Zeitschrift: Pestalozzi-Kalender

Herausgeber: Pro Juventute

Band: 21 (1928) **Heft:** [2]: Schüler

Rubrik: Von der Beobachtung zur Erfindung

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

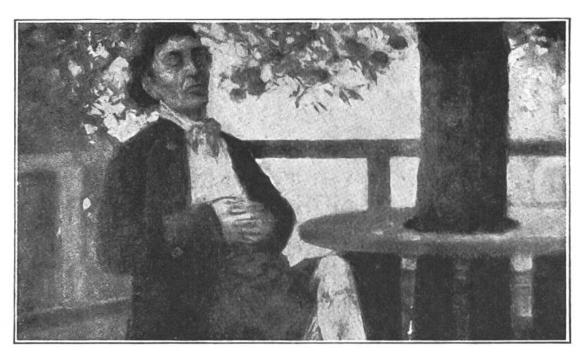
Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

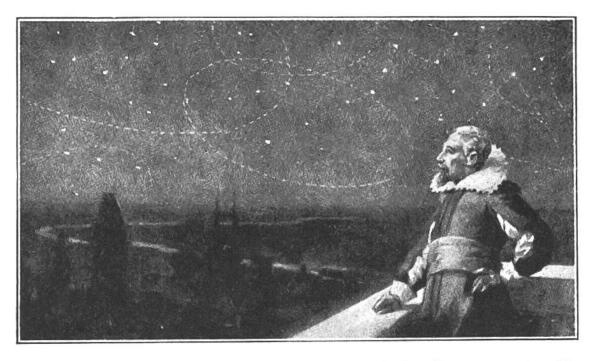
Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 25.10.2025


ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

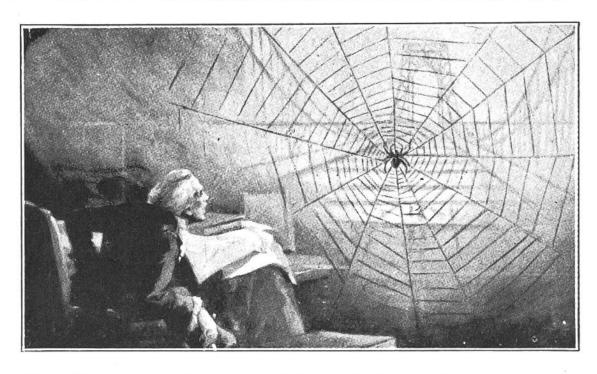
James Watt beobachtet als Knabe den Dampf des Teekessels.


Don der Beobachtung zur Erfindung.

Ist es nicht das Ideal eines jeden Gelehrten, das Resultat seiner Sorschungen in einer für die Allgemeinheit verwert= baren Erfindung dauernd zu erhalten? Doch gar manchem, der sich zeitlebens mit der vollen Energie seines hervor= ragenden Geistes der Lösung wichtiger Fragen widmete. ward es nicht vergönnt, seine Arbeit öffentlich anerkannt zu sehen. Man spricht oft von "zufälligen" Erfindungen, die ihren Urhebern Ruhm, Reichtum und beneidenswerte Stellungen eingebracht hätten. Gewiß gibt es auch solche; doch bei genauer Prüfung der Umstände zeigt sich, daß diese verhältnismäßig selten sind. Diel häufiger ist die Erfindung der logische Abschluß des lange Gesuchten. Man studiert erst den gegenwärtigen Stand der Dinge und baut auf die von unsern Dorgängern überlieferten Resultate auf. Diele Erfindungen aber beruhen auf einer peinlich genauen Beobachtung scheinbar unbedeutender Naturerscheinungen.

Dem unter einem Baume schlafenden englischen Gelehrten Newton fiel ein Apfel auf den Kopf. Don dem fallenden Körper schloß er auf die Bewegung der Sterne.

Anknüpfend an sie gelingt es, allgemein gültige Geseke aufzustellen und diese praktisch verwendbar zu machen. So hat der Engländer James Watt schon als Knabe die Kraft des Wasserdampfes bemerkt, als er sah, daß dieser imstande war, den metallenen Deckel des Teekessels empor= zustoßen. Später konstruierte er bekanntlich nach dem= selben Prinzip die Dampfmaschine. Desgleichen erkannte der Franzose Denis Papin die Kraft des Dampfes zuerst an einem dreibeinigen Kupferkessel, dessen schwerer Dedel über dem kochenden Wasser tanzte. Auch er machte sich um die Dampfmaschine sehr verdient. Das Wichtigste außer genauer Beobachtung ist also ein gewisses Voraussehen der Derwendungsmöglichkeit, ein logisches Überdenken des Beobachteten. Dieser weitsichtige "Erfindungsgeist" er= möglicht erst die wirkliche Anwendung des Gelernten. Jeder Erfinder ist mit einer gewissen Phantasiegabe ausgerüstet, welche ihn oft auf die verschiedensten Bahnen lenkt. bildet sich eine Erklärung des Erlebten und schließt eine Nukanwendung an. häufig wird diese erste hypothese (Erklärungsweise) von nachfolgenden Sorschern umgestoßen. Immerhin ist aber der Dersuch einer Erklärung noch un= bekannter Erscheinungen wertvoll, denn er regt zu weiterem Studium der Entdedung an.


"Die Sterne gehorchen mir, ich habe sie in Ketten gelegt", sagte Kepler, nachdem er ihre Caufbahnen berechnet hatte.

Der berühmte englische Physiker Newton war einst unter einem Apfelbaum eingeschlafen, als ihn eine herabfallende Frucht auf den Kopf traf. Dieses eigentlich belanglose Erzeignis gab dem Gelehrten einen genügenden "Anstoß", um ihn die Regeln der Planetenbewegungen und der frei fallenden Körper studieren zu lassen. In der Tat stellte er dann nach 17 Jahren Studiums das fundamentale Gesetz der Schwere auf. Auch Galilei soll auf das Schwingungsgesetz (Pendel) durch das Schwanken eines Kirchenlüsters gestommen sein. Wie viele Tausende mochten wohl schon vor ihm dieselbe Beobachtung gemacht haben, ohne zwar dabei etwas zu denken? Sür Galilei dagegen bedeutete dies die Bestätigung der kühnen Erklärungsweise des Kopernikus: Die Erde muß sich drehen!

Die phantastische Einbildungskraft teilen die Erfinder und Entdecker mit den Künstlern und Dichtern. Kolumbus hatte es sich in den Kopf gesetzt, die Erde sei rund und man müsse demnach auch nach Indien kommen, ohne um Afrika und das Kap der Guten Hoffnung zu fahren. Wirklich wäre ihm dies gelungen, hätte ihm nicht Amerika

den Weg versperrt.

Der Astronom huyghens war durch verschiedene unerklärliche Ansichten des Saturn verwirrt worden und stellte

Die Idee zum Baue von hängebrücken tam dem engslischen Ingenieur Brown beim Betrachten und beim Prüfen der Tragfähigteit eines Spinnennehes.

die Theorie des Saturnringes auf. Erst viel später konnte man mit dem Teleskop nachweisen, daß Huyghens das Richtige getroffen hatte. Kepler ließ sich von den Ideen Tychos de Brahé leiten, welcher einige Planeten in wechselnden Phasen (Erscheinungsformen) beobachtete, und fand eine genügende Erklärung dieser Erscheinungen mit der Annahme, die Planeten bewegten sich in Ellipsen um ihre Leitgestirne. Damit kam er auf die Gesetze der Proportionalität (Verhältnismäßigkeit) von Zeit und Kraft einerseits und von Zeit und Entsernung anderseits. Newton konnte mittelst dieser Gesetze wieder die Richtigkeit der Keplerschen Hypothese (Erklärungsweise) der elliptischen Bahnen der Vlaneten nachweisen.

Es ist begreiflich, daß sich die Gelehrten oft so sehr in ihr Sachstudium vertiefen, daß sie beständig darin leben. Die sprichwörtlich gewordene Zerstreutheit der Professoren ist also ein Zeichen ernsten, unablässigen Denkens. Man erzählt, daß der berühmte Physiker Ampère eines Tages mitten auf der Straße stehen blieb, eine Kreide aus der Tasche zog und auf der Rückseite eines schwarzgemalten Siakers seine Berechnungen elektrischer Ströme zu entwerfen begann. Plößlich fuhr seine schwarze Tasel von dannen; der Gelehrte

Sranklin machte während eines Gewitters Versuche mit einem Papierdrachen. Eine plöglich in seinen händen versspürte elektrische Entladung brachte ihn auf die Idee des Bligableiters.

aber rannte aufgeregt seinen Sormeln nach. Dor kurzem erst stellte eine uns bekannte Leuchte der Wissenschaft des Abends statt der Stiefel ein Paar Manschetten vor die Türe — zum

Wichsen!

Ein Forscher wird sich nicht mit der Entdeckung bisher unbestannter Probleme begnügen, sondern ihre Ursachen zu ersgründen suchen. So fand Archimedes das nach ihm benannte "Prinzip" von der Gewichtsverminderung fester Körper in Slüssigkeiten (spezifisches Gewicht), als er in einer vollen Badewanne lag und sein Körpergewicht scheinbar verminsdert wurde. Montgolsier sah einen über dem Kaminseuer zum Trocknen aufgehängten Frauenrock sich aufblähen und schweben. Die Hebekraft der warmen Luft verwendete er sodann praktisch und bildete den ersten Ballon.

Der Erfinder befaßt sich also nicht nur mit der Kontrolle und dem Ausbau des Erlebten, sondern er sucht nach Analogien, nach Dergleichbarem aus anderen Gebieten. Auch hierin handelt er wie der Künstler und Dichter. Als der Engländer Brown zwischen zwei hecken ein mächtiges Spinnennet sah und die erstaunliche Sestigkeit der feinen Säden und ihr wunderbares Gefüge prüfte, erwachte in ihm die Idee, auf diesselbe Weise Brücken über weite Täler und tiefe Slüsse zu

spannen. Er war durch seine phantastische Einbildungstraft zur Konstruktion der hängebrücke geführt worden.

Franklin versuchte während eines Gewitters einen Draschen und hielt mit beiden händen dessen Schnur. In dem Augenblick, als ein Blitz die Gewitterwolke entlud, glich sich ein Teil der Elektrizität durch die Drachenschnur aus und Sranklin erhielt einen Schlag, so daß er die Schnur erschreckt fahren ließ. Dieses Erlebnis bewog ihn, sich dem Studium der mysteriösen Elektrizität zu widmen. Seine späteren Ers

folge sind weltbekannt.

Dasteur, vielfach als größter Mann des 19. Jahrhunderts be= zeichnet, untersuchte Wasser. Unter dem Mikroskope sah er die Batterien darin wimmeln. Allgemein glaubte man, daß diese winzigen Wesen sich plöglich von selbst bilden könn= In der Tat zeigte es sich, daß Wasser, obschon man durch Kochen alle Batterien darin getötet hatte, schon nach gang furger Zeit denselben Anblid wie zuvor bot: neue Batterien wimmelten darin. Pasteur aber überlegte, daß in der Natur alle Wesen sich durch Eier oder Samen fortpflanzen. Konnten denn diese winzigen Wesen allein der allgemeinen Regel zum Trot sich frei vermehren? Wo stedten die Keime dieser Mikroben? Pasteur nahm eine hupothese zu hilfe: die lebensfähigen Keime konnten aus der Luft hereinfallen. Seine Dermutung bestätigte sich; denn wenn er das von le= benden Batterien gereinigte Wasser nach dem Auskochen sofort hermetisch verschloß, so blieb es dauernd unbelebt. Alle angeführten Beispiele zeigen uns, daß zum Erfinden mehr gehört als Zufall und Glück. Beobachte dir unbekannte Dorgänge genau, überlege, vergleiche und halte deine Phan= tasie nicht zurück. Sie kann dich unverhofft aus winzigen Anfängen zu großen Resultaten führen.

