**Zeitschrift:** Schatzkästlein: Pestalozzi-Kalender

**Herausgeber:** Pro Juventute

**Band:** - (1983)

Rubrik: Wissen

#### Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

#### **Conditions d'utilisation**

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

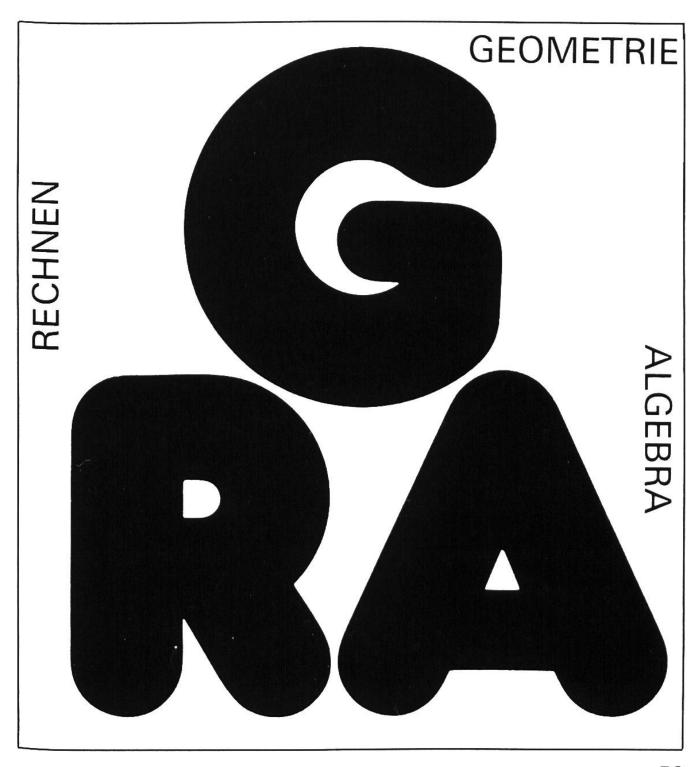
#### Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

**Download PDF: 20.11.2025** 

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

# WISSEN



# **Einmaleins**

|          | 2         | 3          | 4          | 5          | 6          | 7          | 8          | 9          | 10         | 11         | 12         | 13         | 14         | 15         |
|----------|-----------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| 2        | 4         | 6          | 8          | 10         | 12         | 14         | 16         | 18         | 20         | 22         | 24         | 26         | 28         | 30         |
| 3        | 6         | 9          | 12         | 15         | 18         | 21         | 24         | 27         | 30         | 33         | 36         | 39         | 42         | 45         |
| 4        | 8         | 12         | 16         | 20         | 24         | 28         | 32         | 36         | 40         | 44         | 48         | 52         | 56         | 60         |
| 5        | 10        | 15         | 20         | 25         | 30         | 35         | 40         | 45         | 50         | 55         | 60         | 65         | 70         | 75         |
| 6        | 12        | 18         | 24         | 30         | 36         | 42         | 48         | 54         | 60         | 66         | 72         | 78         | 84         | 90         |
| 7        | 14        | 21         | 28         | 35         | 42         | 49         | 56         | 63         | 70         | 77         | 84         | 91         | 98         | 105        |
| 8        | 16        | 24         | 32         | 40         | 48         | 56         | 64         | 72         | 80         | 88         | 96         | 104        | 112        | 120        |
| 9        | 18        | 27         | 36         | 45         | 54         | 63         | 72         | 81         | 90         | 99         | 108        | 117        | 126        | 135        |
| 10       | 20        | 30         | 40         | 50         | 60         | 70         | 80         | 90         | 100        | 110        | 120        | 130        | 140        | 150        |
| 11       | 22        | 33         | 44         | 55         | 66         | 77         | 88         | 99         | 110        | 121        | 132        | 143        | 154        | 165        |
| 12       | 24        | 36         | 48         | 60         | 72         | 84         | 96         | 108        | 120        | 132        | 144        | 156        | 168        | 180        |
| 13       | 26        | 39         | 52         | 65         | 78         | 91         | 104        | 117        | 130        | 143        | 156        | 169        | 182        | 195        |
| 14       | 28        | 42         | 56         | 70         | 84         | 98         | 112        | 126        | 140        | 154        | 168        | 182        | 196        | 210        |
| 15       | 30        | 45         | 60         | 75         | 90         | 105        | 120        | 135        | 150        | 165        | 180        | 195        | 210        | 225        |
| 16       | 32        | 48         | 64         | 80         | 96         | 112        | 128        | 144        | 160        | 176        | 192        | 208        | 224        | 240        |
| 17       | 34        | 51         | 68         | 85         | 102        | 119        | 136        | 153        | 170        | 187        | 204        | 221        | 238        | 255        |
| 18       | 36        | 54         | 72         | 90         | 108        | 126        | 144        | 162        | 180        | 198        | 216        | 234        | 252        | 270        |
| 19       | 38        | 57         | 76         | 95         | 114        | 133        | 152        | 171        | 190        | 209        | 228        | 247        | 266        | 285        |
| 20       | 40        | 60         | 80         | 100        | 120        | 140        | 160        | 180        | 200        | 220        | 240        | 260        | 280        | 300        |
| 21       | 42        | 63         | 84         | 105        | 126        | 147        | 168        | 189        | 210        | 231        | 252        | 273        | 294        | 315        |
| 22       | 44        | 66         | 88         | 110        | 132        | 154        | 176        | 198        | 220        | 242        | 264        | 286        | 308        | 330        |
| 23       | 46        | 69         | 92         | 115        | 138        | 161        | 184        | 207        | 230        | 253        | 276        | 299        | 322        | 345        |
| 24       | 48        | 72         | 96         | 120        | 144        | 168        | 192        | 216        | 240        | 264        | 288        | 312        | 336        | 360        |
| 25       | 50        | 75         | 100        | 125        | 150        | 175        | 200        | 225        | 250        | 275        | 300        | 325        | 350        | 375        |
| 26       | 52        | 78         | 104        | 130        | 156        | 182        | 208        | 234        | 260        | 286        | 312        | 338        | 364        | 390        |
| 27       | 54        | 81         | 108        | 135        | 162        | 189        | 216        | 243        | 270        | 297        | 324        | 351        | 378        | 405        |
| 28       | 56        | 84         | 112        | 140        | 168        | 196        | 224        | 252        | 280        | 308        | 336        | 364        | 392        | 420        |
| 29       | 58        | 87         | 116        | 145        | 174        | 203        | 232        | 261        | 290        | 319        | 348        | 377        | 406        | 435        |
| 30       | 60        | 90         | 120        | 150        | 180        | 210        | 240        | 270        | 300        | 330        | 360        | 390        | 420        | 450        |
| 31       | 62        | 93         | 124        | 155        | 186        | 217        | 248        | 279        | 310        | 341        | 372        | 403        | 434        | 465        |
| 32       | 64        | 96         | 128        | 160        | 192        | 224        | 256        | 288        | 320        | 352        | 384        | 416        | 448        | 480        |
| 33       | 66        | 99         | 132        | 165        | 198        | 231        | 264        | 297        | 330        | 363        | 396        | 429        | 462        | 495        |
| 34       | 68        | 102        | 136        | 170        | 204        | 238        | 272        | 306        | 340        | 374        | 408        | 442        | 476        | 510        |
| 35       | 70        | 105        | 140        | 175        | 210        | 245        | 280        | 315        | 350        | 385        | 420        | 455        | 490        | 525        |
| 36       | 72        | 108        | 144        | 180        | 216        | 252        | 288        | 324        | 360        | 396        | 432        | 468        | 504        | 540        |
| 37       | 74        | 111        | 148        | 185        | 222        | 259        | 296        | 333        | 370        | 407        | 444        | 481        | 518        | 555        |
| 38       | 76        | 114        | 152        | 190        | 228        | 266        | 304        | 342        | 380        | 418        | 456        | 494        | 532        | 570        |
| 39       | 78        | 117        | 156        | 195        | 234        | 273        | 312        | 351        | 390        | 429        | 468        | 507        | 546        | 585        |
| 40       | 80        | 120        | 160        | 200        | 240        | 280        | 320        | 360        | 400        | 440        | 480        | 520        | 560        | 600        |
| 41       | 82        | 123        | 164        | 205        | 246        | 287        | 328        | 369        | 410        | 451        | 492        | 533        | 574        | 615        |
| 42       | 84        | 126        | 168        | 210        | 252        | 294        | 336        | 378        | 420        | 462        | 504        | 546        | 588        | 630        |
| 43       | 86        | 129        | 172        | 215        | 258        | 301        | 344        | 387        | 430        | 473        | 516        | 559        | 602        | 645        |
| 44<br>45 | 88        | 132        | 176        | 220        | 264        | 308        | 352        | 396        | 440        | 484        | 528        | 572        | 616        | 660        |
| 45<br>46 | 90        | 135        | 180        | 225        | 270        | 315        | 360        | 405        | 450        | 495        | 540        | 585        | 630        | 675        |
| 46<br>47 | 92        | 138        | 184        | 230        | 276        | 322        | 368        | 414        | 460        | 506        | 552        | 598        | 644        | 690        |
| 47<br>49 | 94        | 141        | 188        | 235        | 282        | 329        | 376        | 423        | 470        | 517        | 564<br>576 | 611        | 658        | 705        |
| 48       | 96        | 144        | 192        | 240        | 288        | 336        | 384        | 432        | 480        | 528<br>539 | 576        | 624<br>637 | 672<br>686 | 720        |
| 49<br>50 | 98<br>100 | 147<br>150 | 196<br>200 | 245<br>250 | 294<br>300 | 343<br>350 | 392<br>400 | 441<br>450 | 490<br>500 | 550        | 588<br>600 | 650        | 700        | 735<br>750 |
| 30       | 100       | 130        | 200        | 230        | 300        | 330        | 400        | 400        | 500        | 550        | 000        | 030        | 700        | 150        |

# Zahlensysteme

#### Das Zehnersystem oder Dezimalsystem.

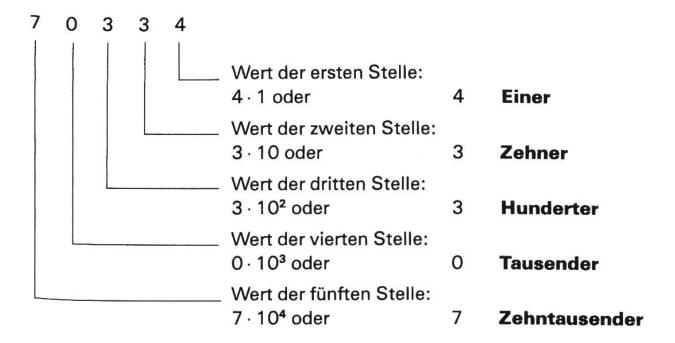
Wir schreiben jede noch so grosse natürliche Zahl mit den **zehn Ziffern** 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Beispielsweise besteht die **Zahl** (genauer das **Zahlenzeichen**) 70334 aus den Ziffern 7, 0, 3, 4 und noch eine 3 zwischen 3 und 4.

Jede Ziffer hat einen **Eigenwert** und einen **Stellenwert**, der von der **Stelle** abhängt, an die die Ziffer innerhalb der Zahl gesetzt ist.

Ein solches Zahlensystem nennt man Stellenwertsystem.

Da 10 die Basis ist, spricht man auch vom Zehnersystem oder Dezimalsystem.



# Andere Zahlensysteme

- Im Zehnersystem fassen wir zehn Einheiten zu einem «Bündel» zusammen und schreiben dieses eine Bündel an der Zehnerstelle mit 10; zehn «Zehnerbündel» an der Hunderterstelle mit 100 usw.
- Im Zweiersystem (auch Dualsystem genannt) schreiben wir ein «Zweierbündel» (2) an der zweiten Stelle mit 10, zwei «Zweierbündel» = ein «Viererbündel» an der dritten Stelle mit 100, ein «Achterbündel» an der vierten Stelle mit 1000 usw.
- 3. **Beispiel:**  $43 = 4 \cdot 10 + 3 \cdot 1$  (Zehnersystem) **wird zerlegt** im **Zweiersystem** =  $1 \cdot 32 + 0 \cdot 16 + 1 \cdot 8 + 0 \cdot 4 + 1 \cdot 2 + 1 \cdot 1$  und wird darin **geschrieben:** 1 0 1 0 1 1 1 101011 ②
- 4. Die Zahl ② nennt das System und heisst Basis. Im Zehnersystem wird sie nicht angeschrieben.

#### 5. Unser Beispiel 43 in anderen Zahlensystemen geschrieben:

| Basis | Zur Verfügung<br>stehende Ziffern | 43 =                                               | Verschiedene<br>Zahlzeichen<br>für 43 |
|-------|-----------------------------------|----------------------------------------------------|---------------------------------------|
| 3     | 0,1,2                             | 1.27+1.9+2.3+1.1                                   | 1121 3                                |
| 4     | 0,1,2,3                           | 2 · 16 + 2 · 4 + 3 · 1                             | 223 4                                 |
| 5     | 0,1,2,3,4                         | $1 \cdot 25 + 3 \cdot 5 + 3 \cdot 1$               | 133 6                                 |
| 6     | 0,1,2,3,4,5                       | $1 \cdot 36 + 1 \cdot 6 + 1 \cdot 1$               | 111 ®                                 |
| 7     | 0,1,2,3,4,5,6                     | 6 · 7 + 1 · 1                                      | <b>61</b> ⑦                           |
| 8     | 0,1,2,3,4,5,6,7                   | 5.8+3.1                                            | <b>53 8</b>                           |
| 9     | 0,1,2,3,4,5,6,7,8                 | 4.9+7.1                                            | <b>47 9</b>                           |
| 11    | 0,1,2,3,4,5,6,7,8,9,z             | $3 \cdot 11 + 10 \cdot 1 = 3 \cdot 11 + z \cdot 1$ | 3z 🕦                                  |
| 12    | 0,1,2,3,4,5,6,7,8,9,z,e           | 3 · 12 + 7 · 1                                     | 37 12                                 |
|       |                                   |                                                    |                                       |

# Vorsatzbezeichnungen für die mit dem Faktor 10 gebildete Vielfache und Teile von Einheiten

| Vorsilbe | Kurzzeichen | Zehnerpotenzschreibweise | in Worten    |
|----------|-------------|--------------------------|--------------|
| Deka-    | da          | 10¹                      | Zehn         |
| Hekto-   | h           | 10²                      | Hundert      |
| Kilo-    | k           | 10³                      | Tausend      |
| Mega-    | М           | 106                      | Million      |
| Giga-    | G           | 10°                      | Milliarde    |
| Tera-    | Т           | 1012                     | Billion      |
| Peta-    | Р           | 1015                     | Billiarde    |
| Exa-     | E           | 10 <sup>18</sup>         | Trillion     |
| Dezi-    | d           | 10-1                     | Zehntel      |
| Zenti-   | С           | 10-²                     | Hundertstel  |
| Milli-   | m           | 10- <sup>3</sup>         | Tausendstel  |
| Mikro-   | μ           | 10- <sup>6</sup>         | Millionstel  |
| Nano-    | n           | 10- <sup>9</sup>         | Milliardstel |
| Piko-    | þ           | 10-12                    | Billionstel  |
| Femto-   | f           | 10-15                    | Billiardstel |
| Atto-    | а           | 10- <sup>18</sup>        | Trillionstel |

#### **Primzahlen**

Natürliche Zahlen sind die Zahlen 1, 2, 3, 4, 5, 6 usw. Primzahlen sind natürliche Zahlen grösser als 1, die **nur durch 1 und sich selbst teilbar** sind. Die 2 macht als einzige gerade Zahl den Anfang. Dann folgen 3, 5, 7, 11, 13, 17, 19 usw. Die weiteren Primzahlen bis 1000 kann man aus der folgenden Tafel ablesen.

Seit dem Altertum kennt man ein Verfahren, Primzahlen ohne Rechnerei zu bestimmen, das sogenannte «Sieb des Erathostenes».

Will man zum Beispiel die Primzahlen von 1 bis 30 bestimmen, so streicht man **zuerst** einmal von der Primzahl 2 ausgehend jede zweite Zahl (die 2 natürlich nicht!) /

Dann wird, von der Primzahl 3 ausgehend, jede dritte Zahl gestrichen (die 3 nicht!) //

**Schliesslich** wird, von der Primzahl 5 ausgehend, jede fünfte Zahl gestrichen (die 5 natürlich nicht!) ///

Mit jeder folgenden Primzahl kann nun das Verfahren fortgesetzt werden.

## Primzahlen zwischen 1 und 1000

Primzahlen sind Zahlen, die nur durch 1 und durch sich selbst teilbar sind. Die einzige gerade Primzahl ist 2.

| 2  | 47  | 109 | 191 | 269 | 353 | 439 | 523 | 617 | 709 | 811 | 907 |
|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 3  | 53  | 113 | 193 | 271 | 359 | 443 | 541 | 619 | 719 | 821 | 911 |
| 5  | 59  | 127 | 197 | 277 | 367 | 449 | 547 | 631 | 727 | 823 | 919 |
| 7  | 61  | 131 | 199 | 281 | 373 | 457 | 557 | 641 | 733 | 827 | 929 |
| 11 | 67  | 137 | 211 | 283 | 379 | 461 | 563 | 643 | 739 | 829 | 937 |
| 13 | 71  | 139 | 223 | 293 | 383 | 463 | 569 | 647 | 743 | 839 | 941 |
| 17 | 73  | 149 | 227 | 307 | 389 | 467 | 571 | 653 | 751 | 853 | 947 |
| 19 | 79  | 151 | 229 | 311 | 397 | 479 | 577 | 659 | 757 | 857 | 953 |
| 23 | 83  | 157 | 233 | 313 | 401 | 487 | 587 | 661 | 761 | 859 | 967 |
| 29 | 89  | 163 | 239 | 317 | 409 | 491 | 593 | 673 | 769 | 863 | 971 |
| 31 | 97  | 167 | 241 | 331 | 419 | 499 | 599 | 677 | 773 | 877 | 977 |
| 37 | 101 | 173 | 251 | 337 | 421 | 503 | 601 | 683 | 787 | 881 | 983 |
| 41 | 103 | 179 | 257 | 347 | 431 | 509 | 607 | 691 | 797 | 883 | 991 |
| 43 | 107 | 181 | 263 | 349 | 433 | 521 | 613 | 701 | 809 | 887 | 997 |

# Verwandlung von gemeinen Brüchen in Dezimalzahlen

$$\frac{1}{2} = 0.5$$

$$\frac{\bullet}{3}$$
  $\frac{1}{3} = 0.333$ 

$$\frac{2}{3} = 0,667$$

$$\frac{\bullet}{4}$$
  $\frac{1}{4} = 0.25$ 

$$\frac{3}{4} = 0.75$$

$$\frac{\bullet}{5}$$
  $\frac{1}{5} = 0.2$ 

$$\frac{2}{5} = 0.4$$

$$\frac{3}{5} = 0.6$$

$$\frac{4}{5} = 0.8$$

$$\frac{\bullet}{6}$$
  $\frac{1}{6}$  = 0,167

$$\frac{5}{6} = 0.833$$

$$\frac{\bullet}{7}$$
  $\frac{1}{7} = 0.143$ 

$$\frac{2}{7} = 0.286$$

$$\frac{3}{7} = 0.429$$

$$\frac{4}{7} = 0.571$$

$$\frac{5}{7} = 0.714$$

$$\frac{6}{7} = 0.857$$

$$\frac{\bullet}{8}$$
  $\frac{1}{8} = 0.128$ 

$$\frac{3}{9} = 0.375$$

$$\frac{5}{2} = 0.625$$

$$\frac{7}{8} = 0.875$$

$$\frac{\bullet}{9}$$
  $\frac{1}{9}$  = 0,111

$$\frac{2}{9} = 0.222$$

$$\frac{4}{9} = 0.444$$

$$\frac{5}{9} = 0.556$$

$$\frac{7}{9} = 0.778$$

$$\frac{8}{9} = 0.889$$

$$\frac{\bullet}{10} \frac{1}{10} = 0.1$$

$$\frac{3}{10}$$
 = 0,3

$$\frac{7}{10}$$
 = 0,7

$$\frac{9}{10} = 0.9$$

$$\frac{\bullet}{8}$$
  $\frac{1}{8} = 0.125$   $\frac{\bullet}{11}$   $\frac{1}{11} = 0.091$ 

$$\frac{2}{11} = 0.182$$

$$\frac{5}{8} = 0.625$$
  $\frac{3}{11} = 0.273$ 

$$\frac{4}{11}$$
 = 0,364

$$\frac{5}{11}$$
 = 0,455

$$\frac{6}{11}$$
 = 0,545

$$\frac{7}{11}$$
 = 0,636

$$\frac{8}{11}$$
 = 0,727

$$\frac{9}{11}$$
 = 0,818

$$\frac{10}{11}$$
 = 0,909

$$\frac{\bullet}{12} \frac{1}{12} = 0.083$$

$$\frac{5}{12}$$
 = 0,417

$$\frac{7}{12}$$
 = 0,583

$$\frac{11}{12}$$
 = 0,917

$$\frac{\bullet}{13}$$
  $\frac{1}{13}$  = 0,077

$$\frac{2}{13}$$
 = 0,154

$$\frac{3}{13}$$
 = 0,231

$$\frac{4}{13}$$
 = 0,308

$$\frac{5}{13}$$
 = 0,385

$$\frac{6}{13}$$
 = 0,462

$$\frac{7}{13}$$
 = 0,538

$$\frac{8}{13} = 0.615$$

$$\frac{9}{13}$$
 = 0,692

$$\frac{10}{13}$$
 = 0,769

$$\frac{11}{13}$$
 = 0,846

$$\frac{12}{13}$$
 = 0,923

$$\frac{\bullet}{14} \frac{1}{14} = 0.071$$

$$\frac{3}{14}$$
 = 0,214

$$\frac{5}{14}$$
 = 0,357

$$\frac{9}{14}$$
 = 0,643

$$\frac{11}{14} = 0,786$$

$$\frac{13}{14}$$
 = 0,929

$$\frac{\bullet}{15} \quad \frac{1}{15} = 0.067 \quad \frac{\bullet}{16} \quad \frac{1}{16} = 0.063$$

$$\frac{2}{15} = 0.133 \quad \frac{3}{16} = 0.188$$

$$\frac{4}{15} = 0.276 \quad \frac{5}{16} = 0.313$$

$$\frac{7}{15} = 0.467 \quad \frac{7}{16} = 0.438$$

$$\frac{8}{15} = 0.533 \quad \frac{9}{16} = 0.563$$

Bei den unendlichen Dezimalbrüchen  $\frac{1}{3} \frac{1}{6} \frac{1}{7} \frac{1}{9} \frac{1}{11} \frac{1}{13} \frac{1}{14} \frac{1}{15} \frac{1}{16}$  ist die dritte Stelle auf- oder abgerundet, bei den übrigen unendlichen die sechste Stelle.

$$\frac{2}{15} = 0,133$$

$$\frac{3}{16} = 0,188$$

$$\frac{4}{15} = 0,276$$

$$\frac{5}{16} = 0,313$$

$$\frac{7}{15} = 0,467$$

$$\frac{7}{16} = 0,438$$

$$\frac{8}{15} = 0,533$$

$$\frac{9}{16} = 0,563$$

$$\frac{11}{15} = 0,733$$

$$\frac{11}{16} = 0,688$$

$$\frac{13}{15} = 0,867$$

$$\frac{13}{16} = 0,813$$

$$\frac{14}{15} = 0,933$$

$$\frac{15}{16} = 0,938$$

$$\frac{1}{17} = 0,058823$$

$$\frac{1}{18} = 0,055555$$

$$\frac{1}{19} = 0,052631$$

$$\frac{1}{20} = 0,05$$

$$\frac{1}{21} = 0,047619$$

$$\frac{1}{22} = 0,045454$$

$$\frac{1}{23} = 0,043478$$

$$\frac{1}{24} = 0,041666$$

 $\frac{1}{25}$  = 0,04

Brüche zwischen  $\frac{1}{2}$  und  $\frac{15}{16}$ , welche nicht in der Tabelle stehen, können gekürzt werden. Für Vielfache der Brüche von  $\frac{1}{17}$  bis  $\frac{1}{24}$  multipliziert man den Dezimalbruch von  $\frac{1}{17}$  ... mit dem entsprechenden Zähler.

# **Teilbarkeitsregeln**

#### Eine Zahl ist teilbar

- durch 2, wenn die Endziffer durch 2 teilbar oder eine Null ist, z. B. 24992 oder 990 oder 78
- durch 3, wenn die Quersumme durch 3 teilbar ist Beispiel: 5139 ist durch 3 teilbar, denn  $\underbrace{5+1+3+9}_{Quersumme} = 18; 18 \text{ ist durch 3 teilbar}$
- durch 4, wenn die beiden letzten Ziffern eine durch 4 teilbare Zahl bilden, z. B. 91720, 164, 1008
- durch 5, wenn die Endziffer eine 0 oder eine 5 ist
- durch 6, alle geraden Zahlen, die durch 3 teilbar sind
- durch 7, keine Regel!
- durch 8, wenn die drei letzten Ziffern eine durch 8 teilbare Zahl bilden, z. B. 163**720**, 1**128**, **992**
- durch 9, wenn die Quersumme durch 9 teilbar ist
- durch 10, wenn die letzte Ziffer eine 0 ist

## Grösster gemeinsamer Teiler (g.g.T.)

Man bestimmt den grössten gemeinsamen Teiler zweier (oder mehrerer) Zahlen, indem man sie

#### in ihre Primfaktoren zerlegt:

 und hernach das **Produkt** der in den Zerlegungen **gemeinsam** auftretenden **Faktoren** bildet:

g.g.T. = 
$$3 \cdot 7 = 21$$

# Kleinstes gemeinschaftliches Vielfaches (k.g.V.)

Man berechnet das kleinste gemeinschaftliche Vielfache zweier (oder mehrerer) Zahlen, indem man sie

- in ihre Primfaktoren zerlegt:

$$24 = 2 \cdot 2 \cdot 2 \cdot 3$$

$$42 = 2 \cdot \cdot 3 \cdot 7$$

Fortsetzung nächste Seite

 hernach jeden Faktor so oft nimmt, wie er höchstens in einer Zahlengruppe vorkommt, und dann multipliziert.

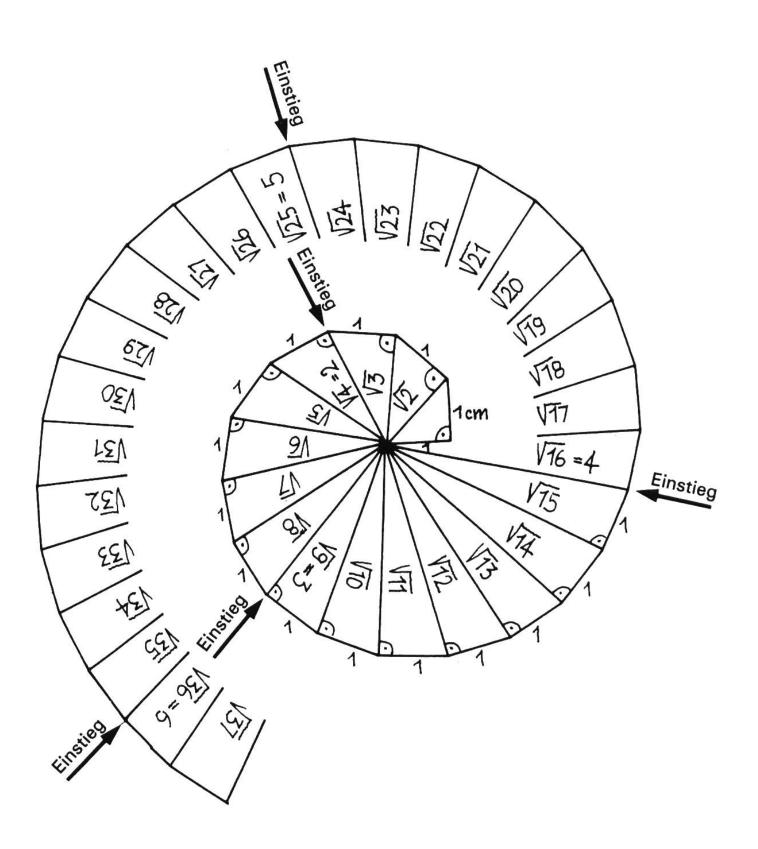
# Quadratwurzeln von 1 bis 100

| z  | $\sqrt{z}$      | z  | $\sqrt{z}$      | z  | $\sqrt{z}$      | z   | $\sqrt{z}$      |
|----|-----------------|----|-----------------|----|-----------------|-----|-----------------|
| 0  | 0,00000         | 25 | 5,00000         | 50 | 7,0710 <u>7</u> | 75  | 8,66025         |
| 1  | 1,00000         | 26 | 5,0990 <u>2</u> | 51 | 7,1414 <u>3</u> | 76  | 8,71780         |
| 2  | 1,41421         | 27 | 5,19615         | 52 | 7,21110         | 77  | 8,77496         |
| 3  | 1,73205         | 28 | 5,29150         | 53 | 7,2801 <u>1</u> | 78  | 8,83176         |
| 4  | 2,00000         | 29 | 5,38516         | 54 | 7,3484 <u>7</u> | 79  | 8,88819         |
| 5  | 2,2360 <u>7</u> | 30 | 5,4772 <u>3</u> | 55 | 7,41620         | 80  | 8,94427         |
| 6  | 2,4494 <u>9</u> | 31 | 5,56776         | 56 | 7,48331         | 81  | 9,00000         |
| 7  | 2,64575         | 32 | 5,65685         | 57 | 7,54983         | 82  | 9,0553 <u>9</u> |
| 8  | 2,8284 <u>3</u> | 33 | 5,74456         | 58 | 7,61577         | 83  | 9,11043         |
| 9  | 3,00000         | 34 | 5,83095         | 59 | 7,6811 <u>5</u> | 84  | 9,16515         |
| 10 | 3,1622 <u>8</u> | 35 | 5,9160 <u>8</u> | 60 | 7,7459 <u>7</u> | 85  | 9,21954         |
| 11 | 3,31662         | 36 | 6,00000         | 61 | 7,8102 <u>5</u> | 86  | 9,2736 <u>2</u> |
| 12 | 3,46410         | 37 | 6,08276         | 62 | 7,8740 <u>1</u> | 87  | 9,3273 <u>8</u> |
| 13 | 3,60555         | 38 | 6,16441         | 63 | 7,93725         | 88  | 9,38083         |
| 14 | 3,7416 <u>6</u> | 39 | 6,2450 <u>0</u> | 64 | 8,00000         | 89  | 9,43398         |
| 15 | 3,87298         | 40 | 6,3245 <u>6</u> | 65 | 8,0622 <u>6</u> | 90  | 9,48683         |
| 16 | 4,00000         | 41 | 6,40312         | 66 | 8,12404         | 91  | 9,53939         |
| 17 | 4,1231 <u>1</u> | 42 | 6,48074         | 67 | 8,18535         | 92  | 9,59166         |
| 18 | 4,24264         | 43 | 6,5574 <u>4</u> | 68 | 8,24621         | 93  | 9,64365         |
| 19 | 4,3589 <u>0</u> | 44 | 6,6332 <u>5</u> | 69 | 8,30662         | 94  | 9,6953 <u>6</u> |
| 20 | 4,4721 <u>4</u> | 45 | 6,70820         | 70 | 8,36660         | 95  | 9,74679         |
| 21 | 4,5825 <u>8</u> | 46 | 6,7823 <u>3</u> | 71 | 8,4261 <u>5</u> | 96  | 9,7979 <u>6</u> |
| 22 | 4,6904 <u>2</u> | 47 | 6,85565         | 72 | 8,48528         | 97  | 9,8488 <u>6</u> |
| 23 | 4,79583         | 48 | 6,92820         | 73 | 8,54400         | 98  | 9,89949         |
| 24 | 4,8989 <u>8</u> | 49 | 7,00000         | 74 | 8,6023 <u>3</u> | 99  | 9,94987         |
|    |                 |    |                 |    |                 | 100 | 10,0000         |
| 1  |                 |    |                 |    |                 |     |                 |

Die unterstrichenen Endziffern sind aufgerundet

# Wir «zeichnen» Wurzeln:

Der Satz von Pythagoras erlaubt uns, eine gegebene Strecke mit einer beliebigen Wurzel vervielfacht zu zeichnen:

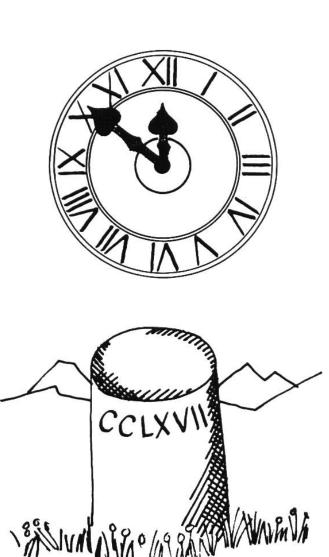


# Kubikzahlen und Kubikwurzeln

| z           | $z^3$   | $\sqrt[3]{z}$ | z · | z <sup>3</sup> | √ <sup>3</sup> /z |
|-------------|---------|---------------|-----|----------------|-------------------|
| ,           |         |               |     |                |                   |
| 1           | 1       | 1,0           | 26  | 17 576         | 2,936             |
| 2<br>3      | 8       | 1,26          | 27  | 19 683         | 3,0               |
| 3           | 27      | 1,442         | 28  | 21 952         | 3,037             |
| 4           | 64      | 1,587         | 29  | 24 389         | 3,072             |
| 5<br>6<br>7 | 125     | 1,71          | 30  | 27 000         | 3,107             |
| 6           | 216     | 1,817         | 31  | 29 791         | 3,141             |
|             | 343     | 1,913         | 32  | 32 768         | 3,175             |
| 8           | 512     | 2,0           | 33  | 35 937         | 3,208             |
| 9           | 729     | 2,08          | 34  | 39 304         | 3,24              |
| 10          | 1 000   | 2,154         | 35  | 42 875         | 3,271             |
| 11          | 1 331   | 2,224         | 36  | 46 656         | 3,302             |
| 12          | 1 728   | 2,289         | 37  | 50 653         | 3,332             |
| 13          | 2 197   | 2,351         | 38  | 54 872         | 3,362             |
| 14          | 2 744   | 2,41          | 39  | 59 319         | 3,391             |
| 15          | 3 3 7 5 | 2,466         | 40  | 64 000         | 3,42              |
| 16          | 4 096   | 2,52          | 41  | 68 921         | 3,448             |
| 17          | 4 9 1 3 | 2,57          | 42  | 74 088         | 3,476             |
| 18          | 5 832   | 2,621         | 43  | 79 507         | 3,503             |
| 19          | 6 859   | 2,668         | 44  | 85 184         | 3,53              |
| 20          | 8 000   | 2,714         | 45  | 91 125         | 3,557             |
| 21          | 9 2 6 1 | 2,759         | 46  | 97 336         | 3,583             |
| 22          | 10 648  | 2,802         | 47  | 103 823        | 3,609             |
| 23          | 12 167  | 2,844         | 48  | 110 592        | 3,634             |
| 24          | 13 824  | 2,885         | 49  | 117 649        | 3,659             |
| 25          | 15 625  | 2,924         | 50  | 125 000        | 3,684             |

#### Römische Zahlen

Die römischen Zahlzeichen wurden bis zum 12. Jahrhundert in Mittelallgemein gebraucht und europa dann allmählich von den «arabischen» Ziffern und dem Zehnersystem abgelöst. Sie werden heute noch etwa zur Numerierung oder bei Inschriften zur Bezeichnung der Jahreszahl verwendet. Der Wert eines römischen Zahlzeichens ist unabhängig von der Stelle, an der es innerhalb einer Zahl geschrieben ist. Dennoch hat die Reihenfolge der Zeichen ihre Bedeutung, wie die folgenden Regeln zeigen.



#### Römische Zahlen

| 1        | 5       | 10       | 50       | 100      | 500       | 1000      |
|----------|---------|----------|----------|----------|-----------|-----------|
| Ziffern: | :<br>V  | X        | L        | С        | D         | M         |
| Zahlen   | :       |          |          |          |           |           |
| 2:11     | 6: VI   | 11: XI   | 51: LI   | 200: CC  | 600: DC   | 2000: MM  |
| 3:111    | 7: VII  | 12: XII  | 60:LX    | 300: CCC | 700: DCC  | 3000: MMM |
|          | 8: VIII | 13: XIII | 70: LXX  |          | 800: DCCC |           |
| 4: IV    | 9: IX   | 14: XIV  | 80: LXXX | 400: CD  | 900: CM   |           |
|          |         | 15: XV   | 90: XC   |          |           |           |
|          |         | 16: XVI  | 99: XCIX |          |           |           |
|          |         | 19: XIX  |          |          |           |           |
|          |         | 20: XX   |          |          |           |           |
|          |         | 40: XL   |          |          |           |           |
|          |         | 49: XLIX |          |          |           |           |

#### Regeln:

- 1. Man schreibt in der Reihenfolge Tausender-Hunderter-Zehner-Einer.
- 2. I, X, C kommen höchstens dreimal hintereinander vor.
- 3. Die Zahlen rechts neben einer gegebenen Zahl werden addiert, falls sie nicht grösser sind als die gegebene.
- 4. Die Zahlen links einer gegebenen Zahl werden subtrahiert, falls sie kleiner sind als die gegebene: es darf jedoch nur stehen:

I vor V und X (und erlaubt ist auch IL=49)

X vor L und C

C vor D und M

# Prozentrechnungen

A. «Prozent» (%) sagt aus, wie viele *Hundertstel* einer Menge *ein Bruchteil* dieser Menge ausmacht.

- z.B. 12 Fr. sind 1/100 von 1200 Fr., also 1% 84 Fr. sind 7/100 von 1200 Fr., also 7%
- B. In einer Prozentrechnung kommen drei Grössen vor:

|                                             | Z. B.  |
|---------------------------------------------|--------|
| 1. der Grundwert (Ganzes, Vollbetrag, 100%) | 400 kg |
| 2. der Prozentbetrag                        | 12 kg  |
| 3. der Prozentfuss (wieviele Prozent)       | 3%     |

1. Aufgabe: Berechnung des Prozentbetrages Wieviel sind 4,5% von Fr. 1200.-?

$$\frac{Grundwert \cdot Prozentfuss}{100} = \frac{1200 \cdot 4.5}{100} = Fr. 54.-$$

2. Aufgabe: Berechnung des Grundwertes 8% Rabatt sind Fr. 5.60. Welches ist der Rechnungsbetrag (Grundwert)?

$$\frac{\text{Prozentbetrag} \cdot 100}{\text{Prozentfuss}} = \frac{5.60 \cdot 100}{8} = \text{Fr. 70.}-$$

3. Aufgabe: Berechnung des Prozentfusses Von 480 Schüssen waren 458 Treffer. Wieviele % sind das?

$$\frac{\text{Prozentbetrag}}{\frac{1}{100} \text{ des Grundwertes}} = \frac{458}{4.8} = 95\% \text{ Treffer}$$

# Zinsrechnungen

A. Wir berechnen entweder den Zins für ein ganzes Jahr (Jahreszinsrechnung) oder für einige Tage oder Monate (Marchzinsrechnung).

#### B. Jahreszinsrechnung

Es kommen drei Grössen vor wie in der Prozentrechnung:

- 1. Das Kapital = der Grundwert
- 2. Der Jahreszins = der Prozentbetrag
- 3. Der Zinsfuss = der Prozentfuss

Entsprechend sind die Berechnungen:

1. Aufgabe: Berechnung des Jahreszinses Wie gross ist der Jahreszins zu 3½% von Fr. 300.-?

$$\frac{\text{Kapital} \cdot \text{Zinsfuss}}{100} = \frac{300 \cdot 3.5}{100} = \text{Fr. } 10.50$$

2. Aufgabe: Berechnung des Kapitals
Der Jahreszins zu 5% beträgt Fr. 22.-. Wie gross ist das Kapital?

Bot damosting to 570 Bottage 11. 22. . Wie gloss for

$$\frac{\text{Jahreszins} \cdot 100}{\text{Zinsfuss}} = \frac{22 \cdot 100}{5} = \text{Fr. 440.} -$$

3. Aufgabe: Berechnung des Zinsfusses

Ein Kapital beträgt Fr. 900.-. Der Jahreszins ist Fr. 36.-. Wie

gross ist der Zinsfuss?

$$\frac{\text{Jahreszins}}{\frac{1}{100 \text{ des Kapitals}}} = \frac{36}{9} = 4\%$$

C. Marchzinsrechnung

Zusätzlich muss die Zeitdauer berücksichtigt werden. Bei uns gilt: Jeder Monat hat 30 Tage, das Jahr hat 360 Tage. Der 30. oder 31. des Monats (der 28. oder 29. Februar) ist der letzte Tag. Von da ab werden keine Tage mehr gezählt. Vorher wird *immer* auf 30 ergänzt. (27. März: noch 3 Tage!)

1. Aufgabe: Berechnung des Marchzinses

Welchen Zins bringen Fr. 1500.- zu 3½% in 132 Tagen?

$$\frac{\text{Kapital} \cdot \text{Zinsfuss} \cdot \text{Tage}}{100 \cdot 360} = \frac{1500 \cdot 3.5 \cdot 132}{100 \cdot 360} = \text{Fr. } 19.25$$

2. Aufgabe: Berechnung des Kapitals

Welches Kapital bringt zu 4½% in 132 Tagen Fr. 40.- Marchzins?

$$\frac{\text{Marchzins} \cdot 360 \cdot 100}{\text{Anzahl Tage} \cdot \text{Zinsfuss}} = \frac{40 \cdot 360 \cdot 100}{132 \cdot 4,5} = \text{Fr. 2424.24}$$

3. Aufgabe: Berechnung des Zinsfusses

Zu welchem Zinsfuss bringt ein Kapital von Fr. 2400.- in 216 Tagen Fr. 46.80 Zins?

$$\frac{\text{Marchzins} \cdot 360}{\text{Anzahl Tage 1/100 des Kapitals}} = \frac{46.80 \cdot 360}{216 \cdot 24} = 3.25\%$$

4. Aufgabe: Berechnung der Zeit

Wie viele Tage muss ein Kapital von Fr. 4800.- zu 3% angelegt werden, damit es Fr. 120.- Marchzins bringt?

$$\frac{\text{Marchzins}}{\text{Tageszins}} = \frac{\frac{\text{Marchzins}}{\text{Kapital} \cdot \text{Zinsfuss}}}{100 \cdot 360} = \frac{120}{\frac{4800 \cdot 3}{100 \cdot 360^{\circ}}} = 300 \text{ Tage}$$

# Zinseszinsrechnung

Man spricht von Zinseszins, wenn der Zins eines angelegten Kapitals am Ende eines Jahres nicht abgehoben, sondern zum Kapital zugeschlagen und mit diesem (wie eine neue Einlage zu Jahresbeginn) weiter verzinst wird.

#### Anwachsen eines Kapitals von 100 Franken durch Zinseszins

| Abgelaufene<br>Jahre | Zinsfuss<br>2% | 3%      | 4%      | 5%       | 6%       |
|----------------------|----------------|---------|---------|----------|----------|
| 1                    | 102.—          | 103.—   | 104.—   | 105.—    | 106.—    |
| 2                    | 104.04         | 106.09  | 108.16  | 110.25   | 112.36   |
| 3                    | 106.12         | 109.27  | 112.49  | 115.76   | 119.10   |
| 4                    | 108.24         | 112.55  | 116.99  | 121.55   | 126.25   |
| 5                    | 110.41         | 115.93  | 121.66  | 127.63   | 133.82   |
| 6                    | 112.62         | 119.40  | 126.53  | 134.01   | 141.85   |
| 7                    | 114.87         | 122.99  | 131.59  | 140.71   | 150.36   |
| 8                    | 117.17         | 126.68  | 136.86  | 147.75   | 159.38   |
| 9                    | 119.51         | 130.48  | 142.33  | 155.13   | 168.95   |
| 10                   | 121.90         | 134.39  | 148.02  | 162.89   | 179.08   |
| 50                   | 269.16         | 438.39  | 710.67  | 1146.74  | 1842.02  |
| 100                  | 724.46         | 1921.86 | 5050.52 | 13150.13 | 33930.38 |

#### **Berechnung**

|                | <b>P</b> .                                               |
|----------------|----------------------------------------------------------|
| Bezeichnungen: | P (%) = Zinsfuss $1 + \frac{\Gamma}{100}$ = Zinsfaktor q |

= Anfangskapital Ko

Kn = Endkapital, auf das Ko nach n Jahren

Formel:

Beispiel:

angewachsen ist.  $Kn = Ko (1 + \frac{P}{100})^n = Ko \cdot q^n$  Ko = Fr. 100. - n = 3 Jahre p = 5%  $Kn = 100 (1 + \frac{5}{100})^3 = 100 \cdot 1,05^3 = Fr. 115.76$ 

# **Abzahlung von Schulden**

Max möchte seinen Vater überreden, ihm zur Anschaffung eines Mopeds einen Kredit zu gewähren. Der Jüngling hat die Inserate der Kleinbanken studiert und dazu für sich folgende Rechnung gemacht:

Kreditsumme Fr. 1000.-/ Abzahlung in 12 Monatsraten zu Fr. 90.20

| Gesamte Rückzahlung : 12 · Fr. 90.20 = Gewährter Kredit | Fr. 1082.40<br>Fr. 1000.— |
|---------------------------------------------------------|---------------------------|
| Zins                                                    | Fr. 82.40                 |

Fr. 82.40 sind 8,24% von Fr. 1000.—, das ist doch ganz anständig, denkt Max ... denkt er falsch! In Wirklichkeit verlangt die Bank 15,21%. Warum? Die Überlegung wäre richtig, wenn Max die ganze Schuld am Ende, also nach 12 Monaten, zurückzahlen würde. Dann hätte er für Fr. 1000.— Kredit nach einem Jahr Fr. 82.40 Zins bezahlt, also 8,24%. Er bezahlt aber jeden Monat einen Teil seiner Schuld zurück, und damit verzinst er im Durchschnitt nur etwa das halbe Darlehen — das, was er an Zins bezahlt, macht davon entsprechend mehr Prozente aus.

Der Vater berechnet mit dem Jüngling die Schuldentilgung unter Annahme eines Zinses von 10% und einer monatlichen Abzahlung eines Zwölftels der Schuld. Zum Glück haben sie einen elektronischen Taschenrechner zur Hand.

# Teilzahlungen

Schuldentilgung pro Monat:  $\frac{1}{12}$  von Fr. 1000.— = Fr. 83.33

| Monate | Das Kapital beträgt | zu verzinsen ist | der Zins beträgt<br>für 1 Monat |
|--------|---------------------|------------------|---------------------------------|
| 0      | 1000.—              |                  |                                 |
| 1      | 916.67              | 1000.—           | 8.33                            |
| 2      | 833.34              | 916.67           | 7.64                            |
| 3      | 750.—               | 833.34           | 6.94                            |
| 4      | 666.67              | 750.—            | 6.25                            |
| 5      | 583.34              | 666.67           | 5.56                            |
| 6      | 500.—               | 583.34           | 4.86                            |
| 7      | 416.67              | 500.—            | 4.17                            |
| 8      | 333.34              | 416.67           | 3.47                            |
| 9      | 250.—               | 333.34           | 2.78                            |
| 10     | 166.67              | 250.—            | 2.08                            |
| 11     | 83.34               | 166.67           | 1.39                            |
| 12     | 0.—                 | 83.34            | 69                              |
|        |                     | Gesamtzins:      | 54.16                           |

Wenn Max seine Zinsschuld regelmässig auf die 12 Monate verteilen darf, so hat er jeden Monat Fr. 87.85 abzubezahlen.

# Betriebskosten eines Motorfahrzeugs

Spätestens wenn die Eltern nicht mehr alles bezahlen, merken wir, dass der Betrieb eines Motorfahrzeugs viel mehr kostet als nur gerade die immer wieder am Taschengeld zehrenden Ausgaben für Benzin und Öl. So etwa könnte die Rechnung für ein Auto aussehen:

| Verkehrssteuer | Fr. 300   |
|----------------|-----------|
| Versicherungen | Fr. 650   |
| Benzin und Öl  | Fr. 2200  |
| Pneus          | Fr. 280   |
| Service        | Fr. 650.— |
| Reparaturen    | Fr. 950   |
| Verschiedenes  | Fr. 250   |
| Kapitalzins*   | Fr. 480   |
| Abschreibung** | Fr. 3500  |
|                | Fr. 9260  |

Bei 20000 km **im Jahr pro km:** Fr. 9260:20000 = 46,3 Rappen

Zwei Posten werden gerne vergessen:

\* Kapitalzins: Hätte ich das Motorfahrzeug nicht gekauft, so könnte ich den entsprechenden Betrag zinstragend anlegen. Fr. 12000.— würden z.B. zu 4% den Betrag im Beispiel oben (Fr. 480.—) Jahreszins abwerfen.

- \*\* Abschreibung: Das Fahrzeug verliert alljährlich an Wert. Bis zum Zeitpunkt, da es für mich unbrauchbar wird, sollte ich den ausgelegten Betrag wieder gespart (oder im schlimmeren Fall) den erhaltenen Kredit abbezahlt haben. Das ist die «Abschreibung». Ihre Höhe kann verschieden berechnet werden. Eine Möglichkeit für junge Leute ist folgende:
- Überlege, wie lange du das Fahrzeug vermutlich gebrauchen kannst.
- Überlege, wieviel das Fahrzeug nach dem jahrelangen Gebrauch bei einem Wiederverkauf noch einbringen wird.
- Zähle vom Kaufpreis den vermutlichen Wiederverkaufswert ab. Teile den Rest durch die Anzahl Jahre, die das Fahrzeug dir dienen soll; das gibt die jährliche Amortisation oder Abschreibung. In unserem Beispiel habe ich gerechnet: Anschaffung Fr. 12 000.-, Wiederverkauf nach zwei Jahren zu Fr. 5000.-, Minderwert Fr. 7000.-, pro Jahr Fr. 3500.- Abschreibung.

Selbstverständlich können diese Zahlen auch viel günstiger ausfallen; Glück und Missgeschick, Sorgfalt und Leichtsinn werden dabei kräftig mitspielen.

Meine eigene Rechnung:

# Algebra – Formeln

#### 1. Umformungen

$$(a+b)^2 = a^2+2ab+b^2$$
  $a^2+b^2$  (nicht zerlegbar)  
 $(a-b)^2 = a^2-2ab+b^2$   $a^2-b^2 = (a-b)(a+b)$ 

$$(a+b+c)^2 = a^2+b^2+c^2+2ab+2ac+2bc$$

$$(a+b)^3 = a^3+3a^2b+3ab^2+b^3$$
  $a^3+b^3 = (a+b)(a^2-ab+b^2)$   
 $(a-b)^3 = a^3-3a^2b+3ab^2-b^3$   $a^3-b^3 = (a-b)(a^2+ab+b^2)$ 

#### 2. Brüche

$$\frac{+a}{+b} = + \frac{a}{b} \qquad \frac{+a}{-b} = - \frac{a}{b} \qquad \frac{-a}{+b} = - \frac{a}{b} \qquad \frac{-a}{-b} = + \frac{a}{b}$$

$$\frac{a}{b} \cdot c = \frac{a \cdot c}{b} \qquad \frac{a}{b} \cdot \frac{c}{d} = \frac{a \cdot c}{b \cdot d} \qquad \frac{a}{b} : c = \frac{a}{b \cdot c} \qquad \frac{a}{b} : \frac{c}{d} = \frac{a \cdot d}{b \cdot c}$$

#### 3. Potenzen und Wurzeln (Radikand nicht negativ)

$$a^{m} \cdot a^{n} = a^{m+n}$$

$$a^{m} : a^{n} = a^{m-n}$$

$$a^{n} \cdot b^{n} = (a \cdot b)^{n}$$

$$a^{n} : b^{n} = \left(\frac{a}{b}\right)^{n}$$

$$a^{n} = a$$

$$a^{n} = \sqrt{\frac{a}{b}}$$

$$a^{n} = \sqrt{\frac{a}{b}}$$

$$a^{n} = \sqrt{\frac{a}{a}}$$

#### 4. Quadratische Gleichungen

x1; 
$$z = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-\frac{b}{2} \pm \sqrt{\left(\frac{b}{2}\right)^2 - ac}}{a}$$

$$= \frac{-p \pm \sqrt{p^2 - 4q}}{2} = \frac{p}{2} \pm \sqrt{\left(\frac{p}{2}\right)^2 - q}$$

Satz von Vieta: 
$$x_1 + x_2 = -\frac{b}{a}$$
  $x_1 \cdot x_2 = \frac{c}{a} = q$ 

# Begriffe und Zeichen aus der Mengenlehre

| Begriff                                              | Zeichen  | Beispiel                           | Erklärungen,<br>Beschreibungen, Regeln,<br>Definitionen                                                                                                                                                                                                                                                                                                                               |
|------------------------------------------------------|----------|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Menge                                                | { }      | {1,3,6,9}                          | Der Begriff der Menge wurde vom Begründer der Mengenlehre¹ wie folgt definiert: «Eine Menge ist eine Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens² zu einem Ganzen. Diese Objekte heissen die Elemente der Menge.» Wir lesen unser Beispiel: «Menge mit den Elementen 1, 3, 6, 9.» Die «Mengenklammern» {} heissen auch Akkoladen. |
| Element (aus) einer Menge  Nicht Element einer Menge | €        | 3 ∈ { 1,3,6,9 }<br>4 ∉ { 1,3,6,9 } | 3 ist ein Element aus der<br>Menge mit den Elementen<br>1, 3, 6, 9.<br>Wir lesen: «drei ist Ele-<br>ment der Menge (mit den<br>Elementen) { 1, 3, 6, 9}»<br>Wir lesen: «vier ist nicht<br>Element der Menge<br>{ 1, 3, 6, 9}»                                                                                                                                                         |
| Teilmenge                                            | <u> </u> | {1,6} ⊂ {1,3,6,9}                  | Greift man aus einer Menge (oder Grundmenge, oder Obermenge) eine An- zahl von Elementen heraus, so bilden diese eine Teil- menge oder Untermenge. Wir lesen: «{ 1,6 } ist Teil-                                                                                                                                                                                                      |

| Obermenge              | ⊃           | {1,3,6,9}⊃{1,6}                                       | menge der Grundmenge / Obermenge / Menge { 1,3,6,9 }» Wir lesen: «{ 1,3,6,9 } ist Obermenge der Teilmenge { 1,6 }»                                                                         |
|------------------------|-------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Gleichheit             | =<br>≠      | $\{1,7,8\} = \{8,1,7\}$<br>$\{1,7,8\} \neq \{1,6,8\}$ | Mengen sind gleich, wenn<br>sie die gleichen Elemente<br>enthalten.<br>Diese Mengen sind<br>ungleich.                                                                                      |
| Äquivalenz             | ~ 3         | {1,3,5} ~ {2,4,6}                                     | Zwei Mengen heissen<br>gleichmächtig oder<br>äquivalent, wenn sie die<br>gleiche Anzahl von<br>Elementen haben. Lies:<br>«äquivalent mit».                                                 |
| Vereinigungs-<br>menge | U           | {1,3,6}∪ {1,3,8,9}<br>= {1,3,6,8,9}                   | Die Vereinigungsmenge<br>ist die Gesamtheit der<br>Elemente zweier Mengen;<br>doppelt oder mehrfach<br>auftretende Elemente wer-<br>den nur einmal angegeben.<br>Lies: U: «vereinigt mit». |
| Schnittmenge           | Λ           | $\{1,3,6\} \cap \{1,3,8,9\}$<br>= $\{1,3,\}$          | Die Schnittmenge (auch Durchschnitt genannt) zweier Mengen ist die Menge aller Elemente, die in jeder der beiden Mengen enthalten sind. Lies:                                              |
| Leere Menge            | {}<br>auch∅ | $\{1,3,6\} \cap \{2,8,9\}$<br>= $\{\}$                | Die leere Menge (auch<br>Leermenge oder Null-<br>menge genannt) ist eine<br>Menge, die keine Elemente<br>hat. Lies: { }: «leere Menge».                                                    |

| Mengen-              | Für (bekannte) Mengen             |
|----------------------|-----------------------------------|
| Zeichen              | werden häufig Grossbuch-          |
|                      | staben mit Doppelstrich           |
|                      | links gesetzt.                    |
| $\triangle$ B        | ${\mathcal G}$ ist die Grundmenge |
| $\mathcal{C}$        | N ist die Menge der               |
| $\mathcal{G}$        | natürlichen Zahlen                |
| IN                   | = { 1,2,3,4,5,}                   |
| $\mathbb{N}_{\circ}$ | N₀ ist die Menge der              |
|                      | natürlichen Zahlen samt           |
|                      | $0 = \{ 0, 1, 2, 3, 4, 5, \}$     |

<sup>&</sup>lt;sup>1</sup> Georg Cantor (1845–1918).

<sup>&</sup>lt;sup>2</sup> Das können z. B. Zahlen, Buchstaben, Gegenstände, Wörter usw. sein.

 $<sup>^3</sup>$  Das Zeichen  $\sim$  wird in der Geometrie in der Bedeutung «... ist ähnlich zu ...» verwendet.

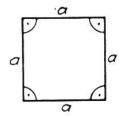
# Geometrie

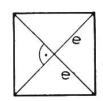
#### 1. Einfache ebene Figuren

| 2 1 |      | -  |    |
|-----|------|----|----|
|     | m    | f- | ng |
| U   | 111  | Id | Hu |
| -   | 1000 |    |    |

Flächeninhalt

Andere Zusammenhänge

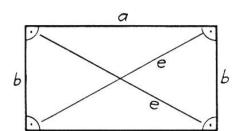




#### Das Quadrat

$$u = 4 \cdot a$$

$$F = a \cdot a = a^2$$
 Diagonale  $e = a\sqrt{2}$   
 $F = \frac{e^2}{2}$ 

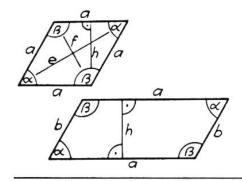


#### **Das Rechteck**

$$u = 2(a+b)$$
  $F = a \cdot b$ 

$$F = a \cdot b$$

Diagonale e = 
$$\sqrt{a^2+b^2}$$



#### Der Rhombus, die Raute

$$u = 4 \cdot a$$

$$F = a \cdot h$$
$$F = \frac{e \cdot f}{2}$$

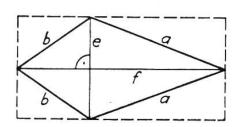
$$\alpha + \beta = 180^{\circ}$$

#### Das Rhomboid, das Parallelogramm

$$u = 2(a+b)$$

$$F = a \cdot h$$

$$\alpha + \beta = 180^{\circ}$$



#### Das Deltoid, das Drachenviereck

$$u = 2(a+b)$$

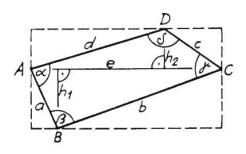
$$F = \frac{e \cdot f}{2}$$

Winkelsumme = 360°

#### **Das Trapez**

$$u = a+b+c+d$$
  $F = m \cdot h$   $\alpha + \beta + \gamma + \delta = 360^{\circ}$  
$$F = \frac{a+c}{2} \cdot h$$

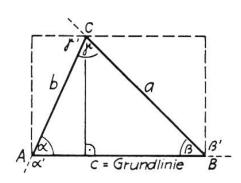
m = Mittelparallele



#### Das Trapezoid (unregelmässiges Viereck)

$$u = a + b + c + d \quad F = e \left(\frac{h_1 + h_2}{2}\right) \alpha + \beta + \gamma + \delta = 360^{\circ}$$

#### 2. Das Dreieck



Umfang u = a+b+c

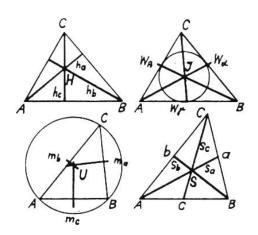
Flächeninhalt  $F = \frac{g \cdot h}{2}$ 

Wenn u mit 2s bezeichnet wird, so gilt auch

$$F = \sqrt{s \cdot (s-a) \cdot (s-b) \cdot (s-c)}$$

Andere Zusammenhänge

$$\alpha + \beta + \gamma = 180^{\circ}$$
  $\alpha' + \beta' + \gamma' = 360^{\circ}$   
 $\alpha' = \beta + \gamma$   $\beta' = \alpha + \gamma$   $\gamma' = \alpha + \beta$ 



#### Besondere Punkte im Dreieck

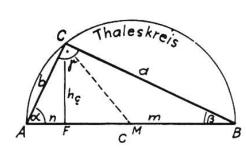
Die drei Höhen schneiden sich in einem Punkt, dem Höhenschnittpunkt H.

Die drei Winkelhalbierenden  $w_{\alpha}$ ,  $w_{\beta}$ ,  $w_{\gamma}$  schneiden sich in einem Punkt, dem Inkreismittelpunkt J. Die drei Mittelsenkrechten der Seiten  $m_a$ ,  $m_b$ ,  $m_c$  schneiden sich in einem Punkt, dem Umkreismittelpunkt U.

Die drei Seitenhalbierenden (Schwerlinien, Mittellinien) s<sub>a</sub>, s<sub>b</sub>, s<sub>c</sub> schneiden sich in einem Punkt, dem Schwerpunkt S.

Der Schwerpunkt teilt die Schwerlinien im Verhältnis 1:2.

#### **Besondere Dreiecke**



Das rechtwinklige Dreieck

a, b = Katheten, c = Hypotenuse, 
$$\gamma$$
 = 90°,

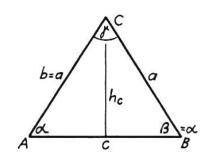
$$\alpha + \beta = 90^{\circ}$$

$$u = a+b+c$$
  $F = \frac{a \cdot b}{2}$   $F = \frac{c \cdot h_c}{2}$ 

$$^{2}+b^{2}=c^{2}$$
 Satz des Pythagoras

$$c = \sqrt{a^2 + b^2}$$
  $a = \sqrt{c^2 - b^2}$   $b =$ 

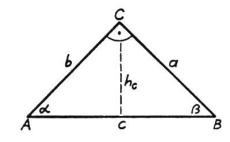
$$\begin{array}{ll} a^2+b^2=c^2 & \text{Satz des Pythagoras} \\ c=\sqrt{a^2+b^2} & a=\sqrt{c^2-b^2} & b=\sqrt{c^2-a^2} \\ h^2=m\cdot n & \text{H\"{o}hensatz (des Euklid)} \\ a^2=m\cdot c \\ b^2=n\cdot c \end{array} \right\} \text{ Kathetens\"{a}tze (des Euklid)} \quad r=\frac{c}{2}$$



Das gleichschenklige Dreieck

$$u = 2a + c$$

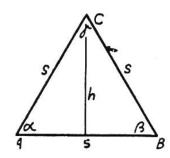
$$F = \frac{c \cdot h_c}{2}$$



Das rechtwinklig-gleichschenklige Dreieck

$$\alpha = \beta = 45^{\circ}$$
  $a = b = \frac{c}{\sqrt{2}}$   $c = a\sqrt{2}$   $h_c = \frac{c}{2}$ 

$$u = 2a + c$$
  $F = \frac{c \cdot h_c}{2}$   $F = \frac{c}{2} \cdot \frac{c}{2}$   $F = \frac{c^2}{4}$ 



Das gleichseitige Dreieck

$$\alpha = \beta = \gamma = 60^{\circ}$$

$$a = b = c = s$$

$$h = \frac{s}{2}\sqrt{3}$$
  $u = 3 \cdot s$   $F = \frac{s \cdot h}{2}$   $F = \frac{s^2}{4}\sqrt{3}$ 

Dreiecke sind kongruent, d. h. sie stimmen in Form und Flächeninhalt überein, wenn sie drei gleiche Bestimmungsstücke haben, wovon eines eine Länge sein muss; also wenn sie übereinstimmen

1, in den drei Seiten

SSS

- 2. in zwei Seiten und dem Zwischenwinkel sws
- 3. in zwei Seiten und dem Gegenwinkel der grösseren Seite

SSW

4. in einer Seite und deren anliegenden Winkel

wsw

5. in einer Seite und zwei Winkeln

sww

Dreiecke sind ähnlich, d.h. sie haben gleiche Form, wenn sie übereinstimmen

- 1. im Verhältnis der drei Seiten
- im Verhältnis zweier Seiten und dem Zwischenwinkel
- im Verhältnis zweier Seiten und dem Gegenwinkel der grösseren Seite
- 4. in zwei Winkeln.

In den Formeln für die wichtigsten Grössen der ebenen Figuren und der Körper bedeuten:

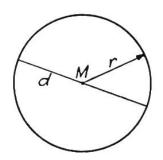
u = Umfang F = Flächeninhalt O = Oberfläche M = Mantelfläche G = Grundfläche

k = Gesamtkantenlänge V = Rauminhalt oder Volumen

 $\alpha$ ,  $\beta$ ,  $\gamma$ ,  $\delta$  = Winkel a, b, c, ... = Seiten R, r,  $\rho$  = Radien h, h<sub>c</sub>, h ... = Höhen  $\Delta$  = rechter Winkel;

für  $\pi$  genügt meist der Wert 3,14 oder  $\frac{22}{7}$ 

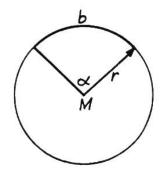
#### 3. Der Kreis



Umfang:  $u = d \cdot \pi$   $u = 2 r \pi$ 

Flächeninhalt:  $F = r^2\pi$   $F = \frac{d^2}{4}\pi$   $F = \frac{u^2}{4 \cdot \pi}$ 

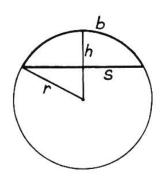
Spezialfälle: Halbkreis, Viertelskreis



#### Der Kreissektor (Ausschnitt)

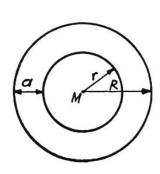
Bogenlänge b = 
$$\frac{\mathbf{u} \cdot \alpha}{360} = \frac{\mathbf{d} \cdot \pi \cdot \alpha}{360} = \frac{\mathbf{r} \cdot \pi \cdot \alpha}{180}$$

$$F = \frac{b \cdot r}{2}$$
  $F = \frac{r^2 \pi}{360} \cdot \alpha$   $F = \frac{u^2 \cdot \alpha}{4 \pi \cdot 360}$ 



#### Das Kreissegment (Abschnitt)

$$F = \frac{r \cdot (b-s) + s \cdot h}{2}$$



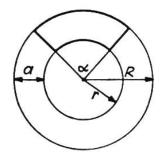
#### **Der Kreisring**

Radiale Breite des Kreisringes: a = R - r

$$F = R^2 \pi - r^2 \pi$$
  $F = (R+r) (R-r) \pi$ 

$$F = (R+r) a \pi$$

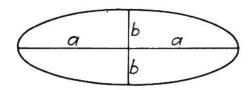
#### Das Kreisringstück



$$F = \frac{R^2 \pi - r^2 \pi}{360} \cdot \alpha \qquad F = (R+r) (R-r) \frac{\pi \cdot \alpha}{360}$$

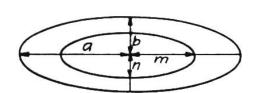
$$F = (R+r) a \frac{\pi \cdot \alpha}{360}$$

#### 4. Verschiedene ebene Figuren



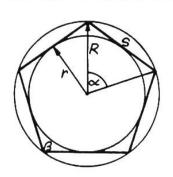
#### Die Ellipse

a = halbe grosse Achse b = halbe kleine Achse Flächeninhalt:  $F = a \cdot b \cdot \pi$ Umfang: Es besteht keine (elementare) Formel



#### Der elliptische Ring

a, b = halbe Achsen der äusseren Ellipse m, n = halbe Achsen der inneren Ellipse Flächeninhalt:  $F = (a \cdot b - m \cdot n) \pi$ 



#### Das regelmäßige Vieleck (n-Eck)

R = Radius des Umkreises Umfang:  $u = n \cdot s$ 

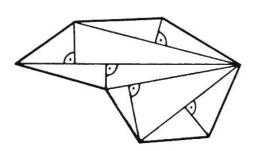
r = Radius des Inkreises

n = Seitenzahl

 $\alpha = \frac{360^{\circ}}{n} \qquad \beta = 180^{\circ} - \alpha$ s = Vielecksseite

 $\alpha = Zentriwinkel$ 

Flächeninhalt:  $F = \frac{n \cdot s \cdot r}{2}$ β = Vieleckswinkel

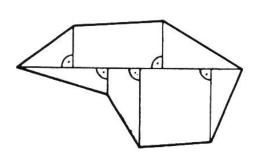


#### Das unregelmäßige Vieleck

Umfang = Summe aller Seiten Flächeninhalt:

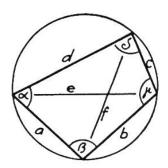
Man zerlegt die Vieleckfläche:

a. mit Diagonalen in Dreiecke und eventuell Trapezoide, berechnet diese Teile und addiert die **Teilresultate** 



#### oder:

b. mit einer passenden Diagonale und auf dieser rechtwinklig errichteten Höhen zu den Ecken in Dreiecke und Trapeze, berechnet diese Teile einzeln und addiert die Teilresultate.



#### **Das Sehnenviereck**

Umfang: u = a+b+c+d  $u = 2 \cdot s$   $s = \frac{u}{2}$ 

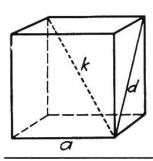
Flächeninhalt:

$$F = \sqrt{(s-a) \cdot (s-b) \cdot (s-c) \cdot (s-d)}$$

Satz des Ptolemäus: ac+bd = ef

Winkel:  $\alpha + \gamma = \beta + \delta = 180^{\circ}$ 

#### 5. Körper

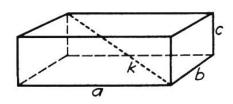


#### Der Würfel

Gesamtkantenlänge: 12 · a Seitendiagonale d:  $a\sqrt{2}$ Körperdiagonale k:  $a\sqrt{3}$ 

Mantel:  $M = 4a^2$ Oberfläche:  $O = 6a^2$ 

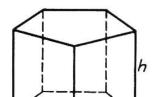
Volumen:  $V = a^3$ 



#### Der Quader

Gesamtkantenlänge: 4 (a+b+c) Körperdiagonale:  $k = \sqrt{a^2 + b^2 + c^2}$  $M = 2(a+b) \cdot c$  O = 2(ab+ac+bc)

 $V = a \cdot b \cdot c$ 

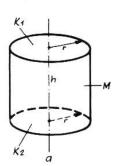


#### Das gerade Prisma

u = Umfang der Grund- oder Deckfläche G n = Zahl der Seitenkanten (Höhenkanten) h

Gesamtkantenlänge: 2u+n·h

 $M = u \cdot h$  $V = G \cdot h$   $O = u \cdot h + 2 \cdot G$ 



#### Der senkrechte Kreiszylinder

a = Achse, senkrecht zu K1 und K2

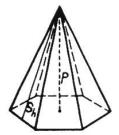
h = Höhe (Abstand der parallelen Kreise K<sub>1</sub> und K<sub>2</sub>)

M = Mantel

 $M = 2 \pi r \cdot h$ 

 $O = 2 \pi r(r+h)$ 

 $V = r^2 \pi h$ 



#### Die Pyramide (regelmässige)

 $s_h$  = Seitenhöhe p = Pyramidenhöhe u = Umfang der Grundfläche G

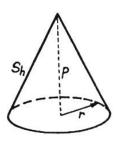
$$M = u \cdot \frac{s_h}{2}$$
  $O = M + G$   $V = G \cdot \frac{p}{3}$ 

#### **Der Pyramidenstumpf**

U = Umfang der Grundfläche G
u = Umfang der Deckfläche D

$$M = \frac{(U+u) \cdot s_h}{2} \quad O = M+G+D$$

$$V = \frac{1}{3} p (G + \sqrt{GD} + D)$$



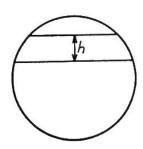
#### Der Kreiskegel

$$r = Radius$$
  $M = r\pi \cdot s_h$   $O = r\pi (r+s_h)$   
 $V = \frac{r^2 \pi \cdot p}{3}$ 





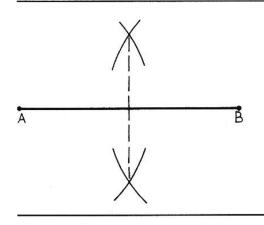
R = Radius der Grundfläche r = Radius der Deckfläche M =  $\pi s_h (R+r)$  O = M+G+D  $O = [(R+r) s_h + R^2 + r^2] \pi$   $V = \frac{\pi \cdot p}{3} (R^2 + Rr + r^2)$ 



#### Die Kugel

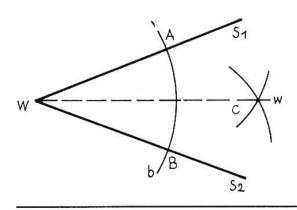
$$\begin{array}{ll} r = \mbox{Radius} & O = 4\,\pi\,r^2 \\ \mbox{Kugelhaube} \\ \mbox{Kugelzone} \end{array} \right\} \, O = 2\,\pi\,r\,h \qquad V = \frac{4\,\pi\,r^3}{3}$$

#### Geometrische Grundkonstruktionen



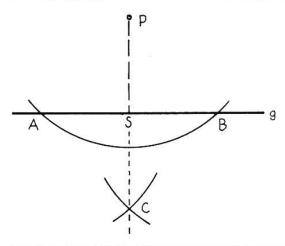
#### 1. Halbieren einer Strecke

Man schlägt um die Endpunkte der Strecke AB zwei Kreisbögen mit gleichem Radius und verbindet ihre Schnittpunkte.



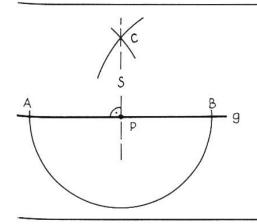
#### 2. Halbieren eines Winkels

Man schlägt einen Kreisbogen b um den Scheitel W. Von seinen Schnittpunkten A und B mit den Schenkeln S<sub>1</sub> und S<sub>2</sub> aus tragen wir je einen Kreisbogen mit gleichem Radius ab. Durch ihren Schnittpunkt C geht die Winkelhalbierende w.



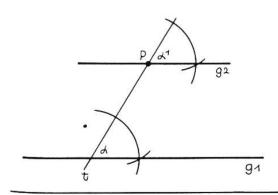
# 3. Fällen eines Lotes von P auf die Gerade g

Ein Kreisbogen von P aus schneidet g in den Punkten A und B. Von A und B aus tragen wir je einen Kreisbogen mit gleichem Radius ab. Durch deren Schnittpunkt C geht die Senkrechte s (das Lot).



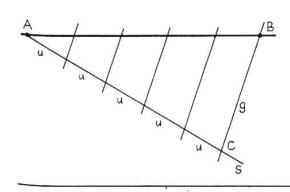
#### 4. Errichten einer Senkrechten in P

Mit P als Mittelpunkt schlägt man einen Kreisbogen, der g in A und B schneidet. Von A und B aus tragen wir je einen Kreisbogen ab. Von deren Schnittpunkt C aus ziehen wir die Senkrechte durch P.



# 5. Zeichnen einer Parallelen zu einer Geraden g<sub>1</sub> durch einen Punkt P

Man zieht eine beliebige Gerade t durch P. Den Winkel  $\alpha$ , den t mit  $g_1$  bildet, trägt man im Punkt P an t an und erhält so  $g_2$ . (Gleichliegende Winkel.)



# 6. Unterteilung einer Strecke in eine beliebige Zahl gleichlanger Stücke.

Von A (oder B) aus ziehen wir den Strahl s. Auf diesem tragen wir die verlangte Anzahl gleichlanger Strecken (z.B.5) ab. Vom Endpunkt C aus ziehen wir eine Gerade durch B. Zu dieser Geraden g ziehen wir Parallele durch jedes Streckenende auf s.

## Einheiten im Messwesen

#### 1. Druck, mechanische Spannung

alt:

neu (SI-Einheit):

1 technische Atmosphäre (1 at) ist gleich dem auf eine Fläche gleichmässig wirkenden Druck, bei dem senkrecht auf die Fläche 1 cm² eine Kraft von 1 Kilopond (im alltäglichen Sprachgebrauch 1 kg) wirkt.

1 Pascal (Pa) ist gleich dem auf eine Fläche gleichmässig wirkenden Druck, bei dem senkrecht auf die Fläche 1 m² die Kraft 1 Newton (N) ausgeübt wird.

#### 1 physikalische Atmosphäre

(1 Atm) ist der Druck einer Quecksilbersäule von 760 mm Höhe bei 0°C auf 1 cm².

1 Atm = 1,033 at.

1 Bar (bar) ist der 10.Teil eines Megapascal.

1 bar = 100000 Pa.

1 at = 1 kp/cm<sup>2</sup> = 98066,5 Pa 1 Atm = 1,033 kp/cm<sup>2</sup> = 101325 Pa

#### 2. Energie, Arbeit, Wärmemenge

alt:

neu:

**Arbeit:** Wenn mit dem Einsatz einer Kraft von 1 Kilopond der Weg 1 m überwunden wird, beträgt die Arbeit **1 kpm** (1 «Meterkilogramm»).

Wärmemenge: Die Wärmemenge, die benötigt wird, um 1 g Wasser von 14,5 auf 15,5°Celsius zu erwärmen, ist 1 Kalorie (1 cal). 1000 cal = 1 Kilokalorie (1 Kcal).

1 Joule (J) ist gleich der Arbeit, die verrichtet wird, wenn der Angriffspunkt der Kraft 1 Newton (N) in Richtung der Kraft um 1 m verschoben wird.

1 kpm = 9,80665 J. 1 cal = 4,1868 J.

#### 3. Leistung

alt:

neu:

Wenn die Arbeit 1 kpm in 1 Sekunde verrichtet wird, so beträgt die Leistung **1 kpm/s** (1 «Meterkilogramm» pro Sekunde).

1 Watt (1 W) ist gleich der Leistung, bei der während der Zeit 1 Sekunde die Energie 1 Joule umgesetzt wird.

**1 Pferdestärke** (1 PS) = 75 kpm/s.

$$1 PS = 735,3 W$$

$$1 \text{ kpm/s} = 9,80665 \text{ W}$$

# Umrechnungstabelle für die neuen Masseinheiten:

Arbeit, Wärme: 1 cal = 4,1868 J

1 J = 0.2388 cal

Kraft:  $1 \text{ N} = 1 \text{ kgm/s}^2$ 

Leistung: 1 PS = 0.735499 kW

1 kW = 1,359622 PS

Druck: 1 atm = 0.980665 bar

Temperatur:  $0^{\circ}C = 273,16 \text{ K}$ 

# Der Überholungsweg

Je grösser der Geschwindigkeitsunterschied zwischen Überholendem und Überholtem ist, desto kürzer wird der Überholungsweg. Je grösser die Geschwindigkeiten überhaupt sind, desto länger wird der Überholungsweg. Pro 10 km/Std. Geschwindigkeitsunterschied macht der Überholende ca. 2,8 m pro Sekunde gut. Der Überholungsweg kann im Normalfall berechnet werden:

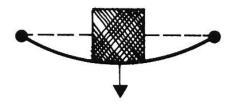
| Überholungsweg | = | höhere Geschwindigkeit · höhere Geschwindigkeit Geschwindigkeitsunterschied |
|----------------|---|-----------------------------------------------------------------------------|
| in m           |   | in km/Std.                                                                  |

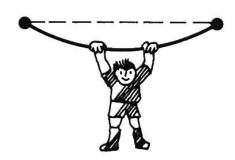
Beispiel: A fährt Velo mit 20 km/Std., B fährt Moped mit 30 km/Std.:

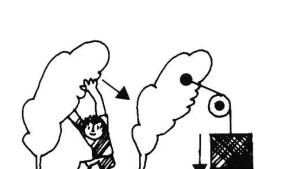
Überholungsweg = 
$$\frac{30 \cdot 30}{10}$$
 = 90 m

Anhaltestrecke siehe Seite 103.

## Gewichte und Massen, Kräfte







#### - Was ist ein Gewicht?

Das Gewicht des Körpers ist die Kraft, mit welcher der Körper (wegen der Erdanziehung) auf seine horizontale Unterlage drückt oder an seiner Aufhängevorrichtung zieht und sie dadurch verformt.

#### – Masseinheit:

Das Gewicht von 1 dm³ Wasser von 4°C in Bern oder Zürich entspricht mit guter Genauigkeit der internationalen Gewichtseinheit 1 Kilopond (1 kp).

#### – Gewicht und Kraft:

Jede in beliebiger Richtung wirkende Kraft kann mit einer Gewichtskraft verglichen und daher mit dem gleichen Mass ausgedrückt werden.

Die für Gewicht und Kraft neu geltende Einheit ist das **Newton** (1 N).

#### – Gewicht und Masse:

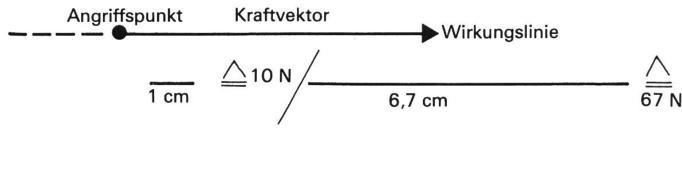
Die Masse eines Körpers, z.B. eine Portion eines Nahrungsmittels, ist überall gleich. Ihr Gewicht aber hängt vom Ort ab:

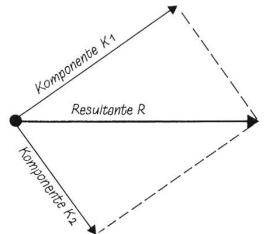
|           | Masse | Gewicht  |        | <ul><li>Umrechnu</li></ul> | ng                |
|-----------|-------|----------|--------|----------------------------|-------------------|
| Bei uns   | 1 kg  | 1 kp =   | 9,81 N | 1 Newton = 1               | N = 0,1019  kg/kp |
| Erdpol    | 1 kg  | 1,003 kp |        | 1 kg/kp                    | = 9,81 N          |
| Äquator   | 1 kg  | 0,997 kp |        |                            |                   |
| Mondboden | 1 kg  | 0,167 kp |        |                            |                   |

 Im bürgerlichen Leben wird Gewicht anstelle von Masse gleichbedeutend angewendet. Darum merken wir uns eben die Umrechnung vom altvertrauten Kilogramm in Newton.

# Kraftpfeile (Vektoren) – Addition von Kräften

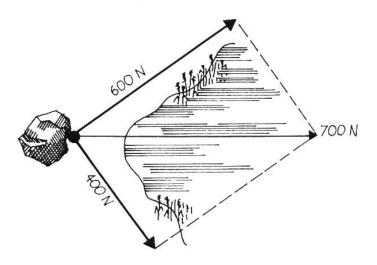
Eine Kraft hat nicht nur einen Betrag, sondern auch eine Richtung. Die Kraft ist ein **Vektor** und wird durch einen Pfeil dargestellt, dessen Anfang den Angriffspunkt zeigt und dessen Länge proportional zum Betrag der Kraft gezeichnet wird. Die Gerade durch den Pfeil in Kraftrichtung heisst Wirkungslinie.





Mit Hilfe eines Kräfteparallelogramms kann man Kräfte zeichnerisch addieren. Die Summanden nennt man Komponenten, das Ergebnis wird durch die Resultante dargestellt.

Mit Hilfe eines Kräfteparallelogramms kann man auch Kräfte zerlegen.



4 S

Der Fels F sollte mit der Kraft 700 N seewärts befördert werden. Im See kann man nicht ziehen, also erledigt man die Arbeit mit den beiden Teilkräften von 600 N & 400 N in den angegebenen Richtungen (gerundete Werte).

## **Masse und Gewichte**

#### Längenmasse

(zehnteilig)

milli (m) = Tausendstel
centi (c) = Hundertstel
dezi (d) = Zehntel
deka (da) = zehn
hekto (h) = hundert
kilo (k) = tausend

<del>|----|---|</del>

1 cm = 10 mm

1 mm
10 mm = 1 cm
10 cm = 1 dm
10 dm = 1 m
10 m = 1 dam\*
10 dam = 1 hm\*
10 hm = 1 km
\* wenig gebraucht
1 m = 1 Meter ≈ Erdumfang : 40 Millionen
dam = Dekameter
hm = Hektometer

#### Flächenmasse

(hundertteilig)

1 Quadratmeter (m²) ist ein Quadrat von 1 m Seitenlänge



 $1 \text{ cm}^2 = 100 \text{ mm}^2$ 

1 mm<sup>2</sup> 100 mm<sup>2</sup> = 1 cm<sup>2</sup> 100 cm<sup>2</sup> = 1 dm<sup>2</sup> 100 dm<sup>2</sup> = 1 m<sup>2</sup> 100 m<sup>2</sup> = 1 a 100 a = 1 ha 100 ha = 1 km<sup>2</sup>

a = Are, ha = Hektare 1 Jucharte (altes Mass) = 36 a

#### Körpermasse

(tausendteilig)

1 Kubikmeter (m³) ist ein Würfel von 1 m Kantenlänge



 $1 \text{ cm}^3 = 1000 \text{ mm}^3$ 

1 mm<sup>3</sup>
1000 mm<sup>3</sup> = 1 cm<sup>3</sup>
1000 cm<sup>3</sup> = 1 dm<sup>3</sup>
1000 dm<sup>3</sup> = 1 m<sup>3</sup>
1000 dam<sup>3</sup> = 1 dam<sup>3</sup>
1000 dam<sup>3</sup> = 1 km<sup>3</sup>
1000 hm<sup>3</sup> = 1 km<sup>3</sup>
\* wenig gebraucht
1 dm<sup>3</sup> = 1 I

1 dm<sup>3</sup> = 1 l 1 cm = 1 ml 1 m<sup>3</sup> = 1000 l 1 m<sup>3</sup> = 10 hl

#### Hohlmasse, Flüssigkeitsmasse

I = Liter

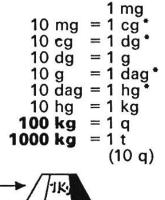
1 ml\*
10 ml = 1 cl\*
10 cl = 1 dl
10 dl = 1 l
10 l = 1 dal\*
10 dal = 1 hl
10 hl = 1 kl\*
\* wenig
gebraucht

1 | = 1 kg 1 | (= 1 dm<sup>3</sup>) chemisch reines Wasser von + 4° Celsius wiegt 1 kg

10

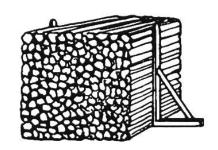
#### Gewichte

g = Gramm



q = Zentner t = Tonne 1 Pfund = 500 g

#### Holzmasse



1 Ster ist 1 m<sup>3</sup> Brennholz 1 Klafter ist 3 Ster (altes Mass)

#### Stückmasse

12 Stück = 1 Dutzend 12 Dutzend = 1 Gros (144 Stück)

# Masse und Gewichte in englischen Sprachgebieten

```
A. Länge
Die Einheit ist das Yard (yd.)
1 Yard = 3 Feet = 36 Inches (Einzahl foot, inch)
             (Fuss)
                          (Zoll)
yd.
             ft.
                          in.
1 \text{ in.} = 2.54 \text{ cm}
                          1 \text{ mm} = 0.039 \text{ in.}
                                                   Praktische Umrechnung:
1 ft. = 0.305 \text{ m}
1 yd. = 0.914 \text{ m}
                          1 \text{ cm} = 0.394 \text{ in.}
                                                   32 \text{ m} = 35 \text{ yd}.
                          1 \text{ m} = 1,094 \text{ yd}.
1 statute mile (englische Meile) = 1,609 km
1 nautical mile (internat. Seemeile) = 1,852 km
B. Flächeninhalt
Die Einheit ist das Quadrat-Yard (squ. yd)
1 square yard (Quadrat-Yard) = 0.836 \text{ m}^2
1 \text{ m}^2 = 1,196 \text{ square yard}
1 acre (ac)
                                   = 0.405 ha
1 ha
                                   = 2.471 ac
C. Rauminhalt
Die Einheit ist das Kubik-Yard (cbc. yd.)
1 cubic yard (Kubik-Yard) = 0.765 \text{ m}^3
1 \text{ m}^3
                                   = 1,308 cubic yard
D. Hohlmasse
1 Gallone = 4 Quarts = 8 Pints
1 gallon (US)
                                 = 3,785 I
                                                      1 I = 0.264 \text{ gallon (US)}
1 gallon (brit.)
                                 = 4,546 I
                                                      1 I = 0.220 \text{ gallon (brit.)}
                                                      1 I = 1,76 pint (brit.)
1 pint (US)
                                 = 0.5681
1 barrel (US für Erdöl)
                               = 158,98 I
1 barrel (brit. für Bier usw.) = 163,5 l
E. Gewichte
                                                1 Pound = 16 Unzen
Die Einheit ist das Pound (lb)
1 ounce (Unze)
                                       28,35 g
                                                      1 g = 0.0352 \text{ ounce}
                                                      1 \text{ kg} = 2,205 \text{ pound}
1 pound
                                 = 0.454 \text{ kg}
                                                      1 t = 1,102 short ton
1 t = 0,984 long ton
                                 = 907,2 \text{ kg}
1 short ton (US)
                                = 1016 \text{ kg}
1 long ton (brit.)
```

#### Ein Stein fällt zur Erde

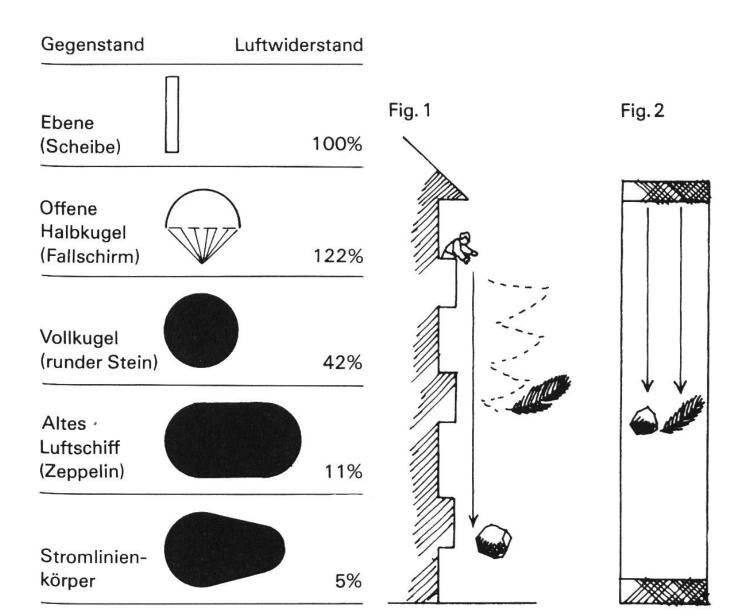
Es ist eine bekannte Tatsache, dass ein Körper, der nirgends aufliegt und nicht aufgehängt ist, zur Erde fällt. Er fällt senkrecht, das heisst zum Erdmittelpunkt, weil ihn die Erde anzieht. Wir untersuchen jetzt, wie unser Stein fällt.

Wenn wir zum Beispiel eine Hühnerfeder und einen Stein von einem Turm fallen lassen, so wird der Stein lange vor der Feder am Boden angelangt sein. Wenn wir aber die Feder und den Stein in einem Rohr fallen lassen, aus dem wir vorher alle Luft entfernt haben, so kommen beide, Feder und Stein, gleich schnell unten an. Wir wissen es jetzt: Im luftleeren Raum fallen alle Körper gleich schnell. (Fig. 1, 2).

Wir untersuchen die Zeiten, Geschwindigkeiten und Wege, wie es Galileo Galilei zuerst gemacht hat, und erhalten dabei folgende Tabelle:

| Zeit                                      | Fallhöhe                                                      | Zuwachs                                            | Geschwindigkeit in m/Sekunde (am Ende der Strecke) |
|-------------------------------------------|---------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------|
| Sekunden                                  | m                                                             | m                                                  |                                                    |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | 5<br>20<br>45<br>80<br>125<br>180<br>245<br>320<br>405<br>500 | 15<br>25<br>35<br>45<br>55<br>65<br>75<br>85<br>95 | 10 (= 36 km/Std.) 20 30 40 50 60 70 80 90          |

Der Luftwiderstand und damit die Bremswirkung hängt von der Form des fallenden (oder bewegten) Körpers ab; die Form mit dem geringsten Widerstand nennt man «Stromlinienform».



Die Physiker geben uns dazu folgende exakten Gesetze:

Wenn v die Fallgeschwindigkeit nach Ablauf der Zeit t Sekunden,

g die **Schwerebeschleunigung** =  $9.81 \text{ m/s}^2$ ,

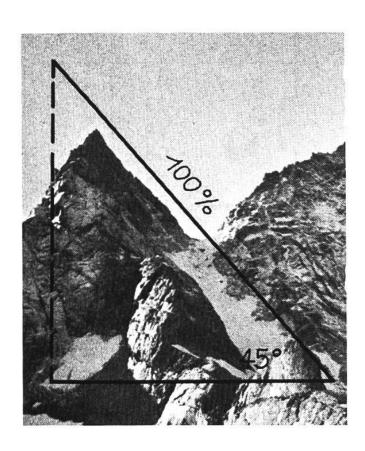
h die Fallhöhe = in der Zeit t durchfallender Weg,

t die Zeit, die für den Fall benötigt wird,

dann gilt:

| $h = \frac{v \cdot t}{2}$   | v = g·t                        |
|-----------------------------|--------------------------------|
| $h = \frac{g \cdot t^2}{2}$ | $v = \sqrt{2 \cdot g \cdot h}$ |

Dabei ist, wie gesagt, kein Luftwiderstand berücksichtigt. Im lufterfüllten Raum ist es anders. Das sehen wir am Fallschirmabspringer. Wenn er aus dem Flugzeug «aussteigt», wird seine Fallgeschwindigkeit zunächst grösser. Dann entfaltet er seinen Fallschirm. Wegen des viel grösseren Querschnittes des Fallschirms setzt er der Luft einen viel grösseren Widerstand entgegen. Die Widerstandskraft wird viermal grösser, wenn die Geschwindigkeit zweimal grösser wird, 9mal grösser, wenn die Geschwindigkeit 3mal grösser wird, usw. Wir sagen: Der Luftwiderstand wächst mit dem Quadrat der Geschwindigkeit. Wenn nun die Fallgeschwindigkeit so gross geworden ist, dass die Widerstandskraft der Luft gleich der Erdanziehungskraft ist, so heben sich die beiden Kräfte auf, und die Fallgeschwindigkeit bleibt konstant (regelmässig). Unser Fallschirmspringer wird dann mit etwa 5 m/sec landen; wie wenn man 1,25 m frei herabspringt.



# Steigung und Gefälle

Unter Steigung (oder in umgekehrter Richtung gesehen Gefälle) verstehen wir vorerst einmal den Höhenunterschied zweier Punkte im Gelände. Um uns die «Steilheit» vorstellen zu können oder verschiedene Steilheiten zu vergleichen, müssen wir den Höhenunterschied in ein Verhältnis zur waagrechten (horizontalen) Entfernung der beiden Punkte bringen. Wir können aber auch den Winkel zwischen der schrägen Verbindung der beiden Punkte und ihrer waagrechten Entfernung angeben. Die abgebildete Felspyramide hat eine Neigung von ziemlich genau 45° (bei der 360°-Winkelteilung) oder

50° bei der 400°-Winkelteilung. In % angegeben, beträgt die Neigung 100%, in Promille 1000‰.

Die Steigungsprozente bestimmen wir, indem wir den Höhenunterschied durch  $^{1}/_{100}$  der horizontalen Entfernung teilen. Wenn wir Promille berechnen wollen, teilen wir den Höhenunterschied durch  $^{1}/_{1000}$  der horizontalen Entfernung.

**Beispiel:** Ein Strassenstück – horizontal auf der Karte gemessen – ist 1100 m lang. Der Höhenunterschied beträgt 43 m. Die Steigung beträgt (durchschnittlich) 43 m:11 m, also nicht ganz 4%.

**Beispiel:** Würden wir den höchsten Punkt der Schweiz (Dufourspitze, 4635 m ü. M.) mit dem tiefsten Punkt unseres Landes (Ufer des Lago Maggiore, 193 m) verbinden, ergäbe sich folgende Steigung: 4442 m Höhenunterschied:  $66 \,\mathrm{m} \, (^{1}/_{1000} \,\mathrm{von} \,\mathrm{rund} \,66 \,\mathrm{km}) = (\mathrm{fast}) \,70\%$ , das ist gleichviel wie das steilste Stück der Berninabahn bei Brusio im Puschlav.

**Einige Zahlenangaben:** Unsere grossen Alpenpässe haben fast durchwegs eine maximale Steigung von 9–10%. Ein Schweizer Wohnwagengespann muss bei der Zulassungskontrolle bei 15% Steigung anfahren können. Flachlandstaaten haben da oft weniger strenge Vorschriften, und so bleibt denn dann und wann ein Meeruferanwohner in einer steilen Kurve hängen. – Das steilste Stück des Auslaufs einer Sprungschanze hat gegen 100% oder 45° Gefälle. Ein steiles Bergsträsschen bringt es bald einmal auf 20% oder zirka 11°. – Die Gotthardbahn überwindet die Steilrampe zwischen Amsteg und Göschenen mit durchschnittlich 24‰ Steigung; die Pilatusbahn, eine Zahnradbahn, weist im steilsten Stück das Zwanzigfache, nämlich 48% auf.

#### Die Anhaltestrecke

Bis ein Fahrzeug hält, geht zweimal Zeit verloren:

- 1. Der Fahrer muss die Gefahr erkennen, er muss überlegen und reagieren, und es vergeht erst noch Zeit, bis die Bremsen zu wirken beginnen. Das alles ergibt die sogenannte Reaktionszeit. Währenddessen legt das Fahrzeug ungebremst den **Reaktionsweg** zurück. Er beträgt etwa 3 m pro 10 km/Std. Geschwindigkeit, also z. B. 9 m bei 30 km/Std.
- 2. Der **Bremsweg** ist die Strecke, die das Fahrzeug vom Beginn der Bremswirkung bis zum Stillstand zurücklegt. Wir berechnen den Bremsweg bei nasser Strasse:

|  | Bremsweg = | Geschwindigkeit · Geschwindigkeit |     |
|--|------------|-----------------------------------|-----|
|  |            | 100                               | Mr. |
|  | in m       | in km/Std.                        |     |

Beispiel für 30 km/Std.:  $\frac{30 \cdot 30}{100} = 9 \text{ m}$ 

Die Anhaltestrecke setzt sich aus Reaktionsweg und Bremsweg zusammen; sie misst also z. B.

bei 20 km/Std. 6 m + 4 m = 10 m

bei 30 km/Std. 9 m + 9 m = 18 m

bei 40 km/Std. 12 m + 16 m = 28 m

bei 100 km/Std. 30 m + 100 m = 130 m

Die Anhaltestrecke wird kürzer auf trockener Strasse und wenn der Fahrer bremsbereit ist, sie wird länger auf verschneiter, vereister oder verschmutzter Fahrbahn, sie ist auch länger bei allen Zweiradfahrzeugen.

Der Überholungsweg siehe Seite 95.