Zeitschrift: Pestalozzi-Kalender

Herausgeber: Pro Juventute

Band: 43 (1950)

Heft: [1]: Schülerinnen

Rubrik: Aus der Geometrie

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

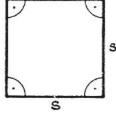
Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 30.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Aus der Geometrie.



U = Umfanq.F = Fläche.

s = Seite.

Das Quadrat.

$$U = 4.s$$
 $F = s.s$
 $S = \frac{U}{4} = U:4$ $S = \sqrt{F}$

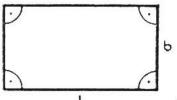
rechtwinklig, gleichseitig.

F = s.s *?

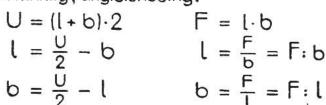
$$s = \sqrt{F}$$

Das Rechteck.

rechtwinklig, ungleichseitig.

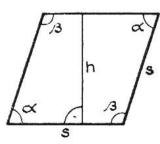


l = Länge. b = Breite.

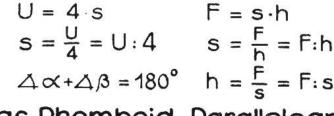


Der Rhombus, die Raute.

schiefwinklig, gleichseitig.



s = Seite. h = Höhe.



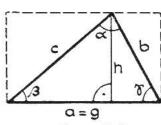
 $\triangle \propto + \triangle \beta = 180^{\circ}$ h = $\frac{F}{s}$ = F:s

 $F = s \cdot h$

Das Rhomboid, Parallelogramm.

schiefwinklig , ungleichseitig .

L = Länge. b = Breite. h = Höhe.



g = Grundlinie. h=Höhe.

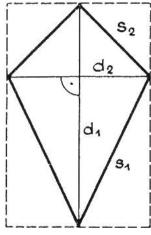
 $U = (l + b) \cdot 2$ F = 1.h $l = \frac{U}{2} - b$ $l = \frac{F}{h} = F \cdot h$ $b = \frac{U}{2} - l$ $h = \frac{F}{l} = F:l$ 4 × 4 B = 180°

Das Dreieck.

 $F = \frac{g \cdot h}{2}$ $g = \frac{2 \cdot F}{h}$ $h = \frac{2 \cdot F}{g}$ $\Delta \alpha + \Delta \beta + \Delta \gamma = 180^{\circ}$ U = a + b + c $\Delta \alpha = 180^{\circ} - (\Delta \beta + \Delta \gamma)$ $\Delta \beta = 180^{\circ} - (\Delta \alpha + \Delta \gamma)$ $\Delta \gamma = 180^{\circ} - (\Delta \alpha + \Delta \beta)$ C = U - (a + c)

Spezialfälle: Das gleichseitige, die gleichschenkligen und die rechtwinkligen Dreiecke.

*) Algebraische Schreibweise: F = se, gelesen s hoch 2; ebenso für andere Flächenformein verwendbar.



d₄= lange Diagonale. de= kurze Diagonale. s₁= lange Seite. s₂=kurze Seite.

Das Drachenviereck.

$$U = (s_1 + s_2) \cdot 2$$

$$F = \frac{d_1 \cdot d_2}{2}$$

$$s_1 = \frac{U}{2} - s_2$$

$$d_1 = \frac{2 \cdot F}{d_2}$$

$$s_2 = \frac{U}{2} - s_1$$

$$d_2 = \frac{2 \cdot F}{d_1}$$

Spezialfälle: Quadrat:

$$F = \frac{d \cdot d}{2}$$
$$d = \sqrt{2 \cdot F}$$

Rhombus:

$$F = \frac{d_1 \cdot d_2}{2}$$

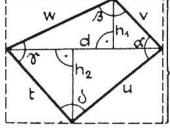
$$d_1 = \frac{2 \cdot F}{d_2}$$

d = Diagonale.

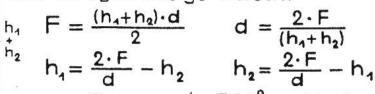
d=lange Diagonale. d.= kurze Diagonale.

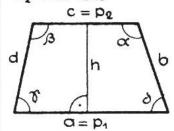
Das Trapezoid.

Das unregelmässige Viereck.



d = Diagonale h₁=Höhe 1 h₂=Höhe 2





Das Trapez.

$$F = \frac{(p_1 + p_2) \cdot h}{2} \qquad h = \frac{2 \cdot F}{(p_1 + p_2)}$$

$$p_4 = \frac{2 \cdot F}{b} - p_2 \qquad p_2 = \frac{2 \cdot F}{b} - p_2$$

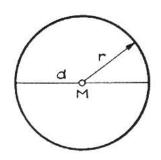
$$F = \frac{(p_1 + p_2) \cdot h}{2} \qquad h = \frac{2 \cdot F}{(p_1 + p_2)}$$

$$p_4 = \frac{2 \cdot F}{h} - p_2 \qquad p_2 = \frac{2 \cdot F}{h} - p_4$$

$$p_1$$
= grosse Parallele. $A \propto +A \beta +A \gamma +A \delta = 360^{\circ}$ $U = a+b+c+d$ p_2 = kleine Parallele. $A \propto = 360^{\circ} (A\beta +A\gamma +A\delta)$ $a = U - (b+c+d)$ $h = H\ddot{o}he$. $u.s.w.$

$$U = a+b+c+d$$

 $a = U-(b+c+d)$
u.s.w.



d = Durchmesser. r = Radius. M = Mittelpunkt.

Der Kreis.

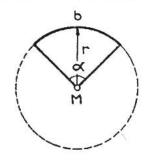
$$U = d \cdot \overline{\mathfrak{I}} \qquad U = 2 \cdot r \cdot \overline{\mathfrak{I}}$$

$$d = \frac{U}{\overline{\mathfrak{I}}} \qquad r = \frac{U}{2 \cdot \overline{\mathfrak{I}}}$$

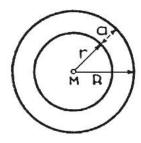
$$F = r \cdot r \cdot \overline{\mathfrak{I}} = \frac{d \cdot d \cdot \overline{\mathfrak{I}}}{4} = \frac{U \cdot U}{4 \cdot \overline{\mathfrak{I}}}$$

$$r = \sqrt{\frac{F}{\overline{\mathfrak{I}}}} \qquad d = 2 \cdot \sqrt{\frac{F}{\overline{\mathfrak{I}}}} \qquad U = 2 \cdot \sqrt{F \cdot \overline{\mathfrak{I}}}$$

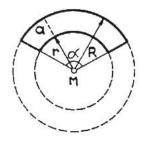
Spezialfälle: Halbkreis, Viertelkreis.



r = Radius. b = Kreisbogen. α= Zentriwinkel. M= Mittelpunkt.

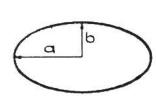


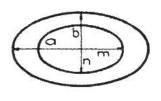
R = äusserer Radius. r = innerer Radius. a = radiale Breite des Kreisrings. M = Mittelpunkt.



R = äusserer Radius. r = innerer Radius. a = radiale Breite des Kreisringstücks.

 α = Zentriwinkel. M = Mittelpunkt.





Der Kreissektor.

$$b = \frac{U \cdot \alpha}{360} = \frac{d \cdot \overline{\pi} \cdot \alpha}{360} = \frac{r \cdot \overline{\pi} \cdot \alpha}{180}$$

$$\alpha = \frac{b \cdot 360}{U} = \frac{b \cdot 360}{d \cdot \overline{\pi}} = \frac{b \cdot 180}{r \cdot \overline{\pi}}$$

$$F = \frac{b \cdot r}{2} \quad b = \frac{2 \cdot F}{r} \quad r = \frac{2 \cdot F}{b}$$

$$F = \frac{r \cdot r \cdot \overline{\pi} \cdot \alpha}{360} = \frac{d \cdot d \cdot \overline{\pi} \cdot \alpha}{4 \cdot 360} = \frac{U \cdot U \cdot \alpha}{4 \cdot \overline{\pi} \cdot 360}$$

$$\alpha = \frac{F \cdot 360}{r \cdot r \cdot \overline{\pi}} = \frac{F \cdot 360 \cdot 4}{d \cdot d \cdot \overline{\pi}} = \frac{F \cdot 360 \cdot 4 \cdot \overline{\pi}}{U \cdot U}$$

$$r = 6 \cdot \sqrt{\frac{F \cdot 10}{\alpha \cdot \overline{\pi}}} \quad d = 12 \cdot \sqrt{\frac{F \cdot 10}{\alpha \cdot \overline{\pi}}} \quad U = 12 \cdot \sqrt{\frac{F \cdot 10 \cdot \overline{\pi}}{\alpha}}$$

Der Kreisring.

$$F = (R+r) \cdot (R-r) \cdot \overline{\mathbf{I}}$$

$$= (R+r) \cdot \mathbf{a} \cdot \overline{\mathbf{I}}$$

$$= (2 \cdot r+a) \cdot \mathbf{a} \cdot \overline{\mathbf{I}} = (d+a) \cdot \mathbf{a} \cdot \overline{\mathbf{I}}$$

$$= (2 \cdot R-a) \cdot \mathbf{a} \cdot \overline{\mathbf{I}} = (D-a) \cdot \mathbf{a} \cdot \overline{\mathbf{I}}$$

Das Kreisringstück,

$$F = (R+r) \cdot (R-r) \cdot \tilde{\mathfrak{I}} \cdot \frac{\alpha}{360}$$

$$= (R+r) \cdot \alpha \cdot \tilde{\mathfrak{I}} \cdot \frac{\alpha}{360}$$

$$= (2 \cdot r + \alpha) \cdot \alpha \cdot \tilde{\mathfrak{I}} \cdot \frac{\alpha}{360} = (d+\alpha) \cdot \alpha \cdot \tilde{\mathfrak{I}} \cdot \frac{\alpha}{360}$$

$$= (2 \cdot R - \alpha) \cdot \alpha \cdot \tilde{\mathfrak{I}} \cdot \frac{\alpha}{360} = (D-\alpha) \cdot \alpha \cdot \tilde{\mathfrak{I}} \cdot \frac{\alpha}{360}$$

Die Ellipse,

$$F = a \cdot b \cdot \pi$$

$$a = \frac{F}{b \cdot \pi} \qquad b = \frac{F}{a \cdot \pi}$$

$$a = \text{halbe grosse Achse.}$$

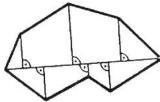
$$b = \text{halbe kleine Achse.}$$

Der elliptische Ring,

$$F = (a \cdot b - m \cdot n) \cdot \overline{I}$$

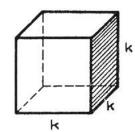
a, b = halbe Achsen der äussern Ellipse.

m,n = halbe Achsen der innern Ellipse.

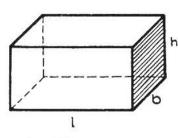


S Q P

- R = Radius d. Umkreis.
- r = Radius d. Jnkreis.
- n = Seitenzahl.
- s = Vieleckseite.
- $\alpha = Zentriwinkel.$
- B= Vieleckwinkel.



- k . Kante.
- K = Gesamt = kantenlänge.
- M = Mantel.
- 0 = Oberfläche.
- J = Jnhalt.



- l = Länge.
- b = Breite.
- h = Höhe.

Das unregelmässige Vieleck.

Umfang = Summe aller Seiten.

Fläche = man zerlegt die Vieleckfläche:

- a. mit Diagonalen In Dreicke und eventuell Trapezoide, berechnet diese Teile und addiert die Teilresultate.
- b. mit einer passenden Diagonale und auf dieser rechtwinklig errichtete Höhen zu den Eckpunkten in Dreiecke und Trapeze, berechnet diese Teile einzeln und addiert die Teilresultate.

Das regelmässige Vieleck.

$$U = n \cdot s \qquad n = \frac{U}{s} \qquad s = \frac{U}{n}$$

$$F = \frac{n \cdot s \cdot r}{2} \qquad n = \frac{2 \cdot F}{s \cdot r}$$

$$r = \frac{2 \cdot F}{n \cdot s} \qquad s = \frac{2 \cdot F}{n \cdot r}$$

$$\Delta \alpha = \frac{360^{\circ}}{n} \qquad \Delta \beta = 180^{\circ} - \Delta \alpha$$

Der Würfel.

$$K = 12 \cdot k \qquad \qquad k = \frac{K}{12} = K:12$$

$$M = k \cdot k \cdot 4 \qquad \qquad k = \sqrt{\frac{M}{4}} = \frac{1}{2} \sqrt[4]{M}$$

$$O = k \cdot k \cdot 6 \qquad \qquad k = \sqrt{\frac{0}{6}}$$

$$J = k \cdot k \cdot k \qquad * \qquad k = \sqrt[3]{J}$$

Der Quader.

$$K = (l+b+h) \cdot 4$$

$$l = \frac{K}{4} - (b+h) \quad \text{ebenso b und h.}$$

$$M = (l+b) \cdot 2 \cdot h$$

$$l = \frac{M}{2 \cdot h} - b \quad \text{, ebenso b; } h = \frac{M}{2 \cdot (l+b)}$$

$$O = (l \cdot b + l \cdot h + b \cdot h) \cdot 2$$

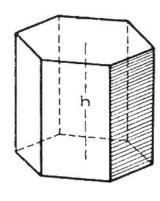
$$l = (\frac{O}{2} - b \cdot h) \cdot (b+h) \quad \text{ebenso b und h.}$$

$$J = l \cdot b \cdot h$$

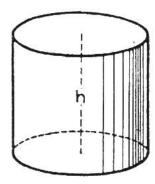
$$l = \frac{J}{b \cdot h} \quad b = \frac{J}{l \cdot h} \quad h = \frac{J}{l \cdot h}$$

*) Algebraische Schreibweise: J=k³, gelesen k hoch 3; ebenso für andere Jnhaltsformeln verwendbar.

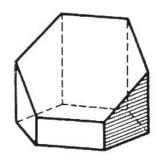
Tafet S.



- K = Gesamt kantenlänge.
- h = Höhe.
- n=Zahl der Höhenkanten.
- U = Umfang der Grundfläche.
- G = Grundfläche.



- r = Radius.
- d = Durchmesser.
- h = Höhe.
- U = Umfang.
- G = Grundfläche.
- M = Mantel.
- 0 = Oberfläche.
- J = Jnhalt.



- h = Hönen.
- n = Zahl der Höhen.
- G₄= Grundfläche.
- G,= Deckfläche.

Das Prisma.

$$K = 2 \cdot U + n \cdot h$$

 $U = \frac{K - n \cdot h}{2}$ $n = \frac{K - 2 \cdot U}{h}$ $h = \frac{K - 2 \cdot U}{n}$

$$M = U \cdot h$$

$$U = \frac{M}{h}$$
 $h = \frac{M}{U}$

$$0 = M + 2 \cdot G$$

$$M = O - 2 \cdot G \qquad G = \frac{O - M}{2}$$

$$G = \frac{O - M}{2}$$

$$J = G \cdot h$$

$$G = \frac{J}{h}$$

$$h = \frac{J}{G}$$

Der Zylinder, die Walze.

$$M = U \cdot h = d \cdot \overline{1} \cdot h = 2 \cdot r \cdot \overline{1} \cdot h$$

$$h = \frac{M}{U} = \frac{M}{d \cdot \pi} = \frac{M}{2 \cdot r \cdot \pi}$$

$$U = \frac{M}{h} \qquad d = \frac{M}{h \cdot \pi} \qquad r = \frac{M}{2 \cdot h \cdot \pi}$$

$$O = M + 2 \cdot G$$

$$= \left(h + \frac{U}{2 \cdot \overline{\pi}}\right) \cdot U = \left(h + \frac{d}{2}\right) \cdot d \cdot \overline{\pi} = \left(h + r\right) \cdot 2 \cdot r \cdot \overline{\pi}$$

$$J = G \cdot h$$

$$= r \cdot r \cdot \pi \cdot h = \frac{d \cdot d \cdot \pi \cdot h}{4} = \frac{U \cdot U \cdot h}{4 \cdot \pi}$$

$$h = \frac{J}{r \cdot r \cdot \tilde{n}} = \frac{4 \cdot J}{d \cdot d \cdot \tilde{n}} = \frac{4 \cdot J \cdot \tilde{n}}{U \cdot U}$$

$$r = \sqrt{\frac{J}{h \cdot \overline{\pi}}}$$
 $d = 2 \cdot \sqrt{\frac{J}{h \cdot \overline{\pi}}}$ $U = 2 \cdot \sqrt{\frac{J \cdot \overline{\pi}}{h}}$

Das schiefabgeschnittene Prisma.

$$M = \frac{U \cdot (h_1 + h_2 + \dots + h_n)}{n}$$

$$h_4 = \frac{n \cdot M}{U} - (h_2 + h_3 + ... + h_n)$$
 ebenso $h_2, h_3, ..., h_n$

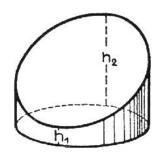
$$U = \frac{n \cdot M}{(h_1 + h_2 + \dots + h_n)}$$

$$0 = M + G_1 + G_2$$

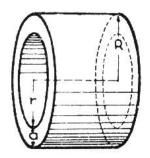
$$J = \frac{G_1 \cdot (h_1 + h_2 + \ldots + h_n)}{n}$$

$$G_1 = \frac{\mathbf{n} \cdot \mathbf{J}}{(\mathbf{h}_1 + \mathbf{h}_2 + \dots + \mathbf{h}_n)}$$

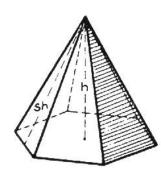
$$h_1 = \frac{n \cdot J}{G_4} - (h_2 + h_3 + ... + h_n)$$
 ebenso $h_2, h_3, ..., h_n$



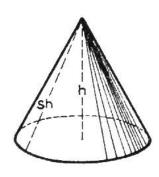
 h_1 = kleinste Höhe. h_2 = grösste Höhe. G_1 = Grundfläche. G_2 = Deckfläche.



R = äusserer Radius. r = innerer Radius. a = Wandstärke.



sh = Seitenhöhe. h = Höhe.



sh=Seitenhöhe, h=Höhe, r=Radius,

Der schiefabgeschnittene Zylinder.

$$\begin{split} M &= \frac{U \cdot (h_4 + h_2)}{2} = \frac{d \cdot \overline{J} \cdot (h_1 + h_2)}{2} = r \cdot \overline{J} \cdot (h_4 + h_2) \\ h_1 &= \frac{2 \cdot M}{U} - h_2 = \frac{2 \cdot M}{d \cdot \overline{J} \overline{I}} - h_2 = \frac{M}{r \cdot \overline{J} \overline{I}} - h_2 \text{ ebs.} h_2 \\ U &= \frac{2 \cdot M}{(h_1 + h_2)} \quad d = \frac{2 \cdot M}{(h_1 + h_2) \cdot \overline{J} \overline{I}} \quad r = \frac{M}{(h_1 + h_2) \cdot \overline{J} \overline{I}} \\ O &= M + G_4 + G_2 \\ J &= \frac{G_4 \cdot (h_1 + h_2)}{2} \\ &= \frac{r \cdot r \cdot \overline{J} \cdot (h_1 + h_2)}{2} = \frac{d \cdot d \cdot \overline{J} \cdot (h_4 + h_2)}{8} = \frac{U \cdot U \cdot (h_4 + h_2)}{8 \cdot \overline{J} \overline{I}} \\ h_4 &= \frac{2 \cdot J}{r \cdot r \cdot \overline{J} \overline{I}} - h_2 = \frac{8 \cdot J}{d \cdot d \cdot \overline{J} \overline{I}} - h_2 = \frac{8 \cdot J \cdot \overline{J}}{U \cdot U} - h_2 \text{ ebs.} h_2 \\ r &= \sqrt{\frac{2 \cdot J}{(h_4 + h_2) \cdot \overline{J} \overline{I}}} \quad d = 2 \cdot \sqrt{\frac{2 \cdot J}{(h_4 + h_2) \cdot \overline{J} \overline{I}}} \quad U = 2 \cdot \sqrt{\frac{2 \cdot J \cdot \overline{J} \overline{I}}{(h_4 + h_2)}} \end{split}$$

Der Hohlzylinder.

$$J = (R+r) \cdot (R-r) \cdot \overline{n} \cdot h = (R+r) \cdot \alpha \cdot \overline{n} \cdot h$$

$$= (2 \cdot r + \alpha) \cdot \alpha \cdot \overline{n} \cdot h = (d+\alpha) \cdot \alpha \cdot \overline{n} \cdot h$$

$$= (2 \cdot R-\alpha) \cdot \alpha \cdot \overline{n} \cdot h = (D-\alpha) \cdot \alpha \cdot \overline{n} \cdot h$$

Die Pyramide.

$$M = \frac{U \cdot sh}{2} \qquad U = \frac{2 \cdot M}{sh} \qquad sh = \frac{2 \cdot M}{U}$$

$$0 \quad M + G$$

$$J = \frac{G \cdot h}{3} \qquad G = \frac{3 \cdot J}{h} \qquad h = \frac{3 \cdot J}{G}$$

Der Kegel.

$$M = \frac{U \cdot sh}{2} = \frac{d \cdot \overline{n} \cdot sh}{2} = r \cdot \overline{n} \cdot sh$$

$$sh = \frac{2 \cdot M}{U} = \frac{2 \cdot M}{d \cdot \overline{n}} = \frac{M}{r \cdot \overline{n}}$$

$$U = \frac{2 \cdot M}{sh} \qquad d = \frac{2 \cdot M}{sh \cdot \overline{n}} \qquad r \cdot = \frac{M}{sh \cdot \overline{n}}$$

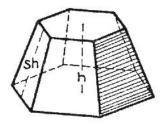
$$O = M + G \qquad = (sh + r) \cdot r \cdot \overline{n}$$

$$J = \frac{G \cdot h}{3}$$

$$= \frac{r \cdot r \cdot \overline{n} \cdot h}{3} = \frac{d \cdot d \cdot \overline{n} \cdot h}{12} = \frac{U \cdot U \cdot h}{12 \cdot \overline{n}}$$

$$h = \frac{3 \cdot \overline{J}}{r \cdot r \cdot \overline{n}} = \frac{12 \cdot \overline{J}}{d \cdot d \cdot \overline{n}} = \frac{12 \cdot \overline{J} \cdot \overline{n}}{U \cdot U}$$

$$r = \sqrt{\frac{3 \cdot \overline{J}}{h \cdot \overline{n}}} \qquad d = 2 \cdot \sqrt{\frac{3 \cdot \overline{J}}{h \cdot \overline{n}}} \qquad U = 2 \cdot \sqrt{\frac{3 \cdot \overline{J} \cdot \overline{n}}{h}}$$



sh = Seitenhöhe.

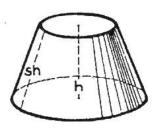
h = Höhe.

U=Umfang der Grundfläche.

u=Umfang der Deckfläche.

G = Grundfläche.

g = Deckfläche.



sh = Seitenhöhe.

n = Höhe.

R=Radius der Grundfläche.

r = Radius der Deckfläche.

Die abgestumpfte Pyramide.

$$M = \frac{(U+u)\cdot sh}{2}$$

$$U = \frac{2\cdot M}{sh} - u \text{ ebenso } u; \text{ sh} = \frac{2\cdot M}{(U+u)}$$

$$O = M + G + g$$

$$J = \frac{(G+\sqrt{G\cdot g}+g)\cdot h}{3}$$

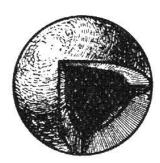
Der abgestumpfte Kegel.

$$\begin{split} M &= (R+r) \cdot \mathfrak{T} \cdot sh = \frac{(D+d) \cdot \mathfrak{T} \cdot sh}{2} = \frac{(U+u) \cdot sh}{2} \\ sh &= \frac{M}{(R+r) \cdot \mathfrak{T}} = \frac{2 \cdot M}{(D+d) \cdot \mathfrak{T}} = \frac{2 \cdot M}{(U+u)} \\ R &= \frac{M}{\mathfrak{T} \cdot sh} - r \quad D = \frac{M \cdot 2}{\mathfrak{T} \cdot sh} - d \quad U = \frac{M \cdot 2}{sh} - u \\ &= \text{ebenso } r, d \text{ und } u \,. \end{split}$$

O = M + G + G $= (R \cdot R + [R + r] \cdot sh + r \cdot r) \cdot I$ $J = \frac{(R \cdot R + R \cdot r + r \cdot r) \cdot I \cdot h}{3} = \frac{(D \cdot D + D \cdot d + a \cdot a) \cdot I \cdot h}{12}$ $= \frac{(U \cdot U + U \cdot u + u \cdot u) \cdot h}{12 \cdot I}$

 $h = \frac{3 \cdot J}{(R \cdot R + R \cdot r + r \cdot r) \cdot \pi} = \frac{12 \cdot J}{(D \cdot D + D \cdot d + d \cdot d) \cdot \pi}$ $= \frac{12 \cdot J \cdot \pi}{(U \cdot U + U \cdot u + u \cdot u)}$

r = Radius.



R = äusserer Radius. r = innerer Radius.

Die Kugel.

$$0 = 4 \cdot r \cdot r \cdot \tilde{\pi} = d \cdot d \cdot \tilde{\pi} = \frac{U \cdot U}{\tilde{\pi}}$$

$$r = \frac{1}{2} \cdot \sqrt{\frac{0}{\tilde{\pi}}} \qquad d = \sqrt{\frac{0}{\tilde{\pi}}} \qquad U = \sqrt{0 \cdot \tilde{\pi}}$$

$$J = \frac{4 \cdot r \cdot r \cdot r \cdot \tilde{\pi}}{3} = \frac{d \cdot d \cdot d \cdot \tilde{\pi}}{6} = \frac{U \cdot U \cdot U}{6 \cdot \tilde{\pi} \cdot \tilde{\pi}}$$

$$r = \sqrt[3]{\frac{3 \cdot J}{4 \cdot \tilde{\pi}}} \qquad d = \sqrt[3]{\frac{6 \cdot J}{\tilde{\pi}}} \qquad U = \sqrt[3]{6 \cdot J \cdot \tilde{\pi} \cdot \tilde{\pi}}$$

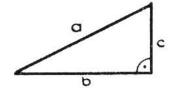
Die Hohlkugel.

$$J = \frac{4 \cdot (R \cdot R \cdot R - r \cdot r \cdot r) \cdot \pi}{3}$$

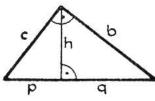
$$= \frac{(D \cdot D \cdot D - d \cdot d \cdot d) \cdot \pi}{6}$$

$$= \frac{(U \cdot U \cdot U - u \cdot u \cdot u)}{6 \cdot \pi \cdot \pi}$$

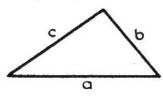
Tafel 8.



a = Hypotenuse bund c = Katheten



p und q = Abschnifteder Hypotenuse p + q = a



a, b und c = Seiten des ungleichseitigen Dreiecks.

Der Lehrsatz des Pythagoras.

Jm rechtwinkligen Dreieck ist das Hypotenusenquadrat gleich der Summe der beiden Kathetenquadrate.

$$a^2 = b^2 + c^2$$
 $a = \sqrt{b^2 + c^2}$
 $b^2 = a^2 - c^2$ $b = \sqrt{a^2 - c^2} = \sqrt{(a+c) \cdot (a-c)}$
 $c^2 = a^2 - b^2$ $c = \sqrt{a^2 - b^2} = \sqrt{(a+b) \cdot (a-b)}$

$$b^{2} = a \cdot q \qquad b = \sqrt{a \cdot q} \qquad q = \frac{b^{2}}{a} \qquad a = \frac{b^{2}}{q}$$

$$c^{2} = a \cdot p \qquad c = \sqrt{a \cdot p} \qquad p = \frac{c^{2}}{a} \qquad a = \frac{c^{2}}{p}$$

$$h^{2} = p \cdot q \qquad h = \sqrt{p \cdot q} \qquad p = \frac{h^{2}}{q} \qquad q = \frac{h^{2}}{p}$$

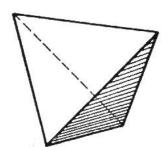
Die Formel des Heron.

$$F = \sqrt{s \cdot (s-a) \cdot (s-b) \cdot (s-c)}$$
$$s = \frac{U}{2} = \frac{a+b+c}{2}$$

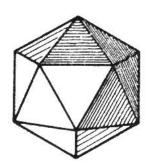
Reguläre Polyeder.

Tetraeder.

4 gleichseitige Dreieckflächen.

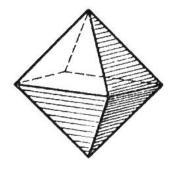


<u>lkosaeder.</u>
20 gleichseitige Dreieckflächen.



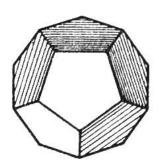
Oktaeder.

8 gleichseitige Dreieckflöchen.



Dodekaeder.

12 regelmässige Fünfeckflächen.



H. Althous - E. Hug