Zeitschrift: Pestalozzi-Kalender

Herausgeber: Pro Juventute

Band: 57 (1964) **Heft:** [2]: Schüler

Rubrik: Geometrie

Nutzungsbedingungen

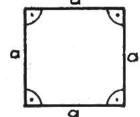
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

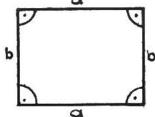
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

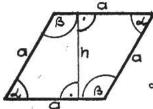

Download PDF: 14.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

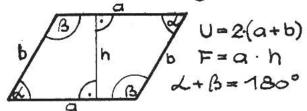

Geometrie

Jn den folgenden Formeln für die wichtigsten Grössen der ebenen Figuren und der Körper bedeutens U=Umfang F= Flächeninhalt 0=Oberfläche K= Gesamtkantenlänge M= Mantelfläche G= Grundfläche V=Rauminhalt, Volumen L, B, Y...= Winkel, a,b,c...= Seiten, r,R,q=Radien,h,h=Höhe L=rechter Winkel Für I genügt meist der Wert3,14

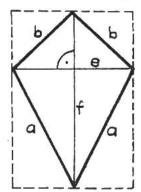
Das Quadrat



Das Rechteck

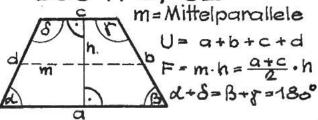


U=2·(a+6)
b F=a·b


Der Rhombus, Raute

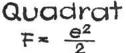
Das Parallelogramm

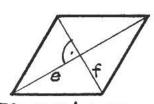
Das Drachenviereck



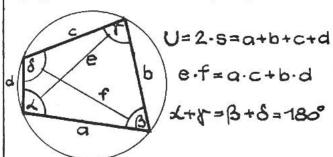
$$U = 2(a+b)$$

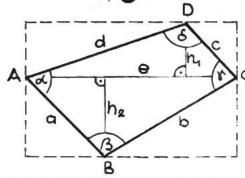
$$F = \frac{e \cdot f}{2}$$


$$e_{i}f = Diagonalen$$


Das Trapez

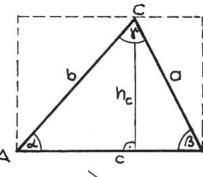
Spezialfälle



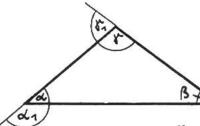


Rhombus F= e.f

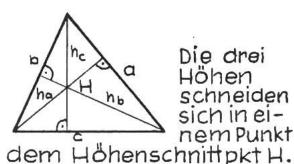
Das Sehnenviereck



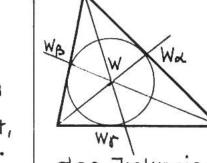
Das allgemeine (unregelmässige) Viereck


 $F = \frac{e \cdot (h_1 + h_2)}{2}$ U=a+b+c+d2+B+x+8 = 360° Zur eindeutigen Festlegung eines Vierecks sind im allgem. 5 Größen, darunter 2 Seiten, erforderlich.

Das Dreieck

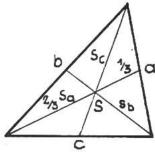

 $U = a + b + c = 2 \cdot s$ $F = \sqrt{s \cdot (s-a) \cdot (s-b) \cdot (s-c)}$ Heronische Formel $F = \frac{c \cdot h_c}{2} = \frac{a \cdot h_a}{2} = \frac{b \cdot h_b}{2} = \frac{g \cdot h}{2}$

g=Grundlinie = a od. b od. c. h=Höhe=ha oder ho oder ho

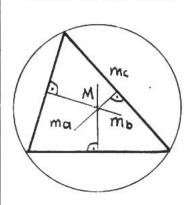


2+B+ = 180° Innenwinkelsatz di=B+r; Bi=d+r; r=d+B Aussenwinkelsätze

Vier merkwürdige Punkte im Dreieck



Die drei Höhen schneiden sich in einem Punkt,


Die 3 Winkelhalbierenden Wa, WB, Wr schnerden sich im Mittelpunkt

des Inkreises: W.

Die drei Seitenhalbierenden (Schwerlinien, Mittellinien) Sa, Sb, Sc schnei-

den sich im Schwerpkt S. Er teilt jede Linie im Verhältnis 1:2

Die 3 Mittelsenkrechten ma, mb, mr schnelden sich im Mittelpunkt M des Umkreises.

Acht wichtige Sätze für das Dreieck

2 Dreiecke sind

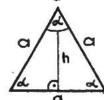
kongruent, wenn sie übereinstimmen:

1. in den 3 Seiten (sss)

2. in 2 seiten und dem zwischena (sws)

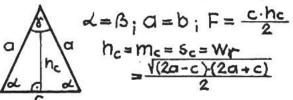
3. in 2 Seiten u.d. Gegen 4 der größeren Seite (ssw)

4. in 1 Seite u. 2 gleichlie-genden & (wsw.; sww)

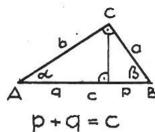

ähnlich, wenn sie übereinstimmen:

1. im Verhältnis der 3 Seiten 2. im Verhältnis zweierSeiten

u. dem Zwischen 4 3. im Verhältnis zweier Seiten und d. Gegen & d. gr. Seite 4. in 2 Winkeln

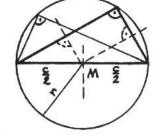

Spezielle Dreiecke

Das gleichseitige Dreieck



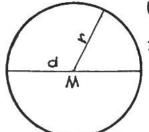
$$\lambda = \beta = 8 = 60^{\circ}$$
 $a = b = c; h = \frac{9}{2}.\sqrt{3}$
 $F = \frac{a \cdot h}{2} = \frac{a^{2}}{4}.\sqrt{3} = \frac{h^{2}}{\sqrt{3}}$

Das gleichschenklige Dreieck



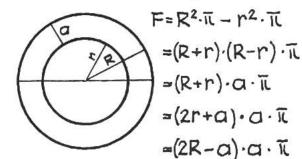
Das rechtwinklige Dreieck

a, b = Katheten; c= Hypotenuse; x=90°; x+B=90° $a^2 + b^2 = c^2$ Lehrsatz des Pythagoras h² = p·a Höhensatz des Euklid

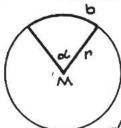

a2=p·c; b2=q·c Kathetensätze d. Euklid Mittelpht d. Umkreises=Mitte d. Hypotenuse c = Durchmesser satz des Thales

x = 90° $F = \frac{a \cdot b}{2} = \frac{c \cdot h}{2} \qquad T = \frac{c}{2}$

$$T = \frac{C}{2}$$


Der Kreis

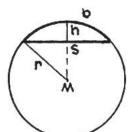
U= d.T = 2.r.T $F = \frac{d^2 \cdot \overline{\Pi}}{A} = r^2 \cdot \overline{\Pi}$ $\approx \frac{\sqrt{2}}{4.\overline{11}}$


Spezialfälle Viertelkreis. Halbkreis

Der Kreisring

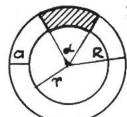
a=R-r=radiale Ringbreite

Der Kreissektor


$$b = \frac{\overline{11} \cdot d}{360} \cdot d = \frac{\overline{11} \cdot d}{180} \cdot r$$

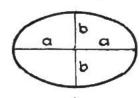
$$= \frac{U}{360} \cdot d$$

$$\Delta = \frac{b \cdot 360}{U} = \frac{b \cdot 360}{d \cdot 10} = \frac{b \cdot 180}{r \cdot 10}$$

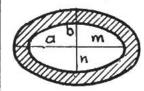

$$F = \frac{b \cdot r}{2} = \frac{r^2 \cdot \vec{l}}{360} \cdot \lambda = \frac{V^2 \cdot \lambda}{4 \cdot \vec{l} \cdot 360}$$

Das Kreissegment

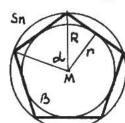
$$F = \frac{r \cdot (b-s) + s \cdot h}{2}$$


Das Kreisringstück

$$F=(R+r)\cdot(R-r)\cdot\overline{R}\cdot\frac{2}{360}$$


$$=(R+r)\cdot\alpha\cdot\overline{R}\cdot\frac{2}{360}$$

Die Ellipse

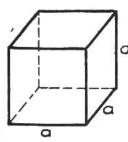

F= a.b.T a=halbe große Achse b=halbe kleine Achse

Der elliptische Ring

F= (a.b-m.n). T a,b=Halbachsen d. auss. Ellipse m,n=Halbachsen d.inn.Ellipse

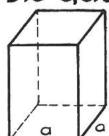
Das regelmässige Vieleck (n-Eck)

R=Radius des Umkreises r = Radius des Jnkreises n = Seitenzahl = Eckenzahl Sn=Vieleckseite d = Zentriwinkel B=Vieleckwinkel

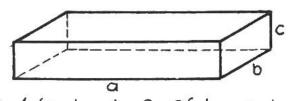

$$U = n \cdot S_n$$

$$\mathcal{L} = \frac{360}{n} \cdot \beta = 180^{\circ} - \lambda$$

$$S_n = 2 \cdot \sqrt{R^2 - r^2} = \frac{2 \cdot F}{n \cdot r}$$

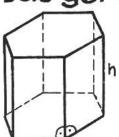

$$F = \frac{n \cdot S_n \cdot r}{2}$$

Der Würfel


$$K = 12 \cdot a$$

 $M = 4 \cdot a^{2}; 0 = 6 \cdot a^{2}$
 $V = a^{3}$

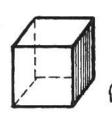
Die quadrat. Säule


K = 8.a + 4.h n M= 4.a.h 0 = 2·a·(a+2·h) V= a2 · h

Der Quader

$$K=4 \cdot (a+b+c) \quad 0=2(ab+ac+bc)$$

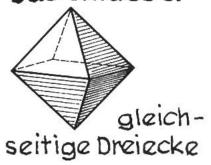
 $M=2 \cdot c \cdot (a+b) \quad V=a \cdot b \cdot c$


Das gerade Prisma

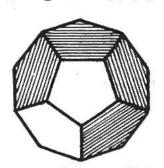
M=U.h 0 = U.h+2.G V = G.h

<u>Die 5 regulären Polyeder</u>

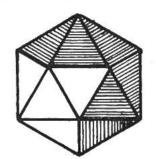
Der Würfel Hexaeder


6 gleich-seitige Vierecke

(Quadrate)


Das Tetraeder

Das Oktaeder



Das Dodekaeder

12 gleichseitige Dreiecke

Das Jkosaeder

20 gleichseitige Dreiecke

HÖCHSTE PASS-STRASSEN DER SCHWEIZ

Umbrailpass	2501 m	St. Gotthardstrasse	2108 m
Gr. St. Bernhard-Pass.	2469 m	Bernhardinstrasse	2065 m
Furkastrasse	2431 m	Oberalpstrasse	2044 m
Flüelastrasse	2383 m	Simplon	2005 m
Berninastrasse	2323 m	Klausenpass	1948 m
Albulastrasse	2312 m	Lukmanierpass	1916 m
Julierstrasse	2284 m	Maloja	1815 m
Sustenstrasse	2224 m	Col du Pillon	1546 m
Grimselstrasse	2165 m	La Forclaz	1527 m
Ofenpass	2149 m	Jaunpass	1509 m
Splügenstrasse	2113 m	Col des Mosses	1445 m

DIE LÄNGSTEN EISENBAHNTUNNELS

Simplon-Tunnel 2	19823 m	Arlberg-Tunnel	10240 m
Neuer Apennin-T	18510 m	Ricken-Tunnel	8603 m
Gotthard-Tunnel	15003 m	Grenchenberg-Tunnel	8578 m
Lötschberg-Tunnel	14612 m	Neuer Hauenstein-T.	8134 m
New-Cascade-T. USA	12874 m	Pyrenäen-Tunnel	7600 m
Mont Cenis-Tunnel	12849 m	Jungfraubahn-Tunnel	7113 m