Zeitschrift: Pestalozzi-Kalender

Herausgeber: Pro Juventute

Band: 56 (1963)

Heft: [1]: Schülerinnen ; 50 Jahre für die Jugend

Rubrik: Statistik

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 29.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

MÜNZTABELLE UND NOTENKURSE

		18	1. Mai 190	52
Land	Münzbenennungen	Devisen- kurs	Noten- kurs	Clearing- kurs
Ägypten	1 äg. Pfund à 100 Piaster	10 *	6.10	
	à 10 Millièmes	10.—*	6.10	
Argentinien.	1 Peso	4.20	4.20	
Belgien	1 belg. Franc	8.68	8.68	
Brasilien	1 Cruzeiro = 1 Milreis	1.35	1.20	270 (45
Bulgarien	1 Lewa à 100 Stotinki.	(2.65	2.25	370.645
Dänemark	1 Krone à 100 Öre	62.65	62.70	
Deutschland	1 D-Mark à 100 Pf	108.15	108.30	-
Finnland	1 Mark à 100 Penny	1.35	1.34	_
Frankreich.	1 Franc à 100 Centimes	88.20	88.10	
Griechenland	1 Drachme à 100 Lepta		14.50	14.50
Grossbrit	1 Pfd. à 20 sh. à 12 pence	12.16*	and record from the	
Italien	1 Lira à 100 Centesimi.	6970	6970	_
Japan	1 Yen à 100 Sen	$1.20 \frac{1}{2}$	1.07	
Jugoslawien	1 Dinar à 100 Para	_	52	5830
Kanada	1 Dollar à 100 Cents	3.97*	3.90	_
Niederlande	1 Florin à 100 Cents	120.25	120.—	_
Norwegen	1 Krone à 100 Öre	60.60	60.50	
Österreich .	1 Schilling à 100 Gro-			
	schen	16.75	16.80	
Polen	1 Zloty à 100 Groszy		6.—	108.35
Portugal	1 Escudo à 100 Centavos	15.16	15.10	_
Rumänien	1 Lei à 100 Bani		21.—	71.932
Russland	1 Rubel à 100 Kopeken		1.60	
Schweden	1 Krone à 100 Öre	83.95	84.10	_
Schweiz	1 Franken à 100 Rappen	100.—	100.—	
Spanien	1 Peseta à 100 Centimos	7.20	7.20	_
Tschechosl	1 Krone à 100 Heller		16.—	60.55
Türkei	1 türk. Pfund à 100 Ku-			
	rus	_	32	0.4834
Ungarn	1 Forint à 100 Filler	_	10.75	36.97
USA	1 Dollar à 100 Cents	4.3250*		(<u></u>
	9			

Alle Kurse verstehen sich pro 100 Einheiten mit Ausnahme von * pro Pfund, USA mit Kanada pro 1 Dollar. Unverbindl. mitget. von der Schweiz. Volksbank.

SCHWEIZERISCHE BEVÖLKERUNG

Wohnbevölkerung 1. Dezember 1960: 5 429 100

FLÄCHE UND EINWOHNER DER KANTONE

Kantone	Flä- che km²	100	nwoh in 100	10.5	Hauptorte		nwoh n 100	
	KIII	1860	1900	1961 *		1860	1900	1961*
Zürich Bern Luzern Uri Schwyz Obwalden Nidwalden Glarus Zug Freiburg Solothurn Basel-Stadt Baselland Schaffhausen Appenzell AR. Appenzell IR. St. Gallen Graubünden Aargau Thurgau Tessin Waadt Wallis Neuenburg	1729 6887 1494 1075 908 492 274 684 239 1670 791 37 428 298 243 172 2016 7109 1404 1006 2811 3211 5231 797	266 467 131 15 45 13 12 33 20 106 69 41 52 35 48 12 180 91 194 90 116 213 91 87	431 589 147 20 55 15 13 32 25 128 101 112 68 42 55 14 250 105 207 113 139 281 114 126	980 903 259 32 80 23 23 41 54 161 206 228 156 67 50 13 348 150 371 170 199 444 181 152	Zürich Bern Luzern Altdorf Schwyz Sarnen Stans Glarus Zug Freiburg Solothurn Basel Liestal Schaffhausen Herisau Appenzell St. Gallen Chur Aarau Frauenfeld Bellinzona Lausanne Sitten Neuenburg	52 31 12 2 6 3 2 5 4 10 7 39 3 9 10 3 23 7 5 4 3 21 4 11	168 68 29 3 7 4 3 5 7 16 10 109 5 15 13 5 5 4 12 8 8 47 6 21	440 166 71 8 11 7 5 6 21 34 19 206 11 32 15 5 77 26 17 15 14 131 17 34 179
Genf	282 41 288	2510	133 3315	269 5560	Genf 54 97			

GLIEDERUNG DER WOHNBEVÖLKERUNG 1960+

nach Geschlecht		Muttersprache	
Männlich 2	2 671 200	Deutsch	3 763 400
Weiblich 2	2 757 900	Französisch	1 025 600
		Italienisch	514 300
nach Konfession		Rätoromanisch	50 700
Protestanten 2		Andere	75 100
Katholiken 2			
Übrige oder keine	98 600	* Provisorische Zahlen	

Höchster Punkt der Schweiz: Dufourspitze, Monte-Rosa-Gruppe 4634 m Tiefster Punkt der Schweiz: Spiegel des Lago Maggiore 193 m über Meer Höchstgelegenes Dorf: Juf (Grb.) 2126 m über Meer.

Aara	au																								
104	Altd	lorf	4									S	CF	I W	EI	ZE	\mathbf{E} \mathbf{R}	DΙ	ST	AN	NZ	EN	K A	R	ſΕ
141	118	App	enze'	11				D	i. 7	7: ec.	L	. a d a		. 4:	~ l	:1a		r-	. C				:1-		
53	150	182	Base	:1				D	ie z	lile	111 (ede	uter	ı dı	e K	urze	sten	En	пег	nun	gen	ZW	isch	en c	ien
223	119 212 269 Bellinzona Ortschaften, in km gemessen, unter Berücksichtigung der																								
80	149 217 99 231 Bern Hauptstrassen. Die Entfernung steht jeweils in dem																								
190	117 235 236 160 167 Brig Viereck, das die senkrechten Linien unter der																								
89	15	103	135	134	134	132	Brui	nnen				V	iere	ck,	das	s ale	e se	nkr	ecni	ten	Lin	ien	unt	er (ıer
119	221	277	99	298	72	239	206	Cha	ux-de	e-For	ds			ers	tger	nanr	iten	Sta	ıdt	mit	der	n wa	aagr	echi	ten
279	175	268	325	56	283	216	190	354	Chia	isso						Lini	en	neb	en	de	r z	weit	gen	ann	ten
177	129	86	212	125	244	176	129	296	181	Chu	r								*						
86	90	158	132	210	131	176	75	202	266	184	Eng	elber	g				Sta							ernu	Ü
111	180	248	130	250	31	186	165	69	306	262	162	Frei	burg					A	araı	ı–Zi	iric	h is	t zu	m B	lei-
224	300	368	241	373	151	213	285	150	415	389	272	120	Gen	f					sp	iel i	im ı	ınte	rste	n Vi	er-
117	63	74	152	182	183	180	69	236	238	74	124	214	335	Glai	rus				•					zu f	
163	239	307	180	312	90	152	224	95	354	328	211	59	61	273	Lau	sanne	:				CCN		: 20 CO		1070.707
50	54	122	96	173	95	140	39	160	229	151	36	126	246	88	185	Luze	ern					d	en:	51 k	m.
105	109	177	151	145	82	85	94	154	201	161	65	101	214	143	153	55	-	ringe							
106	197	253	123	278	48	215	182	24	331	283	179	45	126	223	71	143	130	Neu	enbu	rg					
129	138	41	164	243	203	255.	123	248	299	118	169	234	354	94	293	133	188	235	Ron	nansh	orn				
134	115	18	169	220	208	232	100	253	276	95	155	239	359	71	298	119	174	240	23	St. C	Galler	ı			
256	200	165	290	162	314	247	207	375	218	78	263	338	446	152	385	229	232	362	196	173	St. N	1orit	Z		
. 78	126	89	111	241	150	243	111	195	297	153	143	181	301	107	240	107	158	184	66	75	231	Scha	iffhai	usen	
48	142	195	65	261	34	201	128	71	317	225	125	65	176	165	115	89	116	58	177	182	303	126	Solo	thurr	1
56	45	100	115	164	121	162	30	175	220	125	62	152	272	66	211	26	81	162	107	97	203	77	104	Zug	6
51	74	96	86	193	125	191	59	170	249	126	91	156	276	66	215	55	110	157	78	83	205	48	99	29	Zürich

PFLANZENPRODUKTION IN DER SCHWEIZ

Ackerbau

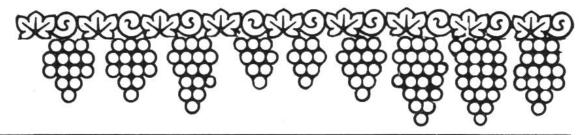
æ.	1960								
Getreideart	Fläche ha	Ernte 1000 q							
Winterweizen	100 571	3 520							
Sommerweizen.	4 030	108							
Korn (Dinkel) .	4 821	147							
Roggen	14 317	465							
Mischelfrucht	3 253	97							
Gerste	25 645	757							
Hafer	14 188	438							
Mischel FGetr.	3 415	102							
Mais	1 116	36							
Total Getreide .	171 356	5 670							
Kartoffeln	52 650	12 899							

Waldbau und Holzverwertung

	Inlandpro	Schweiz. Ver-	
Jahre	Nutz- holz in 1000 m ³	Brenn- holz in 1000 m ³	brauch in 1000 m ³
1955	2279	1398	4929
1956	2277	1337	4650
1957	2080	1362	4483
1958	2025	1311	4164
1959	1993	1206	4023
1960	2257	1179	4626

Obstbau

Ertrag im Jahre	Apici	Birnen 1000 q	Kir- schen 1000 q	Total Mill. Fr.*
1955	2800	3100	610	118
1956	4700	1300	500	129
1957	1000	600	240	90
1958	6800	3900	650	177
1959	3000	1500	320	123
1960	4800	2400	620	167

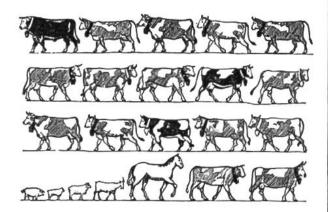


Durch richtiges Pflücken und sorgfältiges Aufbewahren der Früchte bleiben grosse Werte für die Volksernährung erhalten.

* Inbegriffen ist auch der Wert der Pflaumen und Zwetschgen, Aprikosen und Nüsse.

Ertrag des schweizerischen Weinbaus 1953-1961

Unsere Zeichnung stellt den jährlichen Ernteertrag dar. Es bedeutet: jede Beere = 50000 Hektoliter.



Ertrag	1953	1954	1955	1956	1957	1958	1959	1960	1961
Mill. hl.	0,68	0,70	0,80	0,45	0,41	0,65	1,06	1,10	0,86
Mill. Fr.	76,1	77,7	89,3	58,7	64,4	101,0	150,0	141,0	119,0

TIERISCHE PRODUKTION IN DER SCHWEIZ

Viehbestand

Zählung 1961 (prov. Ergebnisse)

明明原原原原原原原原原

Jedes oben gezeichnete Tier stellt 100000 Stück seiner Art dar.

Pferde									94556
Maultiere und	E	S	e	1					1 300
Rindvieh total									1758319
davon Kühe									
Schweine									
Ziegen					٠				88187
Schafe									
Hühner									5962309
Bienenvölker .									

Milchproduktion

Produktion pro 1960: 940000 Milchkühe und ca. 70000 Milchziegen ergaben 31200000 q Milch.

ben 31200000 q Milch.		
	190	60
Verfügbare Milch	Mill. q 31,2	100
Verwertungsarten:		
Trinkmilch Milch für Fütterung	9,8	31,4
von Tieren	5,2	16,7
Milch zu technischer Verarbeitung	16,2	51,9

Fleischproduktion

Fleisch von

	Pfer- den	Rind- S	Schwei- nen	Scha- fen u. Ziegen
Jahre	1000 q	1000 q	1000 q	1000 q
1955	29	836	1005	31
1956	31	904	1099	31
1957	32	973	1145	32
1958	30	950	1161	32
1959	28	925	1219	32
1960	29	980	1317	33

Anteil der Inlandproduktion am Gesamtverbrauch von Lebensmitteln

Vom Gesamtverbrauch deckte die schweizerische Landwirtschaft 1960:

	%
Brotgetreide	59
Speisekartoffeln	113
Wein	47
Fleisch	91
Milch	99
Butter	98
Eier	59
Zucker	14

Landwirtschaftliche Fachschulen

Zahl der Schulen Schüler

5	Undien	Demaior
	1960	1960
Landwirtschaftliche		
Jahresschulen	. 3	98
Landwirtschaftliche		
Winterschulen	. 38	2698
Obst-, Wein- und Gar		(1777, 77, 1 7, 17, 17, 17, 17, 17, 17, 17, 17, 17, 1
tenbauschulen		155
Molkereischulen		134
Geflügelzuchtschule		7
Landw. Haushaltungs		
schulen		1050

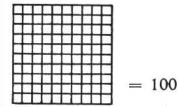
129

MASSE UND GEWICHTE

Längenmasse

milli (m) = Tausendstel centi (c) = Hundertstel dezi (d) = Zehntel

deka (da) = zehn hekto (h) = hundert kilo (k) = tausend

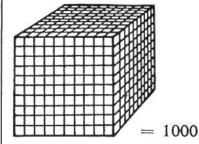

|----|----| = 10

1 mm
10 mm = 1 cm
10 cm = 1 dm
10 dm = 1 m
10 m = 1 dam
10 dam = 1 hm
10 hm = 1 km
m = Meter

dam = Dekameter hm = Hektometer

Flächenmasse

1 Quadratmeter (m²) ist ein Quadrat von 1 m Seite.

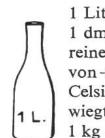

 $100 \text{ mm}^2 = 1 \text{ cm}^2$ $100 \text{ cm}^2 = 1 \text{ dm}^2$ $100 \text{ dm}^2 = 1 \text{ m}^2$ $100 \text{ m}^2 = 1 \text{ a}$ 100 a = 1 ha $100 \text{ ha} = 1 \text{ km}^2$ a = Ar, ha = Hektar, 1 Jucharte

(altes Mass) = 36 a

 1 mm^2

Körpermasse

1 Kubikmeter (m³) ist ein Würfel von 1 m Kante.



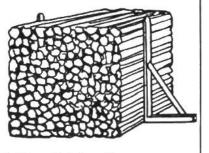
 1 mm^3 1000 mm³ $= 1 \text{ cm}^3$ 1000 cm³ $= 1 dm^3$ 1000 dm³ $= 1 \text{ m}^3$ 1000 m³ $= 1 \, dam^3$ 1000 dam3 $= 1 \text{ hm}^3$ 1000 hm³ $= 1 \text{ km}^3$ 1 dm^3 = 11 1 m^3 = 10 h1 1 cm^3 = 1 ml

Hohlmasse

1 = Liter

	1 ml
=	1 cl
=	1 dl
=	1 l
=	1 dal
=	1 hl
ALCOHOLD .	1 kl
	=

1 Liter oder
1 dm³ chemisch
reines Wasser
von +40
Celsius
wiegt


Gewichte

g = Gramm

		1 mg
10 mg	=	1 cg
10 cg	=	1 dg
10 dg	=	1 g
10 g	=	1 dag
10 dag	==	1 hg
10 hg	=	1 kg
100 kg	=	1 q
1000 kg =	10 q	= 1 t

q = Zentner t = Tonne 1 Pfund = 500 g

Holzmasse

Ster ist 1 m³
 Brennholz
 Klafter (altes
 Mass) = 3 Ster

Stückmasse

12 Stück = 1 Dutzend 12 Dutzend = 1 Gros 1 Gros = 12 Dutzend = 144 Stück

ENGLISCHE MASSE

1. Längenmass

1 Yard = 91.44 cm = 3 Fuss

1 Fuss = 30,48 cm = 12 Inches

1 Inch (Zoll) = 2,54 cm

1 Meile (1760 Yards) = 1,609 km

1 Knoten = 1 Seemeile (1,852 km) pro Stunde

1 geographische Meile = 7,42 km

2. Flüssigkeitsmass

1 Gallon = 4,546 Liter = 4 Quarts 1 Quart = 2 Pints, 8 G = 1 Bushel

3. Gewicht

1 Pfund (lb) = 453,6 g. 28 Pfund =

1 Quarter, 4 Quarters = 1 Hundredweight (cwt) = 50,8 kg. 20 Hundred-

weights = 1 Ton.

SPEZIFISCHE GEWICHTE

Das spezifische Gewicht eines festen oder flüssigen Körpers ist das Gewicht eines Kubikzentimeters (cm³) dieses Stoffes in Gramm (g).

Feste Körper	Kupfer 8,9	Silber., 10,50		
Aluminium . 2,70 Eisen 7,9		Stahl. 7,6–7,9		
Blei 11,35 Gold 19,30		김 회사 가지 하고 있는 이번에 걸리는 그런 시간에 가지 않는 것이 되었다.		
	Platin 21,36			
	5			
Holzarten Die vordere Zahl gilt für tro	18~~ : [1]			
Apfelbaum 0,73 Buche 0,77–1,00 Ko				
Birnbaum 0,68 Eiche 0,76-0,95 Ma				
Flüssigkeiten Äth. Alkohol 0,79				
Meerwasser 1,02 Milch . 1,02-1,04	Petroleum. 0,80 Wo	ein . 1,02-1,04		
Schmelzpunkte Schmelzen ist der Überg	ang eines Körpers vor	n festen in den		
flüssigen Zustand durch die Wirkung der Wärme. Die Temperatur, bei der ein				
Körper schmilzt, heisst Schmelzpunkt. Quecksilber39° Zinn	Kupfer	1083°		
Quecksilber39° Zinn	232° Graugus	s ca 1200°		
Eis 0° Blei	327° Stahl	1300-18000		
Gelbes Wachs 61° Zink		ein 1530°		
Weisses Wachs 68° Silber		än 2622°		
Schwefel 113-119° Gold				
Siedepunkte Die Temperatur, bei der flüssige Körper unter der Erscheinung				
des Siedens bei Normaldruck (1 Atm) dampfförmig werden, heisst Siedepunkt.				
	Terpentinöl161° Sch			
Äth. Alkohol 78,5° Wasser 100°				
Benzol 80,2° Meerwasser .104°		CRSHOCI . JJI		
Delizot : 60,2° Meet wasset . 104°	Leinoi 313°			

EINIGE PHYSIKALISCHE MASSEINHEITEN

1 Meterkilogramm (1 mkg) ist die Arbeit, die bei der Überwindung einer Kraft von 1 kg längs einer Strecke von 1 m verrichtet wird.

1 Meterkilogramm pro Sekunde (1 mkg/sec) ist diejenige Leistung, die aufgewendet wird, falls in 1 sec eine Arbeit von 1 mkg verrichtet wird. 75 mkg/sec werden in der Technik zu 1 Pferdestärke (1 PS) zusammengefasst. Auch in der Mechanik wird neuerdings das Watt (1 W) zur Leistungsmessung verwendet

$$(1 \text{ W} = \frac{1}{736} \text{ PS}; 1000 \text{ W} = 1 \text{ Kilowatt}; 1 \text{ kW} = 1,36 \text{ PS.})$$

1 techn. Atmosphäre (1 at) ist der Druck (Kraft pro Flächeneinheit), der herrscht, wenn pro cm² einer Fläche eine Kraft von 1 kg wirkt. Die physikalische Atmosphäre (1 Atm) ist gleich dem Druck, den eine Quecksilbersäule von 0°C, 76 cm Höhe und 1 cm² Querschnitt über diesem bewirkt (1 Atm = 1,033 at).

1 Kalorie (1 cal) ist diejenige Wärmemenge, die benötigt wird, um 1 g Wasser von 14,5° auf 15,5°C zu erwärmen (1000 cal = 1 Kilokalorie = 1 kcal).

Wichtige physikalische Masseinheiten und ihre Namengeber

Mit der Entfaltung der physikalischen Forschung und der Technik im letzten Jahrhundert erwies es sich als notwendig, auf dem Gebiet der Elektrizitätslehre Masseinheiten von internationaler Geltung zu schaffen. Dabei fasste man den schönen Entschluss, sie nach bedeutenden Gelehrten zu benennen, um auf diese Weise deren Andenken wachzuhalten.

Das AMPERE ist die Einheit der elektrischen Stromstärke. Es wird dargestellt durch den unveränderlichen elektrischen Strom, welcher bei dem Durchgang durch eine wässerige Lösung von Silbernitrat in einer Sekunde 0,001118 g Silber niederschlägt.

André Marie Ampère, geboren 22. Januar 1775 in Lyon, gestorben 10. Juni 1836 in Marseille, war Professor an der Polytechnischen Schule und dem Collège de France in Paris. 1820 veröffentlichte er die «Ampèresche Schwimmregel» zur Darstellung elektromagnetischer Erscheinungen und 1827 seine Theorie des Elektromagnetismus und der Elektrodynamik.

Das OHM ist die Einheit des elektrischen Widerstandes. Es wird dargestellt durch den Widerstand einer Quecksilbersäule von der Temperatur des schmelzenden Eises, deren Länge bei durchwegs gleichem, einem Quadratmillimeter gleich zu achtendem Querschnitt 106,3 cm und deren Masse 14,4521 g beträgt. Georg Simon Ohm, geboren 16. März 1789 in Erlangen, gestorben 6. Juli 1854 in München, war Professor an der Polytechnischen Schule in Nürnberg. 1827 veröffentlichte er seine Entdeckungen über die Zusammenhänge zwischen Spannung, Stromstärke und Leitwiderstand (Ohmsches Gesetz).

Das VOLT ist die Einheit der elektromotorischen Kraft. Es wird dargestellt durch die elektromotorische Kraft, welche in einem Leiter, dessen Widerstand ein Ohm beträgt, einen elektrischen Strom von einem Ampere erzeugt. Alessandro Volta, geboren 18. Februar 1745 in Como, gestorben 5. März 1827 in Como, war Professor der Physik am Gymnasium in Como und an der Universität Pavia. 1794 bewies er das Entstehen von galvanischer Elektrizität bei Berührung zweier Metalle. Er erfand die Voltasche Säule, das Elektrophor, das Eudiometer, den Kondensator und andere Apparate.

Ein WATT ist die Leistung von einem Ampere in einem Leiter von einem Volt Endspannung. James Watt, geboren 19. Januar 1736 in Greenock, gestorben 19. August 1819 in Heathfield, war Mechaniker. Er erfand die moderne Dampfmaschine und wurde einer der bedeutendsten Industriellen Englands.

Ein COULOMB (Amperesekunde) ist die Elektrizitätsmenge, welche bei einem Ampere in einer Sekunde durch den Querschnitt der Leitung fliesst. Coulomb, geboren 11. Juni 1736 in Angoulème, gestorben 23. August 1806 in Paris, war Offizier des Geniekorps im französischen Heer und Generalaufseher des öffentlichen Unterrichts. Er war Erfinder der Drehwaage und wies unter anderem nach, dass die abstossende Kraft zweier gleichartig elektrisierter Kugeln im umgekehrten Verhältnis zum Quadrat des Abstandes der Mittelpunkte der beiden Kugeln steht.

Ein JOULE (Wattsekunde) ist die Arbeit von einem Watt während einer Sekunde. James Prescott Joule, geboren 24. Dezember 1818 in Salford, gestorben 11. Oktober 1889 in Sale bei London, war Grossindustrieller und wirkte als freier Forscher. Er entdeckte die magnetische Sättigung, untersuchte das Verhältnis zwischen dem Widerstand und der beim Stromdurchgang erzeugten Wärme eines Leiters und bestimmte das mechanische Wärme-Äquivalent.

Ein FARAD ist die Kapazität eines Kondensators, welcher durch eine Amperesekunde auf ein Volt geladen wird. Michael Faraday, geboren 22. September 1791 in Newington, gestorben 25. August 1867 in Hamptoncourt, brachte es durch eigenes Studium vom Buchbinder zum Direktor und Professor des Laboratoriums der Royal Institution in London. Er entdeckte die Rotation eines elektrischen Stromes um einen Magneten und umgekehrt die Rotation eines Magneten um einen elektrischen Strom (Grundprinzip des Elektromotors). Die nach ihm benannten Gesetze legen die Eindeutigkeit der Beziehung zwischen ausgeschiedener Stoffmenge und durchgegangener Elektrizitätsmenge sowie die Äquivalenz des chemischen Vorganges bei verschiedenen Elektrolyten fest.

Ein HENRY ist der Induktionskoeffizient eines Leiters, in welchem ein Volt induziert wird durch die gleichmässige Änderung der Stromstärke um ein Ampere in der Sekunde. Joseph Henry, geboren 17. Dezember 1797 in Albany (New York), gestorben 13. Mai 1878 in Washington, war Professor der Mathematik in Albany und am College in Princeton. Er wies 1831 die Möglichkeit der elektrischen Telegraphie und der elektromagnetischen Kraftmaschinen nach.

Ein GAUSS ist die Zentimeter-Gramm-Sekundeneinheit der magnetischen Feldstärke und herrscht an jener Stelle des Magnetfeldes, wo auf die absolute magnetische Polstärkeneinheit die Kraft 1 Dyn wirkt. (1 Dyn = physikalische Einheit der Kraft, welche der Masse von 1 g die Beschleunigung von 1 cm/sec-2, erteilt.) Karl Friedrich Gauss, geboren 30. April 1777 in Braunschweig, gestorben 23. Februar 1855 in Göttingen, war Professor der reinen Mathematik und Direktor der Sternwarte in Göttingen. Er errichtete zusammen mit Wilhelm Eduard Weber die erste Telegraphenlinie in Göttingen.

Ein HERTZ entspricht einer Schwingung pro Sekunde. In der Radiotechnik dient meistens das Kilohertz (1000 Sekundenschwingungen) oder das Megahertz (1000000 Sekundenschwingungen) als Masseinheit. Heinrich Hertz, geboren 22. Februar 1857 in Hamburg, gestorben 1. Januar 1894 in Bonn, war Professor für theoretische Physik an der Universität in Bonn.

Er wies den Zusammenhang zwischen Elektrizität und Licht sowie die Schwingungsgesetze der elektromagnetischen Strahlen nach, wodurch er zum Schöpfer der Radiotechnik wurde.

Ein CURIE ist diejenige Emanationsmenge, die sich mit einem Gramm Radium im Gleichgewicht befindet, so dass von einem Gramm Radium genau so viel Emanation nachentwickelt wird, als von einem Curie Emanation in gleicher Zeit durch spontanen Zerfall verschwindet.

Pierre Curie, geboren 15. Mai 1859 in Paris, gestorben 19. April 1906 in Paris, und seine Frau Marie Curie, geboren 7. November 1867 in Warschau, gestorben 4. Juli 1934 in Sancellemoz, wirkten an der Ecole de Physique und an der Sorbonne in Paris. Sie entdeckten gemeinsam die Elemente Polonium und Radium.

Ein ROENTGEN ist die Masseinheit der Röntgenstrahlendosis, die von jener Röntgenstrahlen-Energiemenge geliefert wird, die bei der Bestrahlung von 1cm³ Luft von 18°C Temperatur und 760 mm Quecksilberdruck bei voller Ausnützung der in der Luft gebildeten Elektronen und bei Ausschaltung von Wandwirkungen eine so starke Leitfähigkeit erzeugt, dass der Sättigungsstrom eine elektrostatische Einheit beträgt. Wilhelm Konrad Röntgen, geboren 27. März 1845 in Lennep, gestorben 10. Februar 1923 in München, wirkte als Professor für theoretische Physik in Würzburg und München. Er ist Entdecker der nach ihm benannten Röntgenstrahlen.