Zeitschrift: Schatzkästlein: Pestalozzi-Kalender

Herausgeber: Pro Juventute

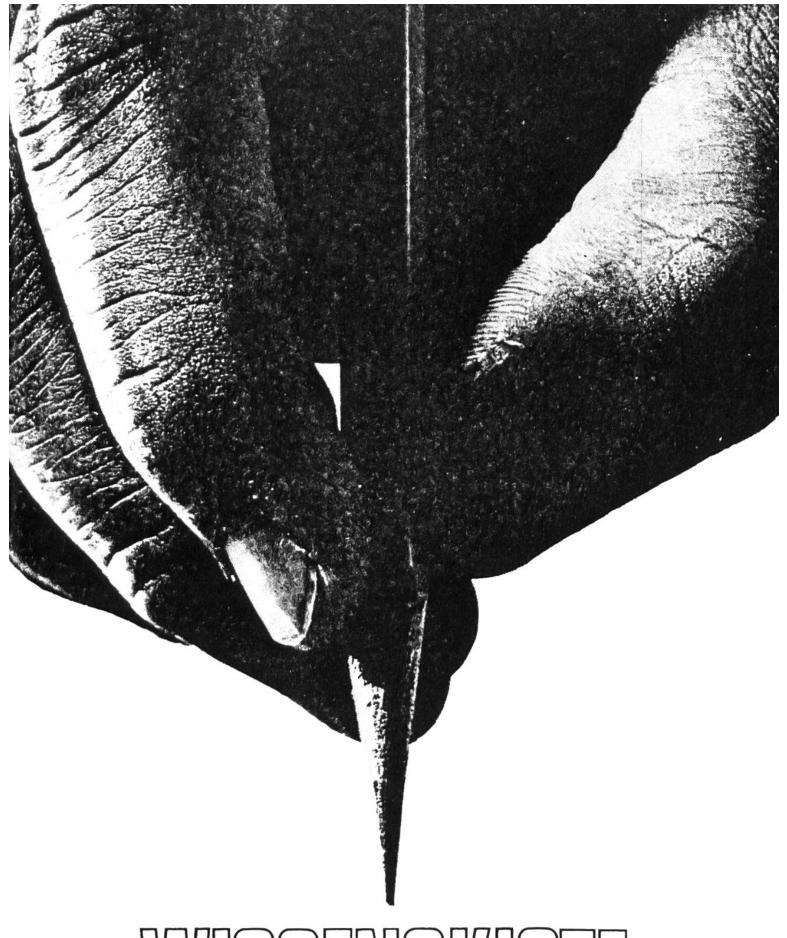
Band: - (1980)

Rubrik: Wissenskiste

Nutzungsbedingungen

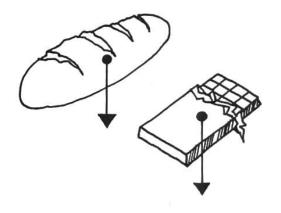
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation


L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

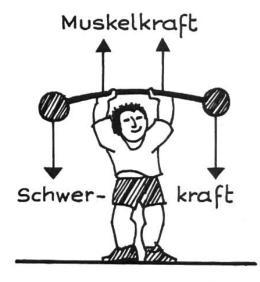
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more


Download PDF: 16.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

WISSENSWISTE

PHYSIK



Masse

Unter der Masse verstehen wir die Stoffmenge, das Material an sich.

Masseinheit ist das Kilogramm (kg). Weiter werden die Tonne (t) und das Gramm (g) verwendet.

1 kg = 1000 g1 t = 1000 kg = 1000000 g

Gleiche Masse

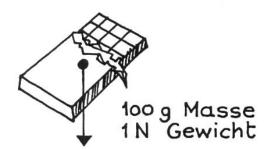
Mond

verschiedenes Gewicht!

Die Gewichtskraft

Das Gewicht des Körpers ist die Kraft, mit welcher der Körper (wegen der Erdanziehung) auf seine horizontale Unterlage drückt oder an seiner Aufhängevorrichtung zieht und sie dadurch verformt.

Gewicht und Kraft:

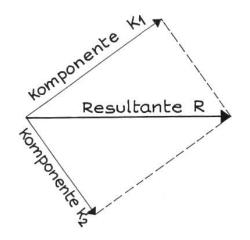

Jede in beliebiger Richtung wirkende Kraft kann mit einer Gewichtskraft verglichen und daher mit dem gleichen Mass ausgedrückt werden.

Die für Gewicht und Kraft neu geltende Einheit ist das **Newton** (1 N).

Gewicht und Masse:

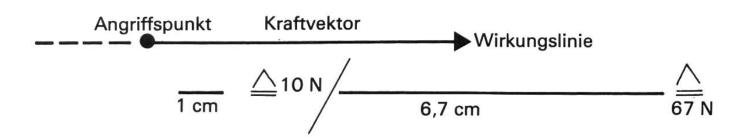
Die Masse eines Körpers, z.B. eine Portion eines Nahrungsmittels, ist überall gleich. Ihr Gewicht aber hängt vom Ort ab:

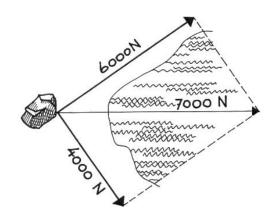
	Masse	Gewicht	
Bei uns	1 kg	1 kp	= 9,81 N
Erdpol	1 kg	1,003 kp	= 9,84 N
Äquator	1 kg	0,997 kp	= 9,78 N
Mondboden	1 kg	0,167 kp	= 1,64 N



Beziehung zwischen Gewicht und Masse

1 kg Masse hat bei uns ein Gewicht von 9,81 N. Normalerweise genügt es, wenn wir mit 10 N rechnen.


1 kg $\hat{=}$ 9,81 N \sim 10 N 1 N $\hat{=}$ 0,102 kg \sim 0,1 kg


Im bürgerlichen Leben wird Gewicht anstelle von Masse gleichbedeutend angewendet. Darum merken wir uns eben die Umrechnung vom altvertrauten Kilogramm in Newton.

Kraftpfeile (Vektoren) – Addition von Kräften

Eine Kraft hat nicht nur einen Betrag, sondern auch eine Richtung. Die Kraft ist ein **Vektor** und wird durch einen Pfeil dargestellt, dessen Anfang den Angriffspunkt zeigt und dessen Länge proportional zum Betrag der Kraft gezeichnet wird. Die Gerade durch den Pfeil in Kraftrichtung heisst Wirkungslinie.

Mit Hilfe eines **Kräfteparallelogramms** kann man Kräfte zeichnerisch **addieren.** Die Summanden nennt man Komponenten, das Ergebnis wird durch die **Resultante** dargestellt.

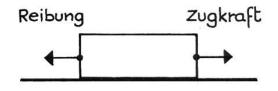
Komponente K₁

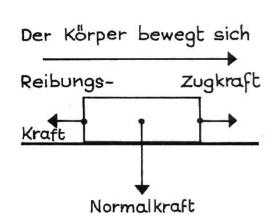
Resultante R

Komponente K₂

Mit Hilfe eines Kräfteparallelogramms kann man auch Kräfte zerlegen.

Der Fels F sollte mit der Kraft 7000 N seewärts befördert werden. Im See kann man nicht ziehen, also erledigt man die Arbeit mit den beiden Teilkräften von 6000 N & 4000 N in den angegebenen Richtungen.


6000 N


7000 N

4000 N

See

F

Rollreibung

Eisenreifen auf Schienen	0,002
Gummireifen auf Asphalt	0,035

Die Reibung

Die Reibung wirkt immer der Bewegung entgegen.

Wir unterscheiden Haftreibung, Gleitreibung und Rollreibung.

Die Haftreibung ist grösser als die Gleitreibung, die Rollreibung ist sehr klein.

Die Grösse der Reibung wird ausgedrückt durch die Reibungszahl µ:

Reibungskraft	= Reibungszahl μ
Normalkraft	— Neibungszam p

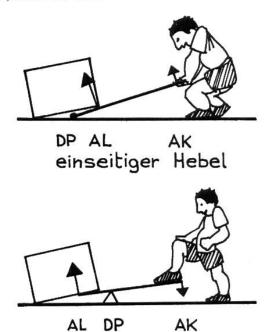
Beispiele für Reibungszahlen (Näherungen)

	Haftreibung	Gleitreibung
Stahl-Stahl	0,3	0,2
Stahl-Eis	0,03	0,02
Holz-Holz	0,4	0,25
Gummi-Asphalt	0,8	0,5
Bremsbelag-Stahl	_	0,3

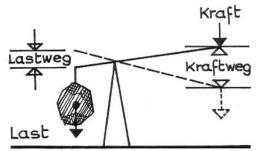
Der Hebel

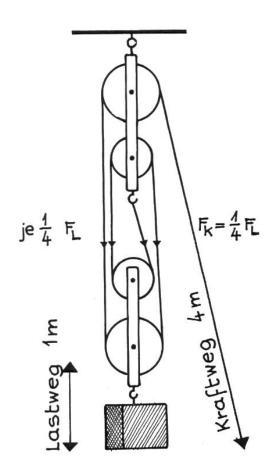
Der Hebel besteht aus Drehpunkt, Lastarm und Kraftarm.

Liegen Last- und Kraftarm auf der gleichen Seite des Drehpunktes, liegt ein einseitiger Hebel vor, andernfalls ein zweiseitiger.


AK: Ansatzpunkt der Kraft AL: Ansatzpunkt der Last

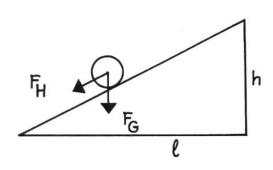
Es gilt folgendes Gesetz:


 $Kraft \times Kraftweg = Last \times Lastweg$


Wendet man den Strahlensatz aus der Geometrie auf dieses Gesetz an, erkennt man, dass man auch sagen kann:

 $Kraft \times Kraftarm = Last \times Lastarm$

Zweiseitiger Hebel

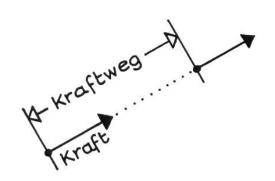

Der Flaschenzug

An einem Flaschenzug mit n tragenden Seilen gilt:

$$F_k = 1/n \cdot F_L$$

Bei dieser Formel ist die Reibung nicht berücksichtigt, sie gilt deshalb in der Praxis nicht.

Der Kraftweg ist aber immer n mal grösser als der Lastweg.

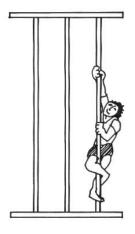

Die Schiefe Ebene

Steilheit: Ho

Höhe Länge

Die Hangabtriebskraft berechnet man aus Gewicht und Steilheit:

$$F_H = F_G \cdot \frac{h}{l}$$


Die Arbeit

Die Arbeit berechnet man als Produkt aus Kraft und Länge:

Wenn (z.B. bei einem Hebel) eine Kraft von 5 N längs eines Weges von 2 m wirkt, wird eine Arbeit von 10 Nm geleistet. Statt Nm kann man auch J (Joule), sprich «Dschul», oder Ws (Wattsekunde) sagen.

$$1 \text{ Nm} = 1 \text{ J} = 1 \text{ Ws}$$

In der Wärmelehre verwendet man mit Vorliebe das Joule, in der Elektrizitätslehre die Wattsekunde.

Die Leistung

Ein Schüler, der zweimal die Kletterstange hochklettert, einmal schnell und einmal langsam, leistet in beiden Fällen die gleiche Arbeit. Doch die Leistung ist verschieden:

$$Leistung = \frac{Arbeit}{Zeit}$$

Masseinheiten:

$$1 \frac{Nm}{s} = 1 \frac{J}{s} = 1 W$$

Styropor

Blei

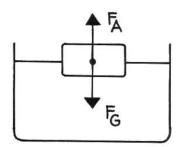
50 g

50 g

Die Dichte

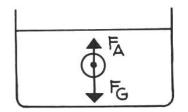
Die Dichte sagt aus, wie gross die Masse eines bestimmten Volumens eines Materials ist:

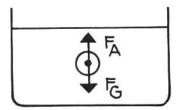
 $Dichte = \frac{Masse}{Volumen}$

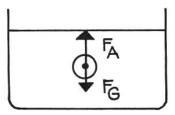

Masseinheiten: Die Dichte wird in g/cm³ oder in kg/dm³ angegeben.

 $1 \text{ g/cm}^3 = 1 \text{ kg/dm}^3$

Beispiele:

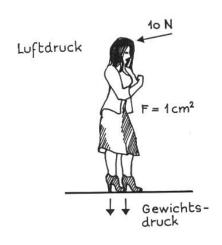

Gold	19,3	Glas	2,5
Blei	11,3	Beton	ca.2
Kupfer	8,9	Holz	0,5-0,9
Messing	8,5	Kork	0,2
Stahl	7,9	Styropor	0,03-0,04
Quecksilb	er 13,6	Wasser (rei	in) 1
Meerwass	er 1,03	Spiritus	0,8


Das spezifische Gewicht wird heute nicht mehr gern verwendet, weil es ortsabhängig ist.



Der Auftrieb

Jeder Körper, der sich in einer Flüssigkeit befindet, wird um soviel leichter, wie das Gewicht der Flüssigkeit, die er verdrängt, ausmacht.



FA < FG Sinken

FA = FG Schweben FA > FG steigen

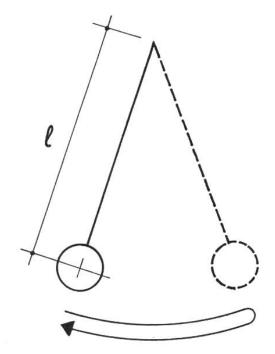
Beim U-Boot können alle drei Fälle eintreten, je nachdem, ob es mehr oder weniger Luft enthält. (Die Luft zum Auftauchen wird in komprimierter [zusammengepresster] Form mitgeführt.)

Der Luftdruck

Auch Luft hat eine Masse und damit ein Gewicht:

Luft hat eine Dichte von 0,00129 g/cm³, d.h. ein Kubikmeter Luft hat bereits eine Masse von 1,29 kg und damit ein Gewicht von 12,9 N! Der Druck sagt aus, welche Kraft auf eine bestimmte Fläche wirkt:

$$Druck = \frac{Kraft}{Fläche}$$


Masseinheiten:

1 bar = 100 000 Pa (Pascal)

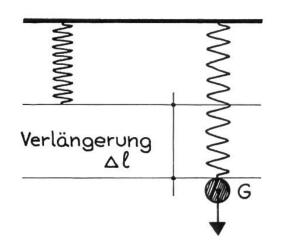
$$= 100000 \frac{N}{m^2}$$

Normalerweise herrscht bei uns ein Luftdruck von 1 bar.

(Der Luftdruck ist abhängig von Temperatur und Wetterlage.)

Schwingung

Das Pendel

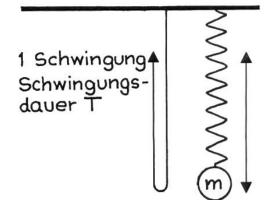

Eine Schwingung ist definiert als eine Hin- und Herbewegung. Die Zeit, die das Pendel für eine Schwingung braucht, nennt man Schwingungsdauer T.

Pendellänge und die Schwingungsdauer stehen in folgendem Zusammenhang:

$$T = 2 \pi \sqrt{\frac{\ell}{9}}$$

$$\ell$$
 in cm, $g = 981 \frac{cm}{s^2}$

$$\ell = \frac{gT^2}{4\pi^2}$$

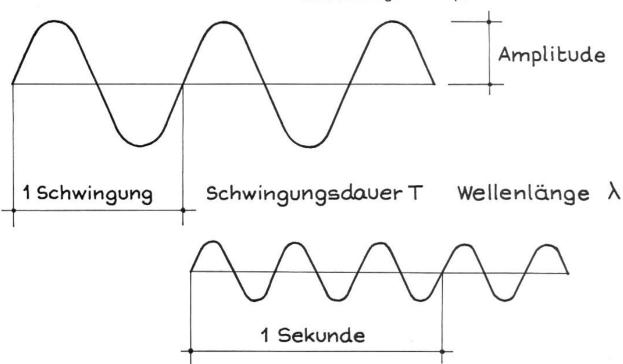


Die Federkonstante

Die Federkonstante gibt an, wieviel Kraft nötig ist, um eine bestimmte Federverlängerung zu erreichen.

Masseinheit: N/m

$$D = \frac{G}{\Delta I}$$


Das Federpendel

Ist die Federkonstante D bekannt, kann die Masse des schwingenden Körpers aus der Schwingungsdauer Terrechnet werden:

$$m=\frac{DT^2}{^4\pi^2}$$

Akustik

Akustik ist die Lehre vom Schall. Schall entsteht durch schwingende Körper.

Frequenz f: Anzahl Schwingungen/S Masseinheit: Hertz (Hz) $1 \text{ Hz} = \frac{1}{S}$

Beziehungen:

$$f = \frac{1}{T}$$
$$T = \frac{1}{f}$$

$$\lambda = \frac{Ausbreitungsgeschwindigkeit}{Frequenz}$$

$$\lambda = \, \frac{c}{f}$$

Die Amplitude bestimmt die Lautstärke eines Tones, die Frequenz die Tonhöhe.

Einer Verdoppelung der Frequenz entspricht eine Oktave.

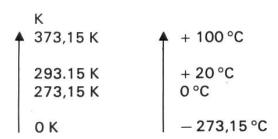
Kammerton a': 440 Hz

Schallgeschwindigkeit:

Luft 340 m/s Eisen 5800 m/s Wasser 1480 m/s Holz 5500 m/s

Resonanz:

Jeder Körper schwingt mit einer bestimmten Frequenz, wenn keine andere Frequenz erzwungen wird. Diese Frequenz heisst **Eigenfrequenz**.


Zwischen zwei Körpern, die die gleiche Eigenfrequenz haben, besteht **Resonanz.**

Beispiele: Ein Glas kann zerspringen, wenn ein lauter Ton mit der Eigenfrequenz des Glases auftritt.

Brücken können einstürzen, wenn sie im Taktschritt überquert werden.

Wärmelehre

Temperatur

Lord Kelvin 1824-1907

Die Temperatur von –273 °C kann nicht unterschritten werden. Sie heisst absoluter Nullpunkt.

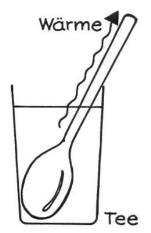
Man hat diese Temperatur deswegen zum Nullpunkt der neuen Temperaturskala gemacht:

Temperatur in K (Kelvin) = Temperatur in °C + 273.

Thermische Ausdehnung

Feste und flüssige Stoffe dehnen sich bei Erwärmung aus und ziehen sich bei Abkühlung wieder zusammen. Auf diesem Prinzip beruhen unsere Thermometer; das ist der Grund dafür, dass Brücken auf Rollen gelagert sind, dass elektrische Freileitungen durchhängen müssen usw. Hier einige Ausdehnungskoeffizienten:

0,000013	1/K
0,000024	1/K
0,000009	1/K
0,00018	1/K
0,0011	1/K
0,00096	1/K
	0,000 013 0,000 024 0,000 009 0,000 18 0,001 1 0,000 96


*Achtung: Wasser verhält sich im Bereich von 0 °C bis etwa 20 °C nicht normal. Sein Volumen ist bei 4 °C am kleinsten.

Beispiel:

Eine 13 m lange Eisenstange verlängert sich bei einer Erwärmung um 40 K um 13 m \times 40 K \times 0,000 013 $^{1}/\text{K} = 0,00676$ m = 6,76 mm.

Gase dehnen sich bei Erwärmung ebenfalls aus, aber nach andern Gesetzmässigkeiten: Im Idealfall nimmt das Volumen eines Gases pro Grad Temperaturerhöhung um ¹/₂₇₃ seines sogenannten Normalvolumens zu. Unter dem Normalvolumen versteht man das Volumen, das das Gas bei 0 °C einnimmt.

Praktisch heisst das für uns: Alle Gase dehnen sich bei Temperaturerhöhungen gleichartig aus. Es wäre also wenig sinnvoll, in einem Tabellenwerk nach den Ausdehnungskoeffizienten von Gasen zu suchen.

Wärmeausbreitung

Wärmeleitung

Alle Materialien leiten die Wärme mehr oder weniger gut.

Metalle sind gute Wärmeleiter, Glas, Stein, Luft sind schlechte Wärmeleiter (gute Isolatoren).

Die **Wärmeleitfähigkeit** gibt an, wieviele kJ in einer Stunde bei einer bestimmten Temperaturdifferenz durch eine bestimmte Länge eines Stoffes fliessen.

Die Masseinheit der Wärmeleitfähigkeit beträgt demnach

Hier einige Beispiele:

Aluminium 830 Glaswolle 0,13 Eisen 260 Basalt 5,9 Silber 1500 Sandstein 6,7

Alu ist ein guter Wärmeleiter, Glaswolle ein guter Isolator.

Wärmemitführung

In der Zentralheizung transportiert das heisse Wasser die Wärme, es führt die Wärme mit.

Wärmestrahlung

Die Wärme gelangt von der Sonne durch Strahlung zur Erde. Auf die gleiche Weise gelangt die Wärme vom Grill zum Huhn.

Spezifische Wärme

Die spezifische Wärme sagt aus, wieviel Wärme es braucht, um eine bestimmte Menge eines bestimmten Stoffes um eine bestimmte Temperatur zu erhöhen.

Masseinheit:
$$\frac{J}{kg \cdot K}$$
 oder $\frac{kJ}{kg \cdot K}$

Beispiele in kJ/kg · K

Aluminium 0,896 Silber 0,234 Wasser 4,19 Holz 2,5

Temperaturmischungen

Wenn wir heisses und kaltes Wasser mischen, gilt folgende Formel:

$$T_m = \quad \frac{(T_w \cdot m_w) + (T_k \cdot m_k)}{m_w + m_k}$$

Dabei bedeuten:

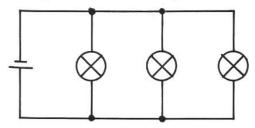
T_m: Mischtemperatur

 T_w : Temperatur des warmen Wassers T_k : Temperatur des kalten Wassers

m_w: Menge warmes Wasser

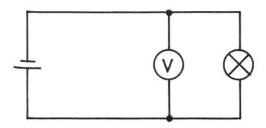
m_k: Menge kaltes Wasser

Heizwert

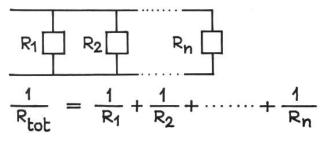

Der Heizwert gibt an, welche Wärmemenge in kJ wir aus einem kg eines Brennstoffes gewinnen können:

Holz, trocken	17000	Benzin	42 000
Torf, trocken	16000	Dieselöl	42 000
Braunkohle	19000	Heizöl	42 000
Steinkohle	30000	Stadtgas	29000
Hüttenkoks	29000	Wasserstoff	13000

Elektrizitätslehre

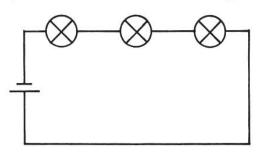

Parallelschaltung

Die Lampen sind parallel oder nebeneinander geschaltet. Sie liegen alle an der gleichen Spannung.



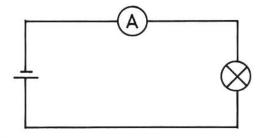
Spannungsmessungen

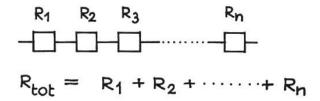
Das Voltmeter wird immer parallel zur Spannungsquelle oder zum Verbraucher angeschlossen.


Parallelschaltung von Widerständen

Merke: Der Totalwiderstand einer Parallelschaltung ist immer kleiner als der kleinste einzelne Widerstand.

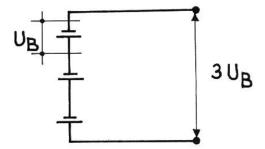
Serieschaltung


Die Lampen sind in Serie oder hintereinander geschaltet. Sie führen alle den gleichen Strom.

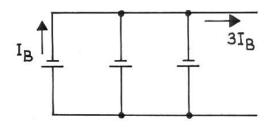

Strommessungen

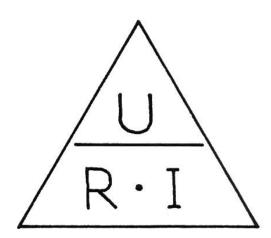
Das Amperemeter wird immer in Serie angeschlossen.

Merke: Bevor das Amperemeter angeschlossen werden kann, muss der Stromkreis *aufgetrennt* werden.



Serieschaltung von Widerständen


Serieschaltung von Spannungsquellen


Wir gewinnen Spannung

Wir gewinnen Strom

Das Ohmsche Gesetz

Je grösser in einem Stromkreis die Spannung, desto grösser der Strom (bei gleichem Widerstand).

Je grösser in einem Stromkreis der Widerstand, desto kleiner der Strom (bei gleicher Spannung). Diese beiden Abhängigkeiten fasste Georg Simon Ohm im nach ihm benannten Gesetz zusammen:

$$U = R \cdot I$$
 $R = U/I$ $I = U/R$

Deckt man in dieser Darstellung jeweils die gesuchte Grösse ab, ergibt sich die Formel für deren Berechnung.

Anwendungsmöglichkeiten

- Durch Messen von Spannung und Strom kann der Widerstand eines elektrischen Verbrauchers ermittelt werden. (Der Widerstand einer brennenden Glühlampe zum Beispiel kann mit dem Ohmmeter nicht ermittelt werden.)
- Durch Messen der Spannung an einem bekannten Widerstand kann der Strom durch diesen Widerstand ermittelt werden. (In der Elektronik kommen viele bekannte Widerstände vor; die Widerstände sind alle mit einem speziellen Code bezeichnet.)

Einige Beispiele für Spannung, Strom und Widerstand:

	Spannung	Strom	Wid.	
	in V	in A	in Ω	
Taschenlampenbirne	3,8	0,3	12,7	
Glühbirne 100 W	220	0,45	489	
Autoglühbirne 50 W	12	4,2	2,9	
Rasierapparat	220	0,045		

Die elektrische Leistung

Die elektrische Leistung errechnet sich als Produkt aus Spannung und Stromstärke. Masseinheit ist das Watt (W) und das Kilowatt (kW). Leistung (el.) = Spannung mal Strom $P = U \cdot I$

Beispiele:

Taschenlampenbirne 4,5 V, 0,3 A. Leistung: 1,35 W

Taschenradio 9 V, 0,09 A. Leistung: 0,81 W

Da Spannung und Strom auch mit dem Widerstand in Beziehung stehen, liegt es auf der Hand, dass zwischen dem Ohmschen Gesetz und der Leistungsberechnung auch ein Zusammenhang bestehen muss.

Die folgende Tabelle zeigt uns alle Zusammenhänge:

Gesuchte Grösse			
U Spannung (V)	l Strom (A)	R Widerstand (Ω)	P Leistung (W)
$U = \frac{P}{I}$	$I = \frac{P}{U}$	$R = \frac{U}{I}$	$P = U \cdot I$
$U=R\cdotI$	$I = \frac{U}{R}$	$R = \frac{U^2}{P}$	$P = \frac{U^2}{R}$
$U = \sqrt{R \cdot P}$	$I = \sqrt{\frac{P}{R}}$	$R = \frac{P}{l^2}$	$P=R\cdot I^2$

Die elektrische Arbeit

Was wir mit der Stromrechnung bezahlen müssen, ist nicht die elektrische Leistung, sondern die elektrische Arbeit. Auch ein Stromenergieverbraucher mit grosser Leistung kostet nämlich wenig, wenn er nur kurz in Betrieb ist. Die Zeit spielt eine Rolle.

Elektrische Arbeit =

Elektrische Leistung x Zeit = Spannung x Strom x Zeit

Masseinheit ist die Wattsekunde oder die Kilowattstunde.

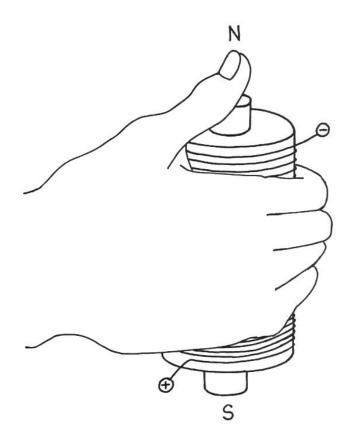
1 kWh = 3600000 Ws

1 Ws = 0,000 000 3 kWh (ungenauer Wert, auf Taschenrechner bezogen)

Beispiele:

- Eine Lampe mit einer Leistung von 100 W brennt während 8 Stunden. Sie konsumiert dabei eine elektrische Energie von 0,8 kWh.
- Eine Geschirrwaschmaschine braucht 2,4 kW während 45 Min. Sie verbraucht eine Energie von 1.8 kWh.
- Eine Taschenlampenbatterie liefert einen Strom von 0,3 A während 7 Stunden. Sie liefert somit eine Energie von 0,009 kWh oder von 34 020 Ws.

 $4.5 \text{ V} \cdot 0.3 \text{ A} \cdot 7 \text{ h} = 9.45 \text{ Wh} = 0.009 \text{ kWh}$


Der spezifische Widerstand

Nicht alle Stoffe sind gute Leiter. Der Widerstand eines Drahtes hängt ab von seiner Länge, seinem Querschnitt und dem Material, aus dem er gefertigt ist.

Masseinheit für den spezifischen Widerstand ρ ist $\frac{\Omega \cdot mm^2}{}$

Hier einige Beispiele:

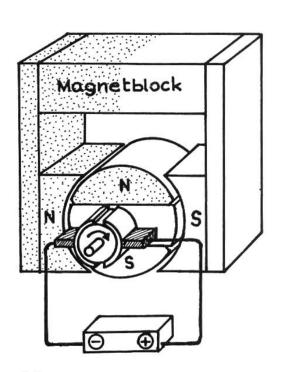
Aluminium	0,028	Glas bis 10 ¹⁶
Kupfer	0,017	Holz 109 bis 1013
Silber	0,016	Hartgummi bis 10 ¹⁵
Eisen	0,1	(Gute Isolatoren)
Konstantan	0,5	
Quecksilber	0,94	
(Gute Leiter)		

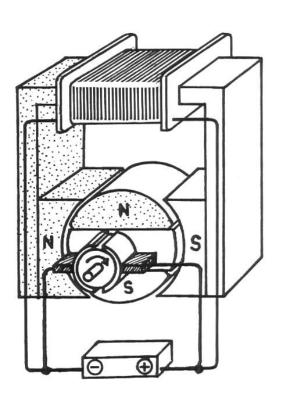
Der Elektromagnet

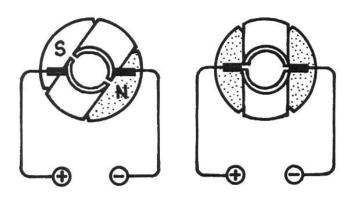
Eine von Strom durchflossene Spule bildet ein Magnetfeld. Steckt in der Spule ein Eisenkern, wird das Magnetfeld verstärkt, und wir sprechen von einem Elektromagneten.

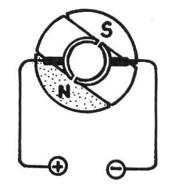
Die Rechte-Hand-Regel:

Legen wir die rechte Hand so um einen Elektromagneten, dass die Finger in der Stromrichtung von Plus nach Minus zeigen, dann gibt der Daumen den Nordpol des Magneten an.

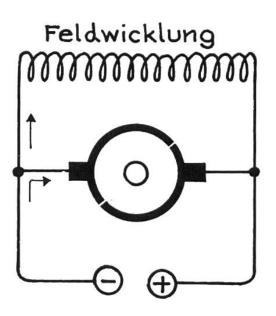

Anmerkung: Früher nahm man an, dass der Strom von Plus nach Minus fliesse, deshalb diese Regel.


Der Elektromotor

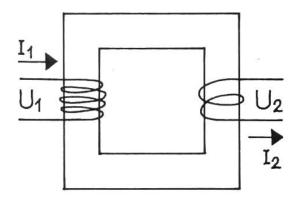

Im Elektromotor wird die magnetische Wirkung des elektrischen Stromes ausgenutzt.


Der Elektromotor steuert sich selber mittels des Kommutators, auch Kollektor genannt.

Die meisten Elektromotoren verwenden keine Permanentmagneten, sondern erzeugen das Magnetfeld mit einem Elektromagneten.


Der Hauptschlussmotor

Ankerwicklung und Feldwicklung werden in Serie geschaltet.


Der Nebenschlussmotor

Ankerwicklung und Feldwicklung werden parallel geschaltet.

Primärspule Sekundärspule

Windungszahl n₁ Windungszahl n2

Der Transformator

Der Transformator ist ein Spannungswandler. Er kann keine Gleichspannungen wandeln.

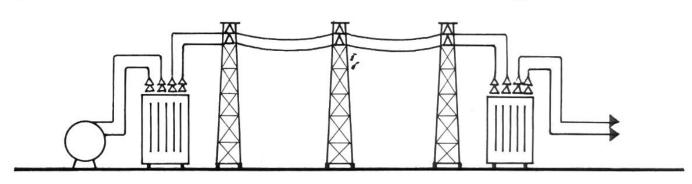
Die Spannungen verhalten sich wie die Windungszahlen.

Die Ströme verhalten sich umgekehrt zu den Windungszahlen:

$$\frac{U_1}{U_2} = \frac{n_1}{n_2}$$
 $\frac{I_1}{I_2} = \frac{n_2}{n_1}$

Diese Formeln stimmen in der Praxis nicht, da Transformatoren nicht verlustfrei arbeiten.

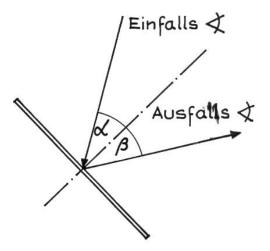
Die Hochspannungsleitung


Bei den hohen Spannungen von 220 000 Volt und mehr fliessen relativ kleine Ströme, man kann deshalb die Leitungen dünn halten.

$$\frac{U_{1}}{U_{2}} = \frac{n_{1}}{n_{2}} \qquad \frac{I_{1}}{I_{2}} = \frac{n_{2}}{n_{1}}$$

"kleine" Spannung grosse Spannung grosser Strom

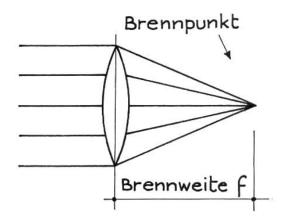
"kleiner Strom


"kleine Spannung grosser Strom

Generator

Trafo

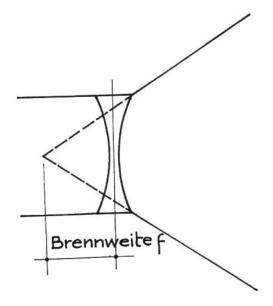
Hochspannungsleitung Trafo Verbraucher



Optik

Reflexionsgesetz

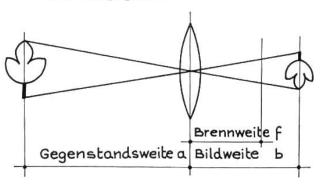
Auf einen Spiegel auftreffende Lichtstrahlen werden im gleichen Winkel zurückgeworfen, wie sie einfallen:


 $\alpha = \beta$

Sammellinse

Sammellinsen sammeln auffallendes Licht. Parallel einfallende Lichtstrahlen werden im Brennpunkt gebündelt.

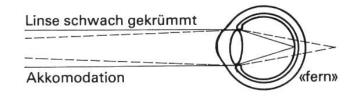
Der Abstand zwischen Linsenebene und Brennpunkt heisst Brennweite.

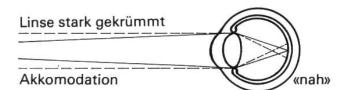

Zerstreuungslinsen

Zerstreuungslinsen zerstreuen das einfallende Licht.

Die Brillengläser aller kurzsichtigen Leute sind Zerstreuungslinsen.

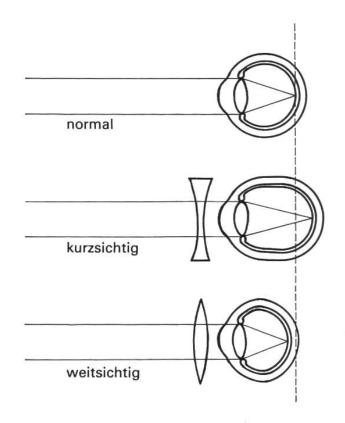
$$\frac{1}{f} = \frac{1}{a} + \frac{1}{b}$$
 (Linsengleichung)


Das Abbildungsgesetz



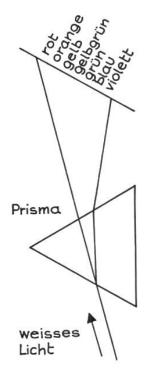
Der Abbildungsmassstab

Unter dem Abbildungsmassstab versteht man das Verhältnis von Gegenstandsgrösse zu Bildgrösse:


$$A = \frac{a}{b}$$

Das Auge

Wir können die Krümmung unserer Augenlinse verändern und deshalb unser Auge auf nahe und ferne Gegenstände einstellen: wir akkommodieren.



Die Brille

Fehlsichtige Augen können mit zusätzlichen Linsen korrigiert werden.

Kurzsichtige Augen brauchen Zerstreuungslinsen.

Weitsichtige Augen brauchen Sammellinsen.

Das Spektrum

Weisses Licht kann, z.B. durch ein Prisma, in die Spektralfarben aufgeteilt werden.

Das Spektrum lässt sich durch ein zweites Prisma wieder zu weissem Licht vereinigen.

Alle Farben sind entweder reine Spektralfarben oder Mischungen aus den Spektralfarben.

Der Regenbogen liefert uns ein «natürliches» Spektrum. Die Wassertröpfchen spalten das weisse Licht.

Übersicht über die wichtigsten physikalischen Einheiten

Heute gültige SI-Einheiten	Alte Einheiten
Kraft N	Kraft kp 1 kp = 9,81 N 1 N = 0,102 kp
Druck Pa (Pascal) bar 1 Pa = 1 N/m² = 0,00001 bar 1 bar = 100 000 Pa 1 bar = 1000 mbar	Druck kp/cm² = at atm Torr 1 kp/cm² = 1 at = 0,981 bar 1 bar = 1,02 at 1 atm = 1,01 bar 1 Torr = 133 Pa 1 Torr = 0,00133 bar
Leistung W, kW 1 W = 0,001 kW 1 kW = 1000 W	Leistung mkp/s, kcal/s, PS 1 mkp/s = 9,81 W 1 W = 0,102 mkp/s 1 kcal/s = 4186,8 W 1 W = 0,000239 kcal/s 1 PS = 736 W = 0,736 kW 1 kW = 1,36 PS
Arbeit, Energie J, Nm, Ws, kWh 1 J = 1 Nm = Ws = 0,000 000 278 kWh 1 kWh = 3 600 000 Ws (J, Nm)	Arbeit, Energie kpm, kcal 1 kpm = 9,81 J (Nm, Ws) 1 kcal = 4186,8 J (Nm, Ws)

Die alten Einheiten dürfen heute nicht mehr verwendet werden. (Ausnahme: $^{\circ}\text{C}$: K - 273 = $^{\circ}\text{C}$)

CHEMIE

1. Allgemeines

Der Chemiker untersucht Eigenschaften und Aufbau der Stoffe und Stoffumwandlungen.

Stoffe (Substanzen) nehmen einen Raum ein und sind wägbar.

Stoffumwandlungen (chemische Reaktionen) führen zu neuen Stoffen mit neuen Eigenschaften. Dabei werden die kleinsten Teilchen der Substanzen, die Atome, Moleküle oder Ionen, neu gruppiert.

Chemische Reaktionen sind erkennbar:

an Farbänderungen an der Bildung von Gasen

an der Ausfällung fester Niederschläge

an Wärmeabgabe (exotherme Reaktion)

an Energieverbrauch

(endotherme Reaktion)

Eisen rostet, Holz wird beim Verbrennen schwarz Brausetabletten in Wasser, alkoholische Gärung

Kalkablagerungen in Pfannen

Verbrennung von Kochgas, Benzin usw., Lösen von Säuren in

Wasser

Zerlegung von Verbindungen mit Wärme, Zerlegung von Wasser

mit elektrischem Strom

Chemische Reaktionen verlaufen schneller:

bei erhöhter Temperatur

Klebstoffe werden schneller hart, warme Säuren zersetzen Metalle schneller, wechselwarme Tiere (Schlangen, Frösche) sind bei warmem Wetter lebhafter

Faustregel: Bei Temperaturerhöhung um 10 °C verlaufen chemische Reaktionen doppelt so schnell

bei hoher Konzentration der beteiligten Stoffe bei feinem Zerteilungsgrad

der Stoffe

bei Anwesenheit von Katalysatoren Verbrennungen verlaufen in reinem Sauerstoff rascher als in der Luft, konzentrierte Gifte oder Medikamente wirken schneller

Holzspäne verbrennen rascher als ein Holzklotz, aufgelöste Tabletten werden schneller aufgenommen

Katalysatoren sind Stoffe, welche die Geschwindigkeit einer chemischen Reaktion beeinflussen, ohne dabei selbst verbraucht zu werden. Katalysatoren für chemische Vorgänge in Lebewesen nennt man Enzyme oder Fermente.

Versuch:

Entzünde mit einem Feuerzeug auf einer feuerfesten Unterlage (Alufolie) ein Stück Würfelzucker.

Bestreiche einen zweiten Würfelzucker zuerst mit Zigarrenasche und wiederhole das Experiment.

2. Gemische

Die meisten **Rohstoffe in der Natur** sind Gemische verschiedener reiner Stoffe (Meerwasser, Erde, Erdöl, Erdgas, Milch, Blut usw.). Die **Luft** ist ein Gemisch.

	Volumen %	Dichte in bei 0°C	g/Liter bei 25°C	Schmelzpunkt °C	Siedepunkt °C
Luft	100	1,293	1,20	-213	-193
Stickstoff (N)	78	1,251	1,17	-210,1	-195,8
Sauerstoff (O)	21	1,429	1,33	-218,8	-183
Wasserstoff (H) Kohlendioxid (CO₂) verschiedene Edelgase	} 1	0,0899 1,977 siehe Peri	0,08 1,81 odensystem	–259,2 – 78,5 sublimi	-252,8 ert

Legierungen sind Gemische.

Messing

Mischung aus Kupfer und Zink.

Bronze

Mischung aus Kupfer und Zinn.

Münzgeld in der Schweiz:

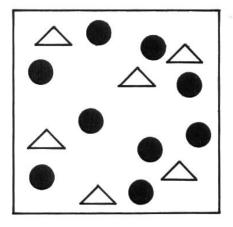
Silbermünzen bis 1967

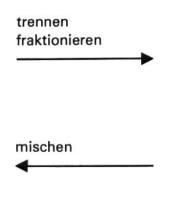
835% Silber + 165% Kupfer

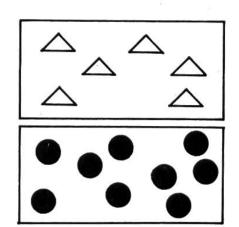
Kupfernickelmünzen 5 Rp. bis 5 Fr.

750% Kupfer + 250% Nickel

Bronzemünzen 1 Rp., 2 Rp.

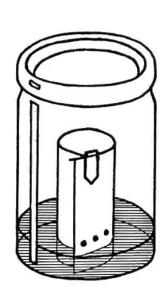

950% Kupfer + 40% Zinn + 10% Zink


Goldvreneli


900% Gold + 100% Kupfer

3. Fraktioniermethoden (Trennmethoden)

Gemisch reine Stoffe



Gemisch

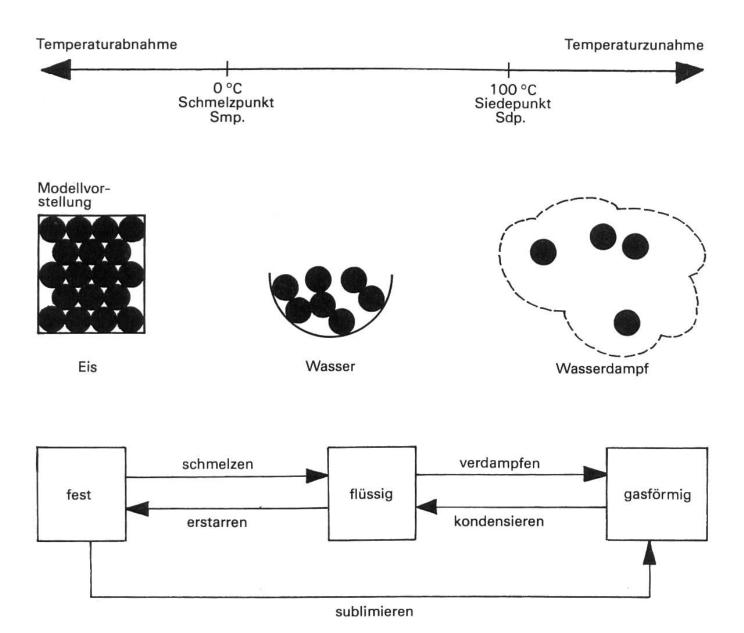
reine Stoffe

schmutziges Wasser	filtrieren	(feste Erdteilchen) + Wasser
Blut	absetzen lassen zentrifugieren	(Blutplasma) + Blutkörperchen
Kochsalzlösung	abdampfen	(Wasser) + Kochsalz
Wein	destillieren	(Rest) + Alkohol
Kochsalz im Boden	extrahieren herauslösen	Kochsalzlösung
Tinte, Filzstiftfarben, Gifte usw.	chromatographieren -	reine Stoffe

Reine Stoffe sind ohne Stoffumwandlung nicht weiter trennbar. Das Herstellen von absolut reinen Stoffen ist oft aufwendig, teuer und nur für wissenschaftliche und medizinische Zwecke nötig.

Versuch: Papierchromatographie

Trage mit wasserlöslichen Filzstiften (am besten schwarz oder braun) kleine Farbflecken etwa 2 cm vom unteren Rand entfernt auf einem Stück Fliesspapier auf. Forme mit dem Fliessblatt eine Rolle, fixiere diese oben mit einer Büroklammer. Stelle nun das Papier gemäss Zeichnung in ein Einmachglas o.ä., in welches du vorher etwa 1 cm hoch Wasser gegeben hast.


In etwa 20 Minuten trägt das Wasser die verschiedenen reinen Stoffe des Farbstoffgemischs verschieden weit mit.

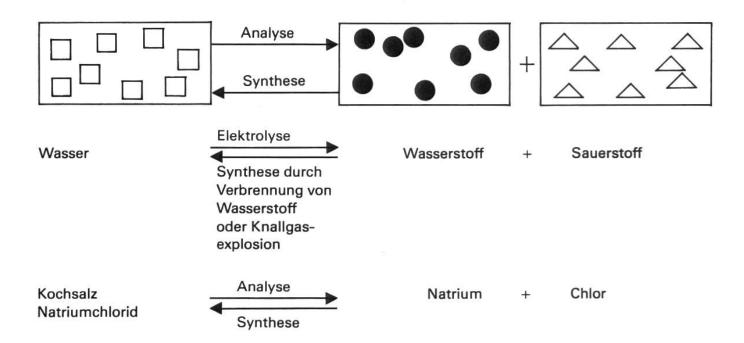
Versuche bei weiteren Farbstoffen herauszufinden, ob es sich um Gemische oder reine Stoffe handelt. Benütze als Fliessmittel auch Essig, Alkohol, Wundbenzin, Pinselreiniger usw. oder Mischungen davon.

4. Aggregatzustände (Zustandsformen)

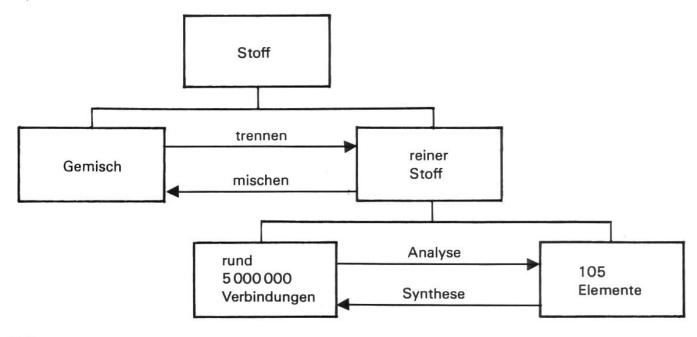
Reine Stoffe können je nach Temperatur und Druck fest, flüssig oder gasförmig sein.

Beispiel: Wasser

Bei nicht reinem Wasser liegt der Siedepunkt höher als 100 °C und der Schmelzpunkt tiefer als 0 °C. Deshalb streut man im Winter Salz auf die Strassen!


Versuch: Gib gleiche Mengen von sauberem Wasser und von verschiedenen Salzlösungen in leere Joghurtbecher und bestimme die Gefrierpunkte (= Schmelzpunkte) oder miss die Zeit bis zum vollständigen Erstarren im Tiefkühlfach.

5. Verbindung und Element


Reine Stoffe sind entweder Verbindungen oder Elemente.

Verbindungen sind durch Analysen (Einwirkung von Wärme, elektrischem Strom oder anderen Stoffen) in neue Stoffe mit neuen Eigenschaften zerlegbar. Sie sind durch Synthesen aus mindestens zwei verschiedenen Atomsorten (Elementen) aufbaubar.

Elemente (chemische Grundstoffe) sind auch chemisch nicht weiter zerlegbar. Sie sind aus einer einzigen Atomsorte aufgebaut.

Zusammenfassung

6. Kleinste Teilchen – Bausteine der reinen Stoffe

Stoffklasse	Baustein	Modellvorstellung	
Metalle	Atom = chemisch kleinstes Masseteilchen	oder Ø	Atomkern mit positiv geladenen Protonen und Neutronen
Salze	Ion = elektrisch geladenes Atom oder geladene Atomgruppe (Beim Kochsalz: Na-Atom gibt 1 Elektron an Cl-Atom → positiv geladene Na-Ionen und negativ geladene Cl-Ionen)	Kochsalz in Wasser gelöst oder flüssig: Na ⁺ Cl ⁻	Atomhülle mit negativ geladenen Elektronen Kochsalz fest: lonengitter
Flüchtige Stoffe	Molekül = fest verknüpf- ter, abgeschlossener Atomverband	Name Struktur- Summen- formel formel	Modelle
	-	Wasserstoff H—H H ₂	o—o
	-	Sauerstoff $0=0$ O_2	
	-	Wasser O H H	
		Kohlen- $O = C = O$ dioxid CO_2	
Hoch- molekulare Stoffe	Riesenmolekül	Grundmolekül: C₂H₄ Äthen (Äthylen)	Riesenmolekül: Polyäthylen (PE)

7. Die Elemente

Name	Symbol	Ordnungs- zahl	mittlere relative Atommasse	Dichte	Smp.	Sdp.
		3.	[u]	[g/ml]	[°C]	[°C]
Actinium	Ac	89	(227)*	10,1	1050	um 3300
Aluminium	Al	13	26,982	2,70	660	2447
Americium	Am	95	(243)*	11,7	1176	um 3000
Antimon	Sb	51	121,75	6,0	630,5	1637
Argon	Ar	18	39,948	1,661	-189,4	-185,9
Arsen	As	33	74,922	5,7	613 sublim	iert
Astatin	At	85	(210)*	-		380?
Barium	Ва	56	137,34	3,5	710	1638
Berkelium	Bk	97	(247)*			
Beryllium	Be	4	9,012	1,8	1283	2477
Blei	Pb	82	207,19	11,34	327,4	1751
Bor	В	5	10,811	2,5	2027	3927
Brom	Br	35	79,904	3,12	-7,2	58
Cadmium	Cd	48	112,40	8,6	320,9	765
Calcium	Ca	20	40,08	1,55	850	1492
Californium	Cf	98	(251)*			
Cäsium	Cs	55	132,905	1.90	28,6	685
Cer	Ce	58	140,12	6,7	795	3468
Chlor	CI	17	35,453	2,991	-101	-34
Chrom	Cr	24	51,996	7,1	1900	2642
Curium	Cm	96	(247)*	um 7	um 1300	
Dysprosium	Dy	66	162,50	8,5	1407	um 2600
Einsteinium	Es	99	(254)*			
Eisen	Fe	26	55,847	7,86	1539	2887
Erbium	Er	68	167,26	9,0	1497	um 2900
Europium	Eu	63	151,96	5,3	826	1439
Fermium	Fm	100	(257)*			
Fluor	F	9	18,998	1,58¹	-219,6	-187,9
Francium	Fr	87	(223)*		27?	
Gadolinium	Gd	64	157,25	7,9	1312	um 3000
Gallium	Ga	31	69,72	5,91	29,8	2237
Germanium	Ge	32	72,59	5,36	960	2830
Gold	Au	79	196,967	19,3	1063	2707
Hafnium	Hf	72	178,49	13,3	2222	5280
Hahnium	Ha	105	(260)*			1200 Carp 180 - 1900
Helium	He	2	4,0026	$0,17^{1}$	-269,7	-268,9
Holmium	Но	67	164,930	8,8	1461	um 2600

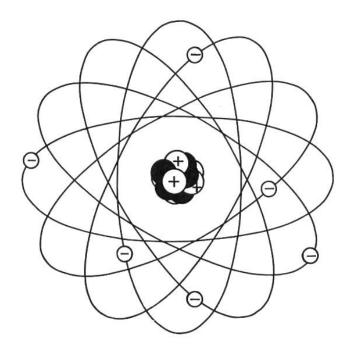
Name	Symbol	Ordnungs- zahl	mittlere relative Atommasse	Dichte	Smp.	Sdp.
			[u]	[g/ml]	[°C]	[°C]
Indium	In	49	114,82	7,3	156,2	2047
Iridium	lr	77	192,2	22,4	2454	4130
lod	1	53	126,905	4,93	113,6	184,5
Kalium	K	19	39,102	0,86	63,2	766
Kobalt	Co	27	58,933	8,9	1495	2877
Kohlenstoff	С	6	12,0112	2,26	3800 subli	
Krypton	Kr	36	83,80	3,461	-157,2	-153
Kupfer	Cu	29	63,54	8,92	1083	2582
Kurtschatowium	Ku	104	(257)*			
Lanthan	La	57	138,91	6,2	920	3370
Lawrencium	Lr	103	(256)*			
Lithium	Li	3	6,941	0,53	180,5	1331
Lutetium	Lu	71	174,97	9,8	1652	3327
Magnesium	Mg	12	24,305	1,74	650	1120
Mangan	Mn	25	54,938	7,2	1244	2041
Mendelevium	Md	101	(258)*			
Molybdän	Мо	42	95,94	10,2	2610	4830
Natrium	Na	11	22,9898	0,97	98	890
Neodym	Nd	60	144,24	7,0	1024	3027
Neon	Ne	10	20,179	0,841	-248,6	-246
Neptunium	Np	93	(237)*	19,5	637	um 3900
Nickel	Ni	28	58,70	8,90	1455	2837
Niob	Nb	41	92,906	8,4	2487	4930
Nobelium	No	102	(253)*			
Osmium	Os	76	190,2	22,48	2727	4230
Palladium	Pd	46	106,4	12	1550	3127
Phosphor	Р	15	30,974	1,82	44,2	280
Platin	Pt	78	195,09	21,45	1769	3827
Plutonium	Pu	94	(244)*	19,8	640	3235
Polonium	Po	84	(209)*	9,3	254	962
Praseodym	Pr	59	140,92	6,8	935	3127
Promethium	Pm	61	(145)*		1047?	
Protactinium	Pa	91	(231)*	15,4	1800?	
Quecksilber	Hg	80	200,59	13,55	-38,87	357
Radium	Ra	88	226,05*	5?		
Radon	Rn	86	(222)*	um 61	-71	-62
Rhenium	Re	75	186,207	21,4	3180	5630
Rhodium	Rh	45	102,905	12,5	1966	3727
Rubidium	Rb	37	85,47	1,53	38,8	701
Ruthenium	Ru	44	101,07	12,2	2427	3727

Name	Symbol	Ordnungs- zahl	mittlere relative Atommasse	Dichte	Smp.	Sdp.
-			[u]	[g/ml]	[°C]	[°C]
Samarium	Sm	62	150,35	7,5	1072	1900
Sauerstoff	0	8	15,9994	1,33¹	-218,8	-183
Scandium	Sc	21	44,956	2,5	1423	2480
Schwefel	S	16	32,064	2,07	119	444,6
Selen	Se	34	78,96	4,7	217	688
Silber	Ag	47	107,870	10,5	960,8	2177
Silicium	Si	14	28,086	2,4	1423	2680
Stickstoff	N	7	14,0067	1,171	-210,1	-195,8
Strontium	Sr	38	87,62	2,6	770	1370
Tantal	Та	73	180,95	16,6	2997	5400
Technetium	Tc	43	(98)*	11,5	2127	
Tellur	Te	52	127,60	6,1	450	1087
Terbium	Tb	65	158,93	8,3	1356	2800
Thallium	TI	81	204,37	11,8	304	1470
Thorium	Th	90	232,05*	11,7	1750	3850
Thulium	Tm	69	168,94	9,3	1545	1727
Titan	Ti	22	47,90	4,5	1677	3280
Uran	U	92	238,03*	18,7	1132	3818
Vanadium	V	23	50,942	5,96	1917	3380
Wasserstoff	н	1	1,00797	0,081	-259,2	-252,8
Wismut	Bi	83	208,980	9,8	271,3	1559
Wolfram	W	74	183,85	19,3	3380	5530
Xenon	Xe	54	131,30	5,51	-111,9	-108,1
Ytterbium	Yb	70	173,04	7,0	824	1427
Yttrium	Υ	39	88,905	4,5	1500	3230
Zink	Zn	30	65,37	7,14	419,5	908
Zinn	Sn	50	118,69	6	231,9	2687
Zirkonium	Zr	40	91,22	6,4	1852	4380

^{*} radioaktive Elemente

⁽⁾ Atommasse des stabilsten oder bekanntesten Isotops

 $^{^{\}rm 1}\,$ Dichte gasförmiger Elemente in g/Liter bei 25 °C und Normaldruck


8. Bemerkungen zum Periodensystem

- Die rund 100 verschiedenen Atomsorten, die Elemente, sind im Periodensystem nach zunehmender Atommasse (früher Atomgewicht) geordnet.
- Die Atommasseneinheit (1u) ist ¹/₁₂ der Masse des häufigsten Kohlenstoffisotops ¹²C.
- Die Ordnungszahl (Platznummer) entspricht der Anzahl positiv geladener Protonen im Atomkern und der Anzahl der negativ geladenen Elektronen in der Atomhülle.

Beispiel: Kohlenstoff (C) Modellvorstellung: Ordnungszahl 6

Atomhülle mit 6 negativ geladenen Elektronen ⊖

Atomkern mit 6 positiv geladenen Protonen ⊕ und Neutronen ●

- Isotope sind Atome eines bestimmten Elementes, die sich nur in der Masse unterscheiden (mehr oder weniger Neutronen im Atomkern).
- Bei Zimmertemperatur sind 2 Elemente flüssig (Br, Hg), 11 gasförmig (H, He, N, O, F, Ne, Cl, Ar, Kr, Xe, Rn) und alle übrigen fest.
- Die waagrechten Zeilen im Periodensystem nennt man Perioden.
 Elemente, die verwandte chemische Eigenschaften haben, gehören zur gleichen Gruppe. Sie stehen im Periodensystem untereinander.
- Gruppe 1 a: Alkalimetalle

Weiche, sehr reaktionsfähige Metalle mit tiefem Smp., die mit Wasser heftig reagieren und deshalb in Petrol aufbewahrt werden.

In der Natur kommen sie nur in salzartigen Verbindungen vor. Alkalimetalle haben die Tendenz, 1 Elektron abzugeben und dabei einfach positiv geladene lonen zu bilden: Na+, K+.

Gruppe 2 a: Erdalkalimetalle

Kommen in der Natur nicht elementar, sondern nur in salzartigen Verbindungen vor. Erdalkalimetalle geben leicht 2 Elektronen ab und bilden dabei doppelt positiv geladene lonen: Mg2+, Ca2+.

Fortsetzung S. 78

9. Periodensystem der Elemente

1									
	3	4							
2	Li	Be							
	Lithium	Beryllium							
	11	12							
3	Na	Mg							
	Natrium	Magnesium ,							
*	1 a	2 a	3 b		4 b	5 b	6 b	7 b	8
	63740 S240394		A-02-0-472 B-090-0-0-0		54 50000	30030	0.0000000000000000000000000000000000000	3,000	100000
Anonimo de estado de	19	20	21		22	23	24	25	26
4	K	Ca	Sc		Τi	V	Cr	Mn	Fe
	Kalium	Calcium	Scandium		Titan	Vanadium	Chrom	Mangan	Eisen
	37	38	39		40	41	42	43	44
5	Rb	Sr	Υ		Zr	Nb	Mo	Tc	Ru
	Rubidium	Strontium	Yttrium		Zirkonium	Niob	Molybdän	Technetium	Ruthenium
	55	56	57	58	72	73	74	75	76
6	Cs	Ba	La	bis	Hf	Ta	W	Re	Os
	Caesium	Barium	Lanthan	71	Hafnium	Tantal	Wolfram	Rhenium	Osmium
	87	88	89	90	104	105	106		
7	Fr	Ra	Ac	bis	Ku	Ha			
	Francium	Radium	Actinium	103	Kurtscha- towium	Hahnium			
						58	59	60	61
		Lan	thani	den		Ce	Pr	Nd	Pm
		(Metall	e der seltenen	Erden)		Cer	Praseodym	Neodym	Promethium
						90	91	92	93
		Ac	tinide	en		Th	Pa	U	Np
		,	Uran-Metalle)			Thorium	Protactinium	Uran	Neptunium

	1								2
	Н								He
	Wasserstoff								Helium
	e.			5	6	7	8	9	10
				В	С	Ν	0	F	Ne
				Bor	Kohlenstoff	Stickstoff	Sauerstoff	Fluor	Neon
				13	14	15	16	17	18
				ΑI	Si	Р	S	CI	Ar
				Aluminium	Silicium	Phosphor	Schwefel	Chlor	Argon
8		1 b	2 b	3 a	4 a	5 a	6 a	7 a	0
27	28	29	30	31	32	33	34	35	36
Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Kobalt	Nickel	Kupfer	Zink	Gallium	Germanium	Arsen	Selen	Brom	Krypton
45	46	47	48	49	50	51	52	53	54
Rh	Pd	Ag	Cd	ln	Sn	Sb	Te	ı	Xe
Rhodium	Palladium	Silber	Cadmium	Indium	Zinn	Antimon	Tellur	Jod	Xenon
77	78	79	80	81	82	83	84	85	86
lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
Iridium	Platin	Gold	Quecksilber	Thallium	Blei	Wismut	Polonium	Astatin	Radon

62	63	64	65	66	67	68	69	70	71
Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
Samarium	Europium	Gadolinium	Terbium	Dysprosium	Holmium	Erbium	Thulium	Ytterbium	Lutetium
94	95	96	97	98	99	100	101	102	103
Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
Plutonium	Americium	Curium	Berkelium	Californium	Einsteinium	Fermium	Mendelevium	Nobelium	Lawrencium

Fortsetzung von S. 75

Gruppe 7 a: Halogene

Reaktionsfreudige, leicht flüchtige Nichtmetalle, die in der Natur nicht elementar vorkommen. Sie bilden mit Metallen Salze. Halogene haben die Tendenz, 1 Elektron aufzunehmen und dabei einfach negativ geladene Ionen zu bilden: F-, Cl-, I-.

- Gruppe 0: Edelgase

Sehr reaktionsträge, stabile Nichtmetalle ohne Bindungselektronen.

Häufigkeit der Elemente:

		Anteil in der	Anteil im
		Erdrinde	menschlichen Körper
		[Massenprozente]	[Massenprozente]
Sauerstoff	0	50	65
Silicium	Si	26	_
Aluminium	Al	7	_
Eisen	Fe	4	sehr wenig
Calcium	Ca	3	2
Natrium	Na	2,5	0,15
Kalium	K	2,5	0,4
Magnesium	Mg	2	_
Wasserstoff	Н	1	10
alle übrigen		2	
Kohlenstoff	С		18
Stickstoff	N		3
Phosphor	Р		1
Schwefel	S		0,3
Chlor	CI		0,15

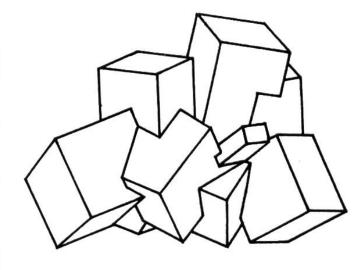
10. Salze

Die Bausteine der Salze sind Ionen (elektrisch geladene Atome oder Atomgruppen).

Da sich elektrisch verschieden geladene Teilchen anziehen, bestehen die Salze in festem Zustand aus lonengittern. Diese Gitter zerfallen in Wasser mehr oder weniger in Einzelionen. Diese elektrisch geladenen Teilchen sind dafür verantwortlich, dass Salzlösungen den elektrischen Strom leiten (Modellvorstellung siehe Abschnitt 6).

	CI ⁻ Chloridion	NO ₃ - Nitration	SO₄²- Sulfation	CO ₃ ²⁻ Carbonation
Na ⁺ färbt Flamme gelb	NaCl Natriumchlorid (Kochsalz)	NaNO ₃ Na-nitrat (Chilesalpeter)	Na₂SO₄ Na-sulfat (Glaubersalz)	Na ₂ CO ₃ Na-carbonat (Soda)
K ⁺ färbt Flamme violett	KCI Kaliumchlorid	KNO ₃ K-nitrat (Kalisalpeter)	K₂SO₄ K-sulfat	K ₂ CO ₃ K-carbonat (Pottasche)
Ca ²⁺ färbt Flamme rot	CaCl ₂ Calciumchlorid	Ca(NO ₃) ₂ Ca-nitrat (Kalksalpeter)	CaSO₄ Ca-sulfat (Gips)	CaCO ₃ Ca-carbonat (Kalkstein)
Cu ²⁺ färbt Flamme grün	CuCl ₂ Kupferchlorid	Cu(NO ₃) ₂ Cu-nitrat	CuSO ₄ Cu-sulfat (Kupfervitriol)	CuCO ₃ Cu-carbonat

Kochsalz, Natriumchlorid NaCl Vorkommen:


als «Steinsalz» im Boden, Herauslösung mit Wasser und im Meerwasser (Salzgehalt rund 3,5%, NaCl etwa 2,5%).

Eigenschaften:

- in festem Zustand würfelförmige, weissliche oder farblose Kristalle
- geruchlos, typisch salzartiger Geschmack
- gut wasserlöslich (in 1 Liter Wasser lösen sich bei Zimmertemperatur bis 350 g)
- Dichte 2,16 g/cm³
- nicht brennbar, färbt Flamme gelb
- festes Kochsalz schmilzt bei 801 °C (Smp.)
- flüssiges Kochsalz siedet bei 1440 °C (Sdp.)

Verwendung:

- als Speisesalz, als Konservierungsmittel (z. B. für Fische)
- als Streusalz im Winter (Gemische haben einen tieferen Smp. als reine Stoffe; reines Wasser gefriert bei 0 °C, Salzlösungen haben einen tieferen Gefrierpunkt)

- für Kältemischungen (3 Teile Eis + 1 Teil Kochsalz gemischt liefert Temperaturen bis –21 °C)
- als Ausgangsstoff zur Gewinnung von Chlor, Salzsäure, Soda (Natriumcarbonat) usw.

Wichtige Ionen mit positiver Ladung (Kationen)

Ladung	+1	Ladung	+2	Ladung	+3
H+	Wasserstoffion	Mg ²⁺	Magnesiumion	Al3+	Aluminiumion
Na ⁺	Natriumion	Ca ²⁺	Calciumion	Fe ³⁺	Eisen(III)-ion
K ⁺	Kaliumion	Fe ²⁺	Eisen(II)-ion		
H ₃ O+	Hydroniumion	Cu ²⁺	Kupferion		
NH ₄ +	Ammoniumion				

Wichtige Ionen mit negativer Ladung (Anionen)

Ladung	-1	Ladung	-2	Ladung	_3
F-	Fluoridion	O ²⁻	Oxidion	PO ₄ 3-	Phosphation
CI-	Chloridion	S ²⁻	Sulfidion		
1-	lodidion	SO ₃ 2-	Sulfition		
OH-	Hydroxidion	SO ₄ 2-	Sulfation		
NO ₃ -	Nitration	CO ₃ 2-	Carbonation		
HCO ₃ -	Hydrogencarbonation				

11. Säuren und Basen

Säuren

- verleihen dem Wasser einen «sauren» Geschmack
- färben Lackmus rot
- bilden mit Metallen Wasserstoff
- geben leicht Wasserstoffionen H⁺ ab
- bilden in wässrigen Lösungen H₃O⁺-lonen (Hydroniumionen)
- leiten in wässrigen Lösungen den elektrischen Strom
- können die Wirkung von Laugen aufheben

Basen

- verleihen dem Wasser einen faden, seifigen Geschmack
- färben Lackmus blau, Phenolphthalein rot
- nehmen leicht Wasserstoffionen auf
- bilden in wässrigen Lösungen (Laugen) OH--lonen (Hydroxidionen)
- leiten in wässrigen Lösungen den elektrischen Strom
- können die Wirkung von Säuren aufheben

Beispiele:

Beispiele:		Beispiele:	
HCI	Chlorwasserstoff (Gas) mit Wasser: Salzsäure	NaOH	Na-hydroxid (fest) mit Wasser: Natronlauge
H₂SO₄	Schwefelsäure	Ca(OH) ₂	Ca-hydroxid (gelöschter Kalk) mit Wasser: Kalkwasser
HNO ₃	Salpetersäure	NH ₃	Ammoniak
H₂CÕ₃ CH₃COOH	Kohlensäure Essigsäure	Na ₂ CO ₃	Na-carbonat (Soda)
3	Zitronensäure		Seife
	Weinsäure		

Mass für die Stärke von Säuren und Laugen ist der pH-Wert: pH 7: neutral pH < 7: sauer pH > 7: basisch oder alkalisch pH-Wert pH-Wert verdünnte Salzsäure 0 bis 2 Blut 7,4 Magensaft 0.9 bis 1.5 Meerwasser 8.3 2,5 Seifenlösung 10 bis 11 Essig

Leitungswasser

verdünnte Natronlauge

Neutralisation beruht auf folgendem Vorgang

Frischmilch

Speichel

H₂O⁺ + OH⁻ 2 H₂O (Wasser)

6,5

6,7

Konzentration wichtiger Säuren und Basen

		Massengehalt in %	
		konzentriert	verdünnt
Salzsäure	HCI	33 bis 37	7
Schwefelsäure	H ₂ SO ₄	93 bis 97	9
Salpetersäure	HNO ₃	65	12
Essigsäure	CH3COOH	98 bis 100	30
Natronlauge	NaOH	100 (fest)	
		30	8
Ammoniakwasser	NH ₃	24	3

12. Konzentration von Lösungen

Der Gehalt einer Lösung an gelöstem Stoff kann ausgedrückt werden in

Massenprozenten (Gewichtsprozenten): Anzahl Gramm des Stoffes in 100 Gramm Lösung.
 Beispiel: 10%ige Zuckerlösung: zu 10 Gramm Zucker wird Wasser bis zur Gesamtmasse von 100 Gramm zugefügt.

Messinstrument: Waage

Anwendung: verschieden konzentrierte Lösungen in der Drogerie und in der Apotheke.

Volumenprozente: Anzahl cm³ des Stoffes in 100 cm³ Lösung.

Beispiel: 70volumenprozentiger Alkohol: 70 cm³ reinen Alkohol mit Wasser auf 100 cm³ auffüllen.

Messinstrument: Messzylinder, Pipette.

Anwendung: im Labor.

13. Gase in Druckflaschen

Gas	Formel	Kennzeichen/Farbe
Sauerstoff	O_2	blau
Wasserstoff	H ₂	rot
Stickstoff	N ₂	grün
Acetylen (Äthin)	C_2H_2	orange
Kohlendioxid	CO2	schwarz

7 bis 8.5

12 bis 14

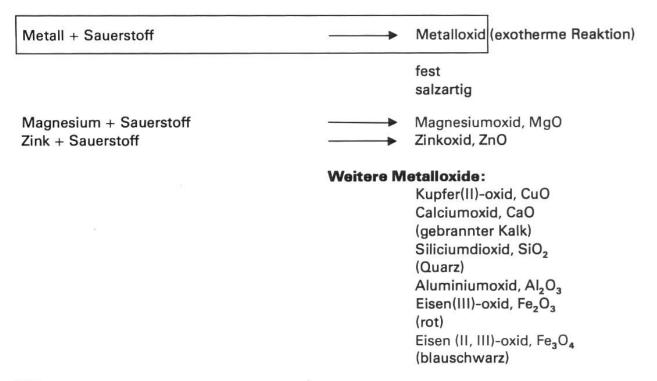
14. Sauerstoff O₂

- Farbloses, geruchloses Gas, das die Verbrennung f\u00f6rdert.
- Sauerstoff ist f
 ür die Atmung lebensnotwendig.
- 21Volumenprozent der Luft sind Sauerstoff.
- Häufigstes Element in den Verbindungen der Erdrinde.
- Dichte 1,429 g/Liter bei 0 °C, 1,33 g/Liter bei 25 °C.
- Smp. -218,8 °C; Sdp. -183 °C.
- Gewinnung aus flüssiger Luft, im Labor und in Werkstätten in blau markierten Stahlflaschen.
- Entsteht bei der Zerlegung von Wasser mit elektrischem Strom am Pluspol.
- Herstellung im Labor in kleinen Mengen durch Erwärmen von Kaliumpermanganat (KMnO₄) oder Wasserstoffperoxid (H₂O₂) mit etwas Braunstein (MnO₂) als Katalysator.
- Nachweis: Glimmende Schnur oder glimmender Holzspan flammen in Sauerstoff auf.

15. Verbrennungen

Gewisse Stoffe verbrennen beim Erhitzen in der Luft unter Abgabe von Licht und Wärme zu neuen Stoffen mit neuen Eigenschaften. Dabei entstehen Verbindungen mit dem Sauerstoff der Luft. Diese nennt man Oxide. Die Oxide sind schwerer als die Brennstoffe!

In reinem Sauerstoff verlaufen die Oxidationen rascher als in der Luft.

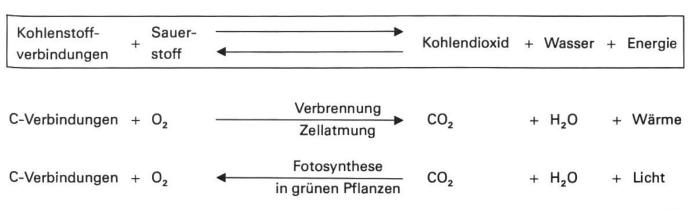

Versuch:

Wäge mit einer empfindlichen Waage auf einer feuerfesten Unterlage (Alufolie) ein grösseres, ganz lockeres Stück Eisenwatte (Stahlwatte) ab.

Entzünde nun die Watte durch Berühren mit den beiden Polen einer Taschenlampenbatterie (Kurzschluss).

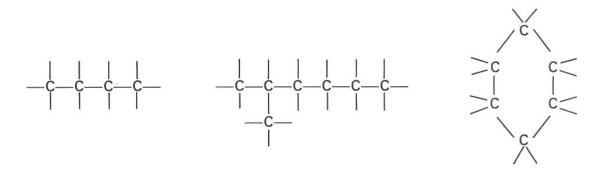
Bei der Verbrennung verbindet sich das Eisen mit dem Sauerstoff der Luft.

Stelle mit der Waage fest, wieviel Sauerstoff aufgenommen wurde.



Nichtmetall + Sauerstoff		Nichtmetalloxid (exotherme Reaktion)
		meist flüchtige Stoffe, Gase
Schwefel + Sauerstoff		Schwefeldioxid
		SO ₂
Kohlenstoff + Sauerstoff		Kohlendioxid + Kohlenmonoxid (giftig)
		CO, CO
Wasserstoff + Sauerstoff		Wasser (Wasserstoffoxid)
		H ₂ O
Alkohol (Brennsprit) + Sauerstoff		Kohlendioxid + Wasser
C ₂ H ₅ OH		CO, H,O
Benzin + Sauerstoff		Kohlendioxid + Kohlenmonoxid + Wasser
(Gemisch verschiedener Verbindungen aus C und H)		CO ₂ CO H ₂ O

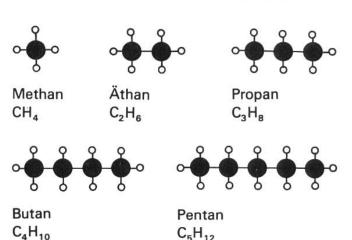
Der Umkehrvorgang der Verbrennung ist zur Gewinnung von Metallen sehr wichtig:


Metalloxid		Metall + Sauerstoff (endotherme Reaktion)
Eisenoxid		Eisen + Sauerstoff
Kupferoxid		verbindet sich mit C zu Kohlendioxid Kupfer + Sauerstoff
4		verbindet sich mit C zu Kohlendioxid

16. Verbrennung und Fotosynthese

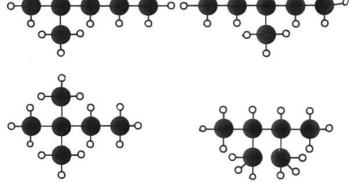
17. Organische Chemie

- Organische Chemie ist die Chemie der Kohlenstoff-Verbindungen.
- Das C-Atom ist vierbindig: −C-
- Das C-Atom kann sich praktisch unbegrenzt mit anderen C-Atomen zu Ketten, Ringen oder Gerüsten verbinden, deshalb die riesige Zahl von organischen Verbindungen:


- C-Verbindungen sind aus Molekülen oder Riesenmolekülen aufgebaut.
- Viele C-Verbindungen sind brennbar.
- Viele sind nicht wärmebeständig, sie verkohlen oder werden beim Erwärmen zerstört.
- Die organisch-chemische Industrie stellt zum Beispiel folgende Kohlenstoffverbindungen her: Kunststoffe, Arzneimittel, Textilien, Farbstoffe, Schädlingsbekämpfungsmittel, Waschmittel, Klebstoffe, Treibstoffe usw.

18. Kohlenwasserstoffe

(Verbindungen aus C und H, z. B. im Erdöl)


Kettenförmige Kohlenwasserstoffe

mit Einfachbindungen: Alkane $C_{2n}H_{2n+2}$

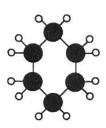
n-Hexan C₆H₁₄

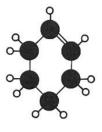
4 verschiedene iso-Hexane C₆H₁₄ (gleiche Summenformel, verschieden aufgebaut, verschiedene Eigenschaften)

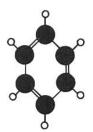
mit Doppelbindungen: Alkene

Äthen (Äthylen)

Baustein für viele C-Verbindungen


mit Dreifachbindungen: Alkine




Äthin (Acetylen) C₂H₂

Gas in orange markierten Stahlflaschen für Schneidbrenner und zum Schweissen

Ringförmige Kohlenwasserstoffe

Zyklohexan C₆H₁₂ Zyklohexen C₆H₁₀

Benzol C₆H₆

19. Kohlenhydrate

(Verbindungen aus C, H und O)

■ Einfachzucker C₆H₁₂O₆ Nachweis mit Fehlinglösung

Traubenzucker

Fruchtzucker

Doppelzucker C₁₂H₂₂O₁₁

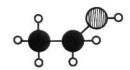
aufgebaut aus je einem Traubenzucker- und Fruchtzuckermolekül

Rohr- oder Rübenzucker

Stärke (C₆H₁₀O₅) n

Riesenmoleküle aus verketteten Traubenzuckermolekülen. In Kartoffeln, Getreide, Brot usw. Nachweis mit lod-iodkaliumlösung.

Zellulose (C₆H₁₀O₅) n


Wie Stärke aus verketteten Traubenzuckermolekülen aufgebaut. In Zellwänden der Pflanzen; Baumwollfaser, Watte, Fliesspapier usw.

20. Weitere organische Verbindungen

Alkohole

Beispiel: Äthanol (Äthylalkohol)

C₂H₅OH Smp. -114°, Sdp. 78°C

H-C-C-H

Äthanol entsteht bei der natürlichen Gärung von Trauben- und Fruchtsäften oder künstlich aus Erdölprodukten.

 Wein
 10

 Liköre
 25

 Branntwein
 40–50

Traubenzucker — Hefe

Alkohol

Kohlendioxid (exotherme R.)

Alkoholgehalt

2 C₂H₅OH

2 CO,

Säuren

C6H12O6

Beispiel: Essigsäure (Äthansäure)

CH₃COOH Smp. 16,6°, Sdp. 118°C

Eiweisse (Proteine), Verbindungen aus C, H, O, N (evtl. auch S, P)

Riesenmoleküle aufgebaut aus Aminosäuren.

Aufbau- und Betriebsstoff in tierischen Zellen, Reservestoff in Pflanzen.

Nachweis mit konzentrierter Salpetersäure.

21. Kunststoffe

Hochmolekulare Stoffe mit aus einfachen Grundmolekülen aufgebauten Riesenmolekülen.

Grundmolekül	Riesenmolekül	Bemerkungen
$\frac{1}{H}$ $c = c$	Polyäthylen (PE)	Verbrennt mit blauer Flamme zu farblosem Rauch. Plastiksäcke, Folien, Geschirr, Isoliermaterial usw.
Äthen (Äthylen)		
C = C $C = C$ Vinylchlorid	Polyvinylchlorid (PVC)	Verbrennt mit gelblich-grüner Flamme zu weissem Rauch mit stechendem Geruch (giftiges Chlorwasserstoffgas HCI, das mit Wasser Salzsäure bildet!). Schallplatten, Schläuche, Regen-
		bekleidungen usw.
C = C F Tetrafluoräthen	Polytetrafluoräthen	Dichtungen, Beläge in Pfannen (Teflon)
c = c	Polyacrylnitril (PAN)	Kunstfasern wie Orlon, Dralon usw.
Acrylnitril $\stackrel{\text{in}}{N}$ $\stackrel{\text{H}}{\downarrow}$ $C = \stackrel{\text{C}}{\downarrow}$ $C = \stackrel$	Polystyrol (PS)	Verbrennt mit gelb-oranger Flamme und typischem Geruch zu schwarzem Rauch. Yoghurtbecher; aufgeschäumt als Styropor.

Weitere Kunststoffe: Plexiglas, Bakelit, Nylon, Perlon, Phenolharze, Araldit usw.

Kunststoffe sind leicht. Sie isolieren gut gegen Wärme und elektrischen Strom (Isolatoren). Sie sind gegen Wasser und die meisten Chemikalien beständig. Kunststoffe lassen sich leicht in verschiedene Formen giessen oder pressen und zu Fäden oder Folien ausziehen.

22. Gifte

Giftklasse	Kennzeichen	Bemerkungen	Beispiele		
1 und 2	Schwarzes Band mit weisser Auf- schrift und Toten- kopfsymbol	Besonders gefähr- liche und stark ätzende Stoffe. Nur mit Giftschein	Giftklasse 1: Phosphor (weis Kohlendisulfid (Schwefelkohle Tetrachlorkohle		
	Gift	erhältlich	Giftklasse 2:	Br, I, K, Ca, Na, Hg, Natriumhydroxid (Natronlauge) Salpetersäure konz. Salzsäure Schwefelsäure	NaOH HNO ₃ HCI H ₂ SO ₄
3	Gelbes Band	Starke Gifte und ätzende Stoffe. Nur gegen Empfangsbe- stätigung erhältlich.	Wasserstoffp verd. Salzsäu Kupfer(II)-sul Kaliumnitrat	re Ho	O ₂ CI ISO ₄ NO ₃
4	Rotes Band	Weniger gefähr- liche Gifte. Verkauf nur durch Fach- personal.	Magnesium Calciumoxid Magnesiumoxid Quecksilber(II)-oxid Magnesiumsulfat Hexan Aceton		g aO gO gO gSO ₄ H ₁₄ H ₃ COCH ₃
5	Rotes Band	Schwache Gifte. Teilweise in Selbst- bedienungsläden erhältlich.	Natriumcarbo Äthanol (Äthy	전통 경기 및 경기 및 전 전 10 및 기업 전 10 및	a₂CO₃ H₅OH

Karl Bolleter

Notizen:					
				×	
			9		
		F.			
	9				
<i>B</i>					
					×
					9
					şi.

Notizen:	
,	
	9