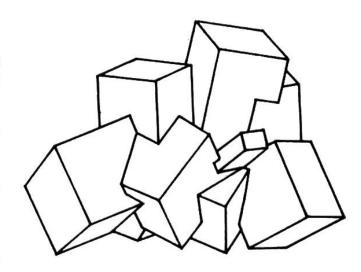
10. Salze

Die Bausteine der Salze sind Ionen (elektrisch geladene Atome oder Atomgruppen).

Da sich elektrisch verschieden geladene Teilchen anziehen, bestehen die Salze in festem Zustand aus lonengittern. Diese Gitter zerfallen in Wasser mehr oder weniger in Einzelionen. Diese elektrisch geladenen Teilchen sind dafür verantwortlich, dass Salzlösungen den elektrischen Strom leiten (Modellvorstellung siehe Abschnitt 6).

	Cl ⁻ Chloridion	NO ₃ ⁻ Nitration	SO ₄ ²⁻ Sulfation	CO ₃ ²⁻ Carbonation
Na ⁺ färbt Flamme gelb	NaCl Natriumchlorid (Kochsalz)	NaNO ₃ Na-nitrat (Chilesalpeter)	Na₂SO₄ Na-sulfat (Glaubersalz)	Na₂CO₃ Na-carbonat (Soda)
K ⁺ färbt Flamme violett	KCI Kaliumchlorid	KNO ₃ K-nitrat (Kalisalpeter)	K₂SO₄ K-sulfat	K ₂ CO ₃ K-carbonat (Pottasche)
Ca ²⁺ färbt Flamme rot	CaCl ₂ Calciumchlorid	Ca(NO ₃) ₂ Ca-nitrat (Kalksalpeter)	CaSO₄ Ca-sulfat (Gips)	CaCO ₃ Ca-carbonat (Kalkstein)
Cu ²⁺ färbt Flamme grün	CuCl ₂ Kupferchlorid	Cu(NO ₃) ₂ Cu-nitrat	CuSO ₄ Cu-sulfat (Kupfervitriol)	CuCO ₃ Cu-carbonat

Kochsalz, Natriumchlorid NaCl Vorkommen:


als «Steinsalz» im Boden, Herauslösung mit Wasser und im Meerwasser (Salzgehalt rund 3,5%, NaCl etwa 2,5%).

Eigenschaften:

- in festem Zustand würfelförmige, weissliche oder farblose Kristalle
- geruchlos, typisch salzartiger Geschmack
- gut wasserlöslich (in 1 Liter Wasser lösen sich bei Zimmertemperatur bis 350 g)
- Dichte 2,16 g/cm³
- nicht brennbar, färbt Flamme gelb
- festes Kochsalz schmilzt bei 801 °C (Smp.)
- flüssiges Kochsalz siedet bei 1440 °C (Sdp.)

Verwendung:

- als Speisesalz, als Konservierungsmittel (z. B. für Fische)
- als Streusalz im Winter (Gemische haben einen tieferen Smp. als reine Stoffe; reines Wasser gefriert bei 0 °C, Salzlösungen haben einen tieferen Gefrierpunkt)

- für Kältemischungen (3 Teile Eis + 1 Teil Kochsalz gemischt liefert Temperaturen bis —21 °C)
- als Ausgangsstoff zur Gewinnung von Chlor, Salzsäure, Soda (Natriumcarbonat) usw.

Wichtige Ionen mit positiver Ladung (Kationen)

Ladung	+1	Ladung	+2	Ladung	+3
H ⁺	Wasserstoffion	Mg ²⁺	Magnesiumion	Al3+	Aluminiumion
Na⁺	Natriumion	Ca ²⁺	Calciumion	Fe ³⁺	Eisen(III)-ion
K ⁺	Kaliumion	Fe ²⁺	Eisen(II)-ion		
H ₃ O ⁺	Hydroniumion	Cu ²⁺	Kupferion		
NH ₄ +	Ammoniumion		(*)		

Wichtige Ionen mit negativer Ladung (Anionen)

Ladung	-1	Ladung	–2	Ladung	-3
F-	Fluoridion	O ²⁻	Oxidion	PO ₄ 3-	Phosphation
CI-	Chloridion	S2-	Sulfidion	(-	
1-	lodidion	SO ₃ 2-	Sulfition		
OH-	Hydroxidion	SO42-	Sulfation		
NO ₃ -	Nitration	CO ₃ 2-	Carbonation		
HCO ₃	Hydrogencarbonation	ū			

11. Säuren und Basen

Säuren

- verleihen dem Wasser einen «sauren» Geschmack
- färben Lackmus rot
- bilden mit Metallen Wasserstoff
- geben leicht Wasserstoffionen H+ ab
- bilden in wässrigen Lösungen H₃O⁺-lonen (Hydroniumionen)
- leiten in wässrigen Lösungen den elektrischen Strom
- können die Wirkung von Laugen aufheben

Weinsäure

Basen

- verleihen dem Wasser einen faden, seifigen Geschmack
- färben Lackmus blau, Phenolphthalein rot
- nehmen leicht Wasserstoffionen auf
- bilden in wässrigen Lösungen (Laugen) OH--lonen (Hydroxidionen)
- leiten in wässrigen Lösungen den elektrischen Strom
- können die Wirkung von Säuren aufheben

Beispiele:

Beispiele:		Beispiele:	
HCI	Chlorwasserstoff (Gas) mit Wasser: Salzsäure	NaOH	Na-hydroxid (fest) mit Wasser: Natronlauge
H ₂ SO ₄	Schwefelsäure	Ca(OH) ₂	Ca-hydroxid (gelöschter Kalk) mit Wasser: Kalkwasser
HNO ₃	Salpetersäure	NH ₃	Ammoniak
H ₂ CO ₃	Kohlensäure	Na ₂ CO ₃	Na-carbonat (Soda)
CH ₃ COOH	Essigsäure		
	Zitronensäure		Seife

Mass für die Stärke von Säuren und Laugen ist der pH-Wert:				
pH < 7: sauer	pH 7: neutral	pH > 7: basisch oder alkalisch		
	pH-Wert		pH-Wert	
verdünnte Salzsäure	0 bis 2	Blut	7,4	
Magensaft	0,9 bis 1,5	Meerwasser	8,3	
Essig	2,5	Seifenlösung	10 bis 11	
Frischmilch	6,5	Leitungswasser	7 bis 8,5	
Speichel	6,7	verdünnte Natronlauge	12 bis 14	

Neutralisation beruht auf folgendem Vorgang

H₃O⁺ + OH⁻ 2 H₂O (Wasser)

Konzentration wichtiger Säuren und Basen

		Massengehalt in	%
		konzentriert	verdünnt
Salzsäure	HCI	33 bis 37	7
Schwefelsäure	H ₂ SO ₄	93 bis 97	9
Salpetersäure	HNO ₃	65	12
Essigsäure	CH₃COOH	98 bis 100	30
Natronlauge	NaOH	100 (fest)	
		30	8
Ammoniakwasser	NH ₃	24	3

12. Konzentration von Lösungen

Der Gehalt einer Lösung an gelöstem Stoff kann ausgedrückt werden in

Massenprozenten (Gewichtsprozenten): Anzahl Gramm des Stoffes in 100 Gramm Lösung.
 Beispiel: 10%ige Zuckerlösung: zu 10 Gramm Zucker wird Wasser bis zur Gesamtmasse von 100 Gramm zugefügt.

Messinstrument: Waage

Anwendung: verschieden konzentrierte Lösungen in der Drogerie und in der Apotheke.

Volumenprozente: Anzahl cm³ des Stoffes in 100 cm³ Lösung.

Beispiel: 70volumenprozentiger Alkohol: 70 cm³ reinen Alkohol mit Wasser auf 100 cm³ auffüllen.

Messinstrument: Messzylinder, Pipette.

Anwendung: im Labor.

13. Gase in Druckflaschen

Gas	Formel	Kennzeichen/Farbe
Sauerstoff	O_2	blau
Wasserstoff	H_2^-	rot
Stickstoff	N_2	grün
Acetylen (Äthin)	C_2H_2	orange
Kohlendioxid	CO ₂	schwarz

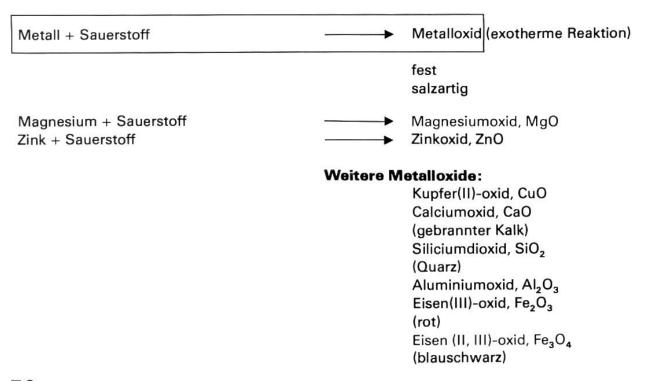
14. Sauerstoff O₂

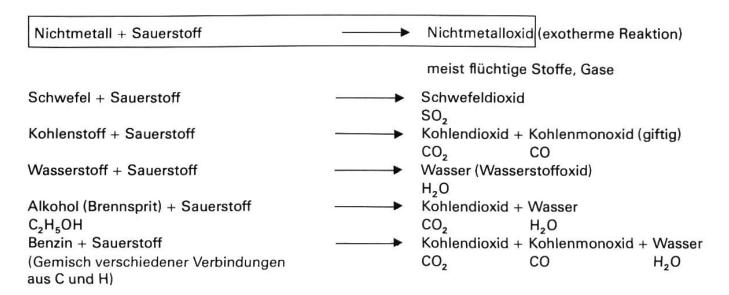
- Farbloses, geruchloses Gas, das die Verbrennung fördert.
- Sauerstoff ist f
 ür die Atmung lebensnotwendig.
- 21Volumenprozent der Luft sind Sauerstoff.
- Häufigstes Element in den Verbindungen der Erdrinde.
- Dichte 1,429 g/Liter bei 0 °C, 1,33 g/Liter bei 25 °C.
- Smp. −218,8 °C; Sdp. −183 °C.
- Gewinnung aus flüssiger Luft, im Labor und in Werkstätten in blau markierten Stahlflaschen.
- Entsteht bei der Zerlegung von Wasser mit elektrischem Strom am Pluspol.
- Herstellung im Labor in kleinen Mengen durch Erwärmen von Kaliumpermanganat (KMnO₄) oder Wasserstoffperoxid (H₂O₂) mit etwas Braunstein (MnO₂) als Katalysator.
- Nachweis: Glimmende Schnur oder glimmender Holzspan flammen in Sauerstoff auf.

15. Verbrennungen

Gewisse Stoffe verbrennen beim Erhitzen in der Luft unter Abgabe von Licht und Wärme zu neuen Stoffen mit neuen Eigenschaften. Dabei entstehen Verbindungen mit dem Sauerstoff der Luft. Diese nennt man Oxide. Die Oxide sind schwerer als die Brennstoffe!

In reinem Sauerstoff verlaufen die Oxidationen rascher als in der Luft.

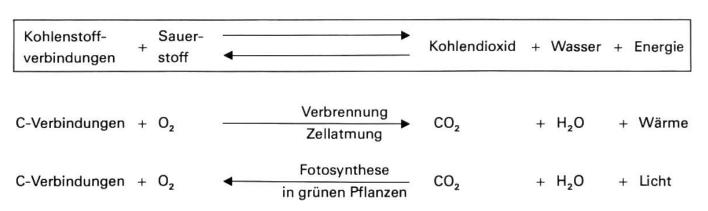

Versuch:


Wäge mit einer empfindlichen Waage auf einer feuerfesten Unterlage (Alufolie) ein grösseres, ganz lockeres Stück Eisenwatte (Stahlwatte) ab.

Entzünde nun die Watte durch Berühren mit den beiden Polen einer Taschenlampenbatterie (Kurzschluss).

Bei der Verbrennung verbindet sich das Eisen mit dem Sauerstoff der Luft.

Stelle mit der Waage fest, wieviel Sauerstoff aufgenommen wurde.



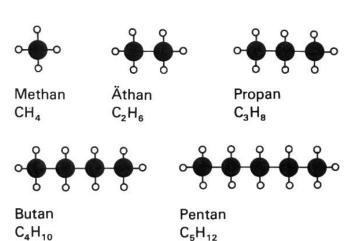
Der Umkehrvorgang der Verbrennung ist zur Gewinnung von Metallen sehr wichtig:

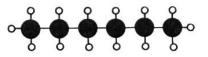
Metalloxid		Metall + Sauerstoff (endotherme Reaktion)
Eisenoxid		Eisen + Sauerstoff
Kupferoxid		verbindet sich mit C zu Kohlendioxid Kupfer + Sauerstoff
and the state of t		verbindet sich mit C zu Kohlendioxid

16. Verbrennung und Fotosynthese

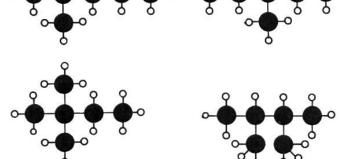
17. Organische Chemie

- Organische Chemie ist die Chemie der Kohlenstoff-Verbindungen.
- Das C-Atom ist vierbindig: -C-
- Das C-Atom kann sich praktisch unbegrenzt mit anderen C-Atomen zu Ketten, Ringen oder Gerüsten verbinden, deshalb die riesige Zahl von organischen Verbindungen:


- C-Verbindungen sind aus Molekülen oder Riesenmolekülen aufgebaut.
- Viele C-Verbindungen sind brennbar.
- Viele sind nicht wärmebeständig, sie verkohlen oder werden beim Erwärmen zerstört.
- Die organisch-chemische Industrie stellt zum Beispiel folgende Kohlenstoffverbindungen her: Kunststoffe, Arzneimittel, Textilien, Farbstoffe, Schädlingsbekämpfungsmittel, Waschmittel, Klebstoffe, Treibstoffe usw.


18. Kohlenwasserstoffe

(Verbindungen aus C und H, z. B.im Erdöl)


Kettenförmige Kohlenwasserstoffe

mit Einfachbindungen: Alkane C2nH2n+2

n-Hexan C₆H₁₄

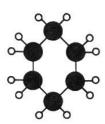
4 verschiedene iso-Hexane C₆H₁₄ (gleiche Summenformel, verschieden aufgebaut, verschiedene Eigenschaften)

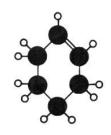
mit Doppelbindungen: Alkene

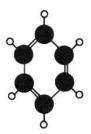
Äthen (Äthylen)

C2H4

Baustein für viele C-Verbindungen


mit Dreifachbindungen: Alkine




Äthin (Acetylen) C₂H₂

Gas in orange markierten Stahlflaschen für Schneidbrenner und zum Schweissen

Ringförmige Kohlenwasserstoffe

Zyklohexan C₆H₁₂ Zyklohexen C₆H₁₀ Benzol C₆H₆

19. Kohlenhydrate

(Verbindungen aus C, H und O)

● Einfachzucker C₆H₁₂O₆ Nachweis mit Fehlinglösung

Traubenzucker

Fruchtzucker

Doppelzucker C₁₂H₂₂O₁₁

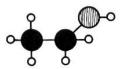
aufgebaut aus je einem Traubenzucker- und Fruchtzuckermolekül

Rohr- oder Rübenzucker

Stärke (C₆H₁₀O₅) n

Riesenmoleküle aus verketteten Traubenzuckermolekülen. In Kartoffeln, Getreide, Brot usw. Nachweis mit lod-iodkaliumlösung.

■ Zellulose (C₆H₁₀O₅) n


Wie Stärke aus verketteten Traubenzuckermolekülen aufgebaut. In Zellwänden der Pflanzen; Baumwollfaser, Watte, Fliesspapier usw.

20. Weitere organische Verbindungen

Alkohole

Beispiel: Äthanol (Äthylalkohol)

C₂H₅OH Smp. -114°, Sdp. 78°C

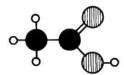
Äthanol entsteht bei der natürlichen Gärung von Trauben- und Fruchtsäften oder künstlich aus Erdölprodukten.

Alkoholgehalt

	(Volumen-%)
Bier	5
Most, Obstwein	6
Wein	10
Liköre	25
Branntwein	40-50

Traubenzucker Hefe Alkohol

Kohlendioxid (exotherme R.)


C₆H₁₂O₆

 $2 C_2 H_5 OH$ $2 CO_2$

Säuren

Beispiel: Essigsäure (Äthansäure)

CH₃COOH Smp. 16,6°, Sdp. 118°C

Eiweisse (Proteine), Verbindungen aus C, H, O, N (evtl. auch S, P)

Riesenmoleküle aufgebaut aus Aminosäuren.

Aufbau- und Betriebsstoff in tierischen Zellen, Reservestoff in Pflanzen.

Nachweis mit konzentrierter Salpetersäure.

21. Kunststoffe

Hochmolekulare Stoffe mit aus einfachen Grundmolekülen aufgebauten Riesenmolekülen.

Grundmolekül	Riesenmolekül	Bemerkungen
$\frac{H}{H}$ $c = c $	Polyäthylen (PE)	Verbrennt mit blauer Flamme zu farblosem Rauch. Plastiksäcke, Folien, Geschirr, Isoliermaterial usw.
Äthen (Äthylen)		
$ \begin{array}{ccc} H & C & C \\ H & Cl \end{array} $ Vinylchlorid	Polyvinylchlorid (PVC)	Verbrennt mit gelblich-grüner Flamme zu weissem Rauch mit stechendem Geruch (giftiges Chlorwasserstoffgas HCl, das mit Wasser Salzsäure bildet!). Schallplatten, Schläuche, Regen- bekleidungen usw.
F C = C F Tetrafluoräthen	Polytetrafluoräthen	Dichtungen, Beläge in Pfannen (Teflon)
$ \begin{array}{c} H \\ C \\ C \\ III \end{array} $	Polyacrylnitril (PAN)	Kunstfasern wie Orlon, Dralon usw.
Acrylnitril N		
$\frac{1}{H}C = \frac{1}{C} \cdot \frac{1}{C} \cdot \frac{1}{C} \cdot H$	Polystyrol (PS)	Verbrennt mit gelb-oranger Flamme und typischem Geruch zu schwarzem Rauch. Yoghurtbecher; aufgeschäumt als Styropor.
Styrol H		

Weitere Kunststoffe: Plexiglas, Bakelit, Nylon, Perlon, Phenolharze, Araldit usw.

Kunststoffe sind leicht. Sie isolieren gut gegen Wärme und elektrischen Strom (Isolatoren). Sie sind gegen Wasser und die meisten Chemikalien beständig. Kunststoffe lassen sich leicht in verschiedene Formen giessen oder pressen und zu Fäden oder Folien ausziehen.

22. Gifte

Kennzeichen	Bemerkungen	Beispiele			
Schwarzes Band mit weisser Auf- schrift und Toten- kopfsymbol	Besonders gefähr- liche und stark ätzende Stoffe. Nur mit Giftschein	Giftklasse 1:	Phosphor (weiss) Kohlendisulfid (Schwefelkohlenstoff) Tetrachlorkohlenstoff	P CS ₂ CCl ₄	
	erhältlich	Giftklasse 2:		N. OU	
				NaOH	
Gift			Salpetersäure	HNO ₃	
			konz. Salzsäure Schwefelsäure	HCI H₂SO₄	
Gelbes Band Starke Gifte und Wasserstoffperoxid		-	H ₂ O ₂		
			(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(
	stätigung erhältlich.	경우를 이 없어지는 것이 되었다. 그렇게 하면 이 사람이 되었다면 그 아무리 아이라면 하다.			
Rotes Band	Weniger gefähr-	Magnesium	-		
		10 Table 10	477		
	•	Magnesiums		SO₄	
		Hexan	(50)	200	
		Aceton		CH₃COCH₃	
Rotes Band	Schwache Gifte. Teilweise in Selbst- bedienungsläden erhältlich.	The second supplies the second		CO₃ ₅OH	
	Schwarzes Band mit weisser Aufschrift und Totenkopfsymbol Gift Gelbes Band Rotes Band	Schwarzes Band mit weisser Aufschrift und Totenkopfsymbol Gelbes Band Starke Gifte und ätzende Stoffe. Nur mit Giftschein erhältlich Starke Gifte und ätzende Stoffe. Nur gegen Empfangsbestätigung erhältlich. Rotes Band Weniger gefährliche Gifte. Verkauf nur durch Fachpersonal. Rotes Band Schwache Gifte. Teilweise in Selbstbedienungsläden	Schwarzes Band mit weisser Aufschrift und Totenkopfsymbol Gelbes Band Starke Gifte und ätzende Stoffe. Nur mit Giftschein erhältlich Starke Gifte und ätzende Stoffe. Nur gegen Empfangsbestätigung erhältlich. Rotes Band Weniger gefährliche Gifte. Verkauf nur durch Fachpersonal. Weniger gefährliche Gifte. Verkauf Nagnesium Calciumoxid Magnesiums Hexan Aceton Rotes Band Schwache Gifte. Teilweise in Selbstbedienungsläden Besonders gefährliche und stark ätzende Stoffe. Nur different verd. Salzsäu Kupfer(II)-sul Kaiiumnitrat Wasserstoffp verd. Salzsäu Kupfer(II)-sul Kaiiumnitrat Magnesium Calciumoxid Magnesium Quecksilber(I Magnesiums Hexan Aceton	Schwarzes Band mit weisser Aufschrift und Toten-kopfsymbol Besonders gefährliche und stark ätzende Stoffe. Nur mit Giftschein erhältlich Giftklasse 1: Phosphor (weiss) Kohlendisulfid (Schwefelkohlenstoff) Tetrachlorkohlenstoff Giftklasse 2: Br, I, K, Ca, Na, Hg, Natriumhydroxid (Natronlauge) Salpetersäure konz. Salzsäure Schwefelsäure Gelbes Band Starke Gifte und ätzende Stoffe. Nur gegen Empfangsbestätigung erhältlich. Rotes Band Weniger gefährliche Gifte. Verkauf nur durch Fachpersonal. Weniger gefährliche Gifte. Verkauf nur durch Fachpersonal. Magnesium Magnesiumoxid Magnesiumoxid Magnesiumoxid Magnesiumoxid Magnesiumsulfat Mgi Magnesiumsulfat Hexan Cele Hexan Aceton CH3 Rotes Band Schwache Gifte. Teilweise in Selbstbedienungsläden	

Karl Bolleter

Notizen:		
	9	
×		
F		
	i i	
	u	

Notizen:	
·	

Notizen:			
	 ALL CONTRACTOR OF THE PROPERTY	4	
			WHO I SHOW HE STATE OF THE STAT
	 - 14 (14 - 14 - 14 - 14 - 14 - 14 - 14 -		