Zeitschrift: Pestalozzi-Kalender

Herausgeber: Pro Juventute

Band: 5 (1912)

Rubrik: Algebra ; Quadrate und Kuben

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 25.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Algebraische Formeln und Definitionen.

b+b+b+b=4b, aber $b \cdot b \cdot b \cdot b=b^4$

Im 1. Fall ist die Zahl 4 Koeffizient, da sie die gleichen Addenden zählt, im 2. Fall Exponent, da sie die gleichen Faktoren zählt.

$$\underline{+} ab : + a = \underline{+} b$$
 $\underline{+} ab : -a = \overline{+} b$

I. Proportionen. ab: a = b, ebenso bc: c = b, folglich ab: a = bc: c

Durch Gleichstellung zweier dem Werte nach gleicher Divisionen, Brüche oder Verhältnisse entsteht eine geometrische Proportion.

a: b = c: d oder
$$\frac{a}{b} = \frac{c}{d}$$
 oder $\frac{ad}{bd} = \frac{bc}{bd}$, folglich a · d = b · c

Das Produkt der äussern Glieder (I. und IV. Glied) = dem Produkt der innern Glieder (II. und III. Glied).

folglich
$$a = \frac{b \cdot c}{d}$$
; $b = \frac{a \cdot d}{c}$; $c = \frac{a \cdot d}{b}$ u. $d = \frac{b \cdot c}{a}$

Ist a \geqslant b, so muss auch c \geqslant d sein.

II. a" = b. Potenzieren heisst eine Zahl (a) so viel mal als Faktor setzen, als der Exponent (n) Einheiten hat.

$$(ab)^3 = ab \cdot ab \cdot ab = a \cdot a \cdot a \cdot b \cdot b \cdot b = a^3 b^3;$$

$$(ab)^{3} = ab \cdot ab \cdot ab = a \cdot a \cdot a \cdot b \cdot b \cdot b = a^{3}b^{3};$$

$$\left(\frac{a}{b}\right)^{3} = \frac{a}{b} \cdot \frac{a}{b} \cdot \frac{a}{b} = \frac{a^{3}}{b^{3}};$$

$$\left(\frac{a}{b}\right)^{n} \cdot \left(\frac{a}{b}\right)^{n} \cdot \left(\frac{b}{a}\right)^{n} = \left(\frac{a}{b} \cdot \frac{b}{a}\right)^{n} = 1^{n} = 1$$

$$a^{3} \cdot a^{2} = a \cdot a \cdot a \times a \cdot a = a^{5};$$

$$(a^{2})^{3} = a^{2} \cdot a^{2} \cdot a^{2} = a^{6};$$

$$(a^{m})^{n} = a^{m}$$

$$a^{6} : a^{4} = \frac{a \cdot a \cdot a \cdot a \cdot a \cdot a \cdot a}{a \cdot a \cdot a \cdot a \cdot a} = a^{2};$$

$$a^{m} : a^{n} = a^{m} - a^{m}$$

$$a^{m} : a^{n} = a^{m} - a^{m}$$

$$a^6: a^4 = \frac{a \cdot a \cdot a \cdot a \cdot a \cdot a \cdot a}{a \cdot a \cdot a \cdot a \cdot a} = a^2$$
; $a^m: a^n = a^{m-1}$

Die o'r Potenz jeder endlichen Zahl = 1.

$$a^{m}: a^{m+p} = a^{m-(m+p)} = a^{-p} = \frac{1}{a^{p}} = \left(\frac{1}{a}\right)^{+p}$$

$$\left(\frac{a}{b}\right)^{-n} = \frac{1}{\left(\frac{a}{b}\right)^{n}} = \frac{b^{n}}{a^{n}} = \left(\frac{b}{a}\right)^{n}$$

1)
$$(a + b)^2 = a^2 + 2ab + b^2$$

3) $(a + b)(a - b) = a^2 - b^2$
5) $(a + b) = a^3 + 3a^2b + 3ab^2 + b^3$
4) $(a - b)^2 = a^2 + 2ab + b^2$
2) $a^2 - b^2 = (a + b)(a - b)$

III. V a = b. Radizieren heisst eine Zahl in soviel gleiche Faktoren zerlegen, als der Wurzelexponent Einheiten hat.

$$\sqrt[n]{a^n} = a$$
 ; $\sqrt[3]{a} = a$; $\sqrt[2n]{a^{2mn}} - a^m$

Wie man Potenzen potenziert, indem man ihre Exponenten multipliziert, so werden Potenzen radiziert, indem man den Exponenten des Radikands durch den Wurzelexponent dividiert.

$$\sqrt{ab} = \sqrt[n]{a} \cdot \sqrt{b}$$
 ; $\sqrt[n]{p} \cdot \sqrt[n]{q} = \sqrt[n]{pq}$

$$a \sqrt[n]{a^{2}} = \sqrt[n]{a^{x}} \cdot \sqrt[n]{a^{2}} = \sqrt[n]{a^{x} \cdot a^{2}} = \sqrt[n]{a^{x} + 2}$$

$$a : \sqrt[n]{a^{2}} = \sqrt[n]{a^{3}} : \sqrt[n]{a^{2}} = \sqrt[n]{a^{3}} : a^{2} = \sqrt[n]{a}$$

$$\sqrt[mn]{a} = \sqrt[m]{\sqrt[n]{a}} \quad ; \qquad \sqrt[n]{a\sqrt{a}} = \sqrt[n]{\sqrt[n]{a^{3}}} = \sqrt[n]{a}$$

$$\sqrt[n]{a^{m}} = a^{m} \quad ; \qquad \sqrt[m]{a^{p}} : \sqrt[n]{a^{q}} = \sqrt[mn]{a^{pn}} : \sqrt[mn]{a^{qm}} = \sqrt[mn]{a^{pn-qm}} = a^{\frac{np-mq}{mn}}$$

$$\sqrt[m]{a} = \sqrt[mn]{a} = a^{\frac{1}{mn}} \quad ; \qquad 4^{-\frac{3}{2}} = \sqrt[n]{4^{-3}} = \sqrt[n]{\frac{1}{4^{3}}} = \sqrt[n]{\frac{1}{2^{6}}} = \frac{1}{2^{3}} = \frac{1}{8}$$

$$\sqrt[n]{a} = \sqrt[n-1]{a} = \sqrt[n-1]{a} = i \sqrt[n]{a} \quad \text{(imaginär)}$$

$$\sqrt[n]{a} = i ; (\sqrt[n-1]{a})^{2} = i^{2} ; (\sqrt[n-1]{a})^{3} = i^{2} . i = -i ; (\sqrt[n-1]{a})^{4} = i^{2} . i^{2} = +1$$

IV. log c = b, wenn a = c. Logarithmieren heisst aus Numerus c und Basis a den Logarithmus b, d. h. die Zahl suchen, mit welcher die Basis potenziert werden muss, um als Potenz den Numerus zu geben.

$$c = a^b$$
 ; $a = \sqrt[b]{c}$; $b = \log c$.

Im Gebrauche sind: 1) das gemeine oder Briggische Logarithmensystem mit der Basis a = 10.

2) das natürliche System mit der irrationalen Basis e = 2,718281828459...

$$\log_{10} a = 1; \log_{10} 1 = 0, \text{ denn } a^0 = 1.$$

1) $\log (xy) = \log x + \log y$;

2) $\log \frac{x}{y} = \log x - \log y$;

3) $\log x^m = m \log x$;

4) $\log \sqrt[n]{x} = \frac{1}{m} \log x$;

5) $\log x = \frac{\log x}{\log y}$;

6) $\frac{\log b}{a} = \frac{\log b}{d};$ $\log c = \log c$

7)
$$\log \frac{1}{a^p} = \log a^{-p} = -p \log a$$
.

V. Gleichungen sind Gleichstellungen von Werten, in denen Unbekannte vorkommen entweder in der ersten, zweiten oder dritten Potenz, und je nachdem hat man eine Gleichung ersten, zweiten oder dritten Grades.

Gleichungen ersten Grades.

a) mit einer Unbekannten:

$$b + x = c \text{ ergibt } x = c - b$$
 $x^n = c \text{ ergibt } x = \sqrt[n]{c}$

b) Mit mehreren Unbekannten:

$$ax + by = c \text{ und } dx - ey = f \text{ ergibt}$$

a) durch die Komparationsmethode:

$$\frac{c - by}{a} = \frac{f + ey}{d}$$

β) durch die Substitutionsmethode:

$$a\left(\frac{f + ey}{d}\right) + by = c$$

y) durch die Koeffizientenmethode:

$$adx + bdy = cd$$

$$adx - aey = af$$

$$bdy + aey = cd - af$$

$$y = \frac{cd - af}{bd + ae}; x = \frac{bf + bc}{ae + bd}$$

Gleichungen zweiten Grades oder quadratische Gleichungen.

a) Reinquadratische Gleichungen:

$$bx^2 = a \text{ folgl. } x = \sqrt{\frac{a}{b}}$$

$$Aus \frac{ax}{b} + x = \frac{c}{x} \text{ folgt } x = \pm \sqrt{\frac{bc}{a+b}}$$

b) Gemischtquadratische Gleichungen: I. Aus $x^2 + px + q = 0$ folgt:

$$x_1 = \frac{1}{2} + \sqrt{\frac{p^2}{4} - q}$$
 ; $x_2 = \frac{1}{2} + \sqrt{\frac{p^2}{4} - q}$

Ist $q < \frac{p^s}{4}$, so erhält man zwei reelle Werte;

Ist $q = \frac{p^a}{4}$, so erhält man einen reellen Wert.

Ist $q > \frac{p^*}{4}$, so erhält man keinen reellen, sondern zwei imaginäre

II. Wäre die Gleichung aber: $x^2 + px - q = 0$, so ergäbe sich für

$$x_1=rac{p}{q}+\sqrt{rac{p^2}{4}+q}$$
 und für $x_2=rac{p}{q}-\sqrt{rac{p^2}{4}+q}$, welche

Werte stets reell sind.

Gleichungen dritten Grades oder kubische Gleichungen.

a) Reinkubische Gleichungen:

$$x^3 = a$$
, folglich $x = \sqrt[3]{a}$

b) Gemischtkubische Gleichungen:

 $x^3 + ax^2 + bx + c = 0$. Setzt man für $x = y - \frac{a}{3}$, so erhält man die reduzierte Form: $y^3 + py = q$.

 α) Cardanische Formel. Setzt man y = u + v, so ist

$$u = \sqrt{\frac{q}{2} + \sqrt{\frac{q^2}{4} + \frac{p^3}{27}}} \text{ und } v = \sqrt{\frac{q}{2} - \sqrt{\frac{q^2}{4} + \frac{p^3}{27}}} \text{ dann ist:}$$

$$y \text{ oder } y_1 = u + v$$

$$y_2 = -\frac{u + v}{2} + \frac{u - v}{2} \sqrt{-3}$$

$$y_3 = -\frac{u + v}{2} - \frac{u - v}{2} \sqrt{-3}$$

y ist reell, wenn p positiv ist; wenn p negativ ist, so ist y nur dann reell, wenn

$$\frac{p^3}{27} \leq \frac{q^2}{4}.$$

 β) Casus irreducibilis. Ist aber $\frac{p^3}{27} > \frac{q^2}{4}$, so setzt man $y = z \sin \varphi$, und dann ist y oder $y_1 = z \sin \varphi$; $y_2 = + z \sin (60 - \varphi)$ und $y_3 = -z \sin (60 + \varphi)$.

VI. Zinsformeln. (Kap. = k; Proz. = p: Zins = Z: Zeit = t für Jahre, Monate oder Tage).

$$\alpha$$
) Für 1 Jahr ist $Z = \frac{kp}{100}$; $k = \frac{100 Z}{p}$; $p = \frac{100 Z}{k}$

Ist die Zeit (t) in Monaten oder Tagen ausgedrückt, so ist die konstante Zahl nicht 100, sondern $12 \cdot 100$ oder $360 \cdot 100$, also $Z = \frac{kp}{1200}$ oder $\frac{kp}{36\,000}$

 β) Für mehr oder weniger als ein Jahr ist

$$Z = \frac{\text{kpt}}{100} = \frac{\text{kpt}}{1200} = \frac{\text{kpt}}{36\,000}$$

$$k = \frac{100\,Z}{\text{pt}} = \frac{1200\,Z}{\text{pt}} = \frac{36\,000\,Z}{\text{pt}}$$

$$p = \frac{100\,Z}{\text{kt}} = \frac{1200\,Z}{\text{kt}} = \frac{36\,000\,Z}{\text{kt}}$$

$$t = \frac{100\,Z}{\text{kp}} = \frac{1200\,Z}{\text{kp}} = \frac{36\,000\,Z}{\text{kp}}$$

- VII. Progressionen oder Reihen. Haben die aufeinanderfolgenden Grössen einer Reihe gleiche Differenzen, so sind es arithmetische, haben sie gleiche Quotienten, so sind es geometrische Progressionen.
- a) Arithmetische: Bezeichnet man das Anfangsglied mit a, die Differenz mit d, die Zahl der Glieder mit n, das letzte oder n'e Glied mit z, die Summe mit s, so ist

1)
$$z = a + (n-1) d$$

2) $s = \frac{n(a+z)}{2} = an + \frac{n(n-1) d}{2} = n(a + \frac{(n-1) d}{2})$

 β) Geometrische. Bezeichnet man wieder das erste Glied mit a, das n^{te} Glied mit z, den Quotienten mit q, die Anzahl mit n und die Summe mit s, so erhält man:

1)
$$z = a q^{n-1}$$
 2) $s = \frac{zq - a}{q - 1} = \frac{a (q^{n-1})}{q - 1}$
Ist $q < 1$ und $n = \infty$, so wird $s = \frac{a}{1 - q}$.

VIII. Zinseszins- und Rentenrechnung. α) Bezeichnet man das um Zins und Zinseszins angewachsene Kapital (k) nach 1, 2 n Jahren mit k_1 , k_1 k_n und $\left(1 + \frac{p}{100}\right)$ mit q, so ist $k_1 = kq$, $k_2 = kq^2$ und $k_n = kq^3$.

3)
$$q^n = \frac{k_n}{k}$$
, folglich $q \sqrt[n]{\frac{k_n}{k}}$
2) $k = \frac{k_n}{q^n}$
4) $n = \frac{\log k_n - \log k}{\log q}$

β) Mit Rente (r) bezeichnet man die Summe, um die das Kapital ausser den Zinsen jedes Jahr vermehrt oder vermindert wird. — Werden n Jahre nacheinander am Ende jeden Jahres r Fr. an Zinseszins zugelegt oder ausbezahlt, so vermehrt oder vermindert sich der Wert jedes Jahr um rqⁿ⁻¹, rqⁿ⁻², rq, r, welche geometrische Progression ergibt:

 $s = \frac{r(q^n - 1)}{q - 1}, \text{ und der Kapitalwert ist am Ende des } n^{10} \text{ Jahres} = kq^n + \frac{r(q^n - 1)}{q - 1}$

Wird aber r am Anfang jedes neuen Jahres ein = oder ausbezahlt, so ergibt sich für s = $\frac{\operatorname{rp}(q^n-1)}{q-1}$ und der Kapitalwert ist am Anfang des neuen Jahres = $kq^{n-1} + \frac{r(q^n-1)}{q-1}$

Das Kapital ist aufgezehrt, wenn $kq^n - \frac{r(q^n-1)}{q-1} = 0$ und wenn $kq^{n-1} - \frac{r(q^n-1)}{q-1} = 0$ oder mit q erweitert $kq^n - \frac{rq(q^n-1)}{q-1} = 0$

Rentengleichung: $kq^{n} = \frac{r (q^{n} - 1)}{q - 1} \left(\text{oder } kq^{n} = \frac{rq [q^{n} - 1]}{q - 1} \right)$ folglich

1) $k = \frac{r (q^{n} - 1)}{q^{n} (q - 1)}$ 2) $r = \frac{kq^{n} (q - 1)}{q^{n} - 1}$ 3) $n = \frac{\log r - \log [r - k (q - 1)]}{\log q}$

Knacknuss für junge Mathematiker.

Jemand kaufte Truthühner, Hühner und Sperlinge, im ganzen 100 Stück für 100 Fr., die Truthenne zu 5 Fr., das Huhn zu 1 Fr. und den Sperling zu 5 Rp. Wie viele Stück von jeder Sorte waren es? Wer stellt die Gleichung auf und löst sie?

Quadrate und Kuben der Zahlen 1-100.

Zahl	Quadrat	Kubus	Zahl	Quadrat	Kubus	Zahl	Quadrat	Kubus
1	1	1	35	1225	42875	69	4761	328 509
2	4	8	36	1296	46 656	70	4900	343 000
3	9	27	37	1369	50653	71	5041	357 91:
4	16	64	38	1444	54872	72	5184	378 24
5	25	125	39	1521	59319	73	5329	389 01
6	36	216	40	1600	64 000	74	5476	405 224
7	49	343	41	1681	68 921	75	5625	421 875
8	64	512	42	1764	74 088	76	5776	438 976
9	81	729	43	1849	79 507	77	5929	456 533
10	100	1 000	44	1936	85 184	78	6084	474 552
11	121	1 331	45	2025	91 125	79	6241	493 039
12	144	1728	46	2116	97336	80	6400	512 000
13	169	2197	47	2209	103823	81	6561	531 441
14	196	2744	48	2304	110592	82	6724	551 368
15	225	3375	49	2401	117649	83	6889	571 787
16	256	4096	50	2500	125 000	84	7056	592 704
17	289	4913	51	2601	132651	85	7225	614 125
18	324	5832	52	2704	140 608	86	7396	636 056
19	361	6859	53	2809	148877	87	7569	658 508
20	400	8 000	54	2916	157 464	88	7744	681 472
21	441	9261	55	3025	166 375	89	7921	704 969
22	484	10648	56	3136	175616	90	8100	729 000
28	529	12167	57	3249	185 193	91	8281	753 571
24	576	13824	58	3364	195112	92	8464	778 688
25	625	15 625	59	3481	205 379	93	8649	804 857
26	676	17576	60	3600	216 000	94	8836	880 584
27	729	19683	61	3721	226 981	95	9025	857 375
28	784	21 952	62	3844	238 328	96	9216	884 786
29	841	24 389	63	3969	250047	97	9409	912 678
30	900	27 000	64	4096	262144	98	9604	941 192
31	961	29 791	65	4225	274 625	99	9801	970 299
82	1024	32768	66	4356	287 496	100	10000	1000 000
33	1089	35 937	67	4489	300 763			<i>(</i> 1)
84	1156	89 304	68	4624	814432]	

Reziproke Werte, Quadratwurzeln, Kubikwurzeln und Logarithmen der ganzen Zahlen von 1—10.

Zahl	Reziproke Werte	Quadratwurzel	Kubikwurzel	Briggscher Logarithmus
1	1,000 0000	1,000 0000	1,000 0000	0,000 0000
2	0,500 0000	1,414 2136	1,259 9210	0,301 0300
2 3	0,383 3333	1,782 0508	1,442 2496	0,477 1218
4	0,250 0000	2,000 0000	1,587 4011	0,602 0600
5	0,200 0000	2,236 0680	1,709 9759	0,698 9700
6	0,166 6667	2,449 4897	1,817 1206	0,778 1513
7	0,142 8571	2,645 7513	1,912 9312	0,845 0980
8	0,125 0000	2,828 4271	2,000 0000	0,903 0900
9	0,111 1111	3,000 0000	2,080 0838	0,954 2425
10	0,100 0000	3,162 2777	2,154 4847	1,000 0000