Zeitschrift: Pionier : Zeitschrift für die Übermittlungstruppen

Herausgeber: Eidg. Verband der Übermittlungstruppen; Vereinigung Schweiz. Feld-

Telegraphen-Offiziere und -Unteroffiziere

Band: 34 (1961)

Heft: 10

Artikel: Das Feuerleitgerät Super-Fledermaus

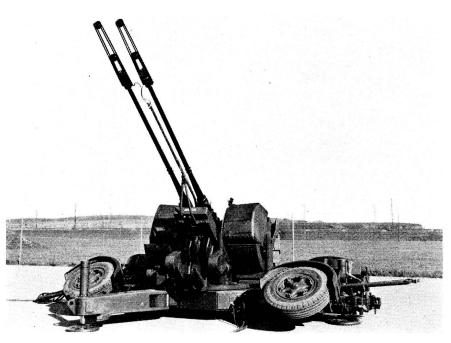
Autor: [s.n.]

DOI: https://doi.org/10.5169/seals-563860

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation


L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 10.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Das Geschütz in Feuerstellung

der Geschosse abhängt. So kann z. B. bei einer v₀-Differenz von nur 1% die Treffwahrscheinlichkeit um 30 bis 40% reduziert werden. Da sich die Mündungsgeschwindigkeit der Geschosse innerhalb kurzer Zeit ändern kann (Rohrabnutzung, Temperaturschwankungen), ist eine häufige Kontrolle der v₀-Werte während eines Einsatzes von grösster Wichtigkeit.

Diese Kontrolle kann bei der 35-mm-Zwillings-Batterie mit Hilfe der eingebauten, automatischen v_0 -Messanlagen laufend durchgeführt werden. Sie erfolgt im Seriefeuer während des feldmässigen Einsatzes, und zwar individuell für sämtliche Rohre der ganzen Batterie.

Die richtige Abstimmung der ballistischen Streuung der Kanone mit dem Zielfehler der Feuerleit- und Richtaggregate ist bei der Konzeption eines Waffensystems von ausserordentlicher Wichtigkeit. Der ideale Zustand eines vollkommen fehlerfreien Richtens gepaart mit einer hundertprozentigen Präzision der Kanone ist in der Praxis nicht erreichbar. Man wird sich stets mit den vorhandenen Toleranzen und Ungenauigkeiten abfinden müssen.

Es zeigt sich nun, dass optimale Treffaussichten nur erwartet werden können, wenn Zielfehler und Waffenstreuung zusammenpassen, d. h. wenn für einen gegebenen Zielfehler die ballistische Streuung der Kanone weder zu klein noch zu gross ist. Bei der 35-mm-Batterie ist es dank der ausgezeichneten Präzision des 35-mm- Geschützes und dank der engen Zusammenarbeit der beteiligten Firmen gelungen, eine praktisch ideale Abstimmung von Zielfehlern des Feuerleitgerätes und Streuung der Kanone zu erreichen, was sich in einer optimalen Treffwahrscheinlichkeit pro Sekunde oder pro verschossene Munition auswirkt. Damit ergeben sich aber auch die minimalsten Munitionskosten pro Treffer, d. h. pro Abschuss.

Mit einem derart gut abgestimmten Waffensystem ist naturgemäss die Feuerdichte sehr gross, da sich die Mehrzahl aller abgefeuerten Schüsse auf einen verhältnismässig engen Raum unmittelbar um das Ziel herum verteilt.

Die hohe Kadenz moderner Kanonen bringt das Problem der Munitionszufuhr mit sich. Bei einer langsam schiessenden Waffe gelingt es noch, die Munition so schnell von Hand nachzuladen, wie sie verschossen wird. Wird die Kadenz höher, dann muss man einen grösseren Vorrat feuerbereit am Geschütz halten, aus dem die Munition zwangsläufig den Kanonen zugeführt wird. Das allein genügt jedoch nicht, denn wenn dieser Vorrat erschöpft ist, wird eine längere Feuerpause notwendig, um ihn wieder zu ergänzen. Derartige Zwangspausen sind aber störend und auch gefährlich, weil das Geschütz während dieser Zeit nicht einsatzbereit

Von einem modernen Flab-Geschütz muss deshalb gefordert werden, dass der feuerbereite Munitionsvorrat jederzeit - also auch während des Schiessens - und bei jeder beliebigen Waffenstellung nachgeladen werden kann. Für das 35-mm-Zwillings-Flabgeschütz ist eine derartige automatische Förderanlage entwickelt worden. Im Vorratsbehälter an jeder Kanone befinden sich 56 Schuss feuerbereit. Aus einem Nachladebehälter, der weitere 63 Schuss je Waffe enthält, können Ladestreifen mit je 7 Schuss kontinuierlich durch den Bedienungsmann nachgefüllt werden. Auf diese Weise sind pro Kanone 119, also für das ganze Geschütz 238 Schuss verfügbar, die im Einsatz praktisch pausenlos verschossen werden können.

Das Feuerleitgerät Super-Fledermaus

Eine wesentliche taktische Forderung bei der Fliegerabwehr ist die frühzeitige Erfassung des zu bekämpfenden Zieles. Das Überraschungsmoment des Angreifers muss nach Möglichkeit ausgeschaltet und die Bekämpfung bereits auf möglichst grosse Distanz aufgenommen werden. Eine wichtige Hilfe sind dabei Frühwarn-Systeme, die den Luftraum dauernd überwachen und die Fliegerabwehrtruppe über den Anflug von feindlichen Flugzeugen frühzeitig orientieren.

Für die Fliegerabwehrbatterie selbst bleibt nun aber trotz dieser Vorwarnung das Problem der frühzeitigen Erfassung des zu bekämpfenden Zieles bestehen, und zwar nicht nur bei Tag und bei besten atmosphärischen Verhältnissen, sondern auch bei unsichtigem Wetter und bei Nacht.

Das radargesteuerte vollautomatische Feuerleitgerät Super-Fledermaus löst dieses Problem mit den modernsten Hilfsmitteln der heutigen Technik. Dank den neuartigen Hilfsmitteln ist das Feuerleitgerät Super-Fledermaus in der Lage, Flugziele bei Tag und Nacht bis zu einer Maximaldistanz von 50 km zu erkennen und ab 40 km automatisch zu verfolgen. Ein optisches Richtgerät, mit dem Radargerät kom-

biniert, gestattet auch ein rasches Erfassen und Verfolgen von Zielen auf kürzere Distanz.

Hauptfunktionen

Die Hauptfunktionen des vollautomatischen radargesteuerten Feuerleitgerätes Super-Fledermaus sind die folgenden:

Radarüberwachung gewisser Hauptabschnitte;

Verfolgung des Zieles mit Radar oder optisch:

automatische und laufende Berechnung der genauen Treffpunktelemente.

Auf bau

Das Feuerleitgerät Super-Fledermaus ist als Vierradanhänger ausgeführt und gliedert sich in die folgenden Teilgeräte:

Richtgerät mit Einmannsteuerung, Richtfernrohr und aufgebauter Radarantenne zum Suchen und Verfolgen der Ziele.

Such- und Feuerleitradar AFR 150 mit zwei abstimmbaren Magnetrons (als Ausweichmöglichkeit bei Störsender im Ziel) zum Suchen und Verfolgen des Zieles.

Elektronisches Rechengerät mit Parallax-Korrektur für die individuelle Schiesselementbestimmung für drei Geschützstandorte, Beschleunigungsrechner und individuelle v₀-Korrektur für drei Geschütze.

vo-Messgerät zur individuellen Bestimmung der Geschossanfangsgeschwindigkeit für drei Geschütze (6 Geschützrohre).

Zweiachsiger Transportwagen für den Aufbau der genannten Teilgeräte.

Zieleinweisung

Für die Zieleinweisung und das selbständige Aufsuchen eines Zieles sind beim Feuerleitgerät Super-Fledermaus die folgenden Arbeitsweisen möglich:

Zieleinweisung mit Hilfe eines Zielzuweisungsradars in Seite und Entfernung. Der Radaroperateur schaltet eine Vertikalsuchbewegung der Radarantenne ein, bis das Ziel erfasst ist. Wenn Zielzuweisungsradar und Feuerleitgerät nicht am gleichen Standort aufgestellt sind, werden die übermittelten Zielkoordinaten zuerst in einem Parallaxrechner auf den Standort des Feuerleitgerätes umgerechnet.

Zieleinweisung durch ein optisches Zielzuweisungsgerät in Seiten- und Höhenwinkel. Der Radaroperateur stellt die Entfernung ein.

Selbständige Radar-Einweisung (Suchen) des Feuerleitgerätes durch schnelle, vertikale Suchbewegung der Radarantenne, verbunden mit einer langsamen Seitenbewegung in wählbaren Grenzen (Sektor-Suchen).

Selbständige Radar-Einweisung (Suchen) durch horizontale Suchbewegung, wobei der Höhenwinkel langsam schraubenförmig verändert wird (Rund-Suchen).

Selbständige optische Einweisung durch den optischen Richter mittels Steuerknüppel und Fernrohr. Die Entfernung wird vom Radaroperateur eingestellt.

Zielverfolgung

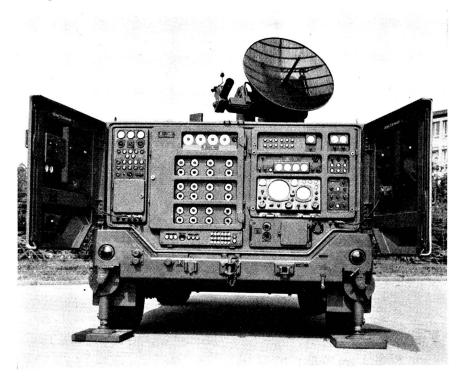
Sobald nach erfolgter Zieleinweisung die Antennenachse des Feuerleitradars auf das Ziel gerichtet und die Distanzmessmarke durch den Radaroperateur auf den Echoimpuls gebracht worden ist, kann das Gerät auf automatisches Verfolgen umgeschaltet werden. Die Fehlerspannungen des Radars werden dann auf Servosysteme geführt, die dafür sorgen, dass die Radarantenne dauernd aufs Ziel gerichtet bleibt, und dass die Entfernung nachgeführt wird.

Insgesamt sind beim Feuerleitgerät Super-Fledermaus vier verschiedene Arten von Zielverfolgung möglich:

Vollautomatische Verfolgung durch den Feuerleitradar.

Optisches Verfolgen in Seiten- und Höhenwinkel durch den Richter auf der Richtplattform. Das Nachführen der Entfernung geschieht automatisch durch den Radar.

Verfolgen durch Rücksteuerung.


Beschiessen des alten Zieles vollautomatisch durch das Rechengerät, während das Richtgerät bereits ein neues Ziel aufsucht.

Die bei der Zielverfolgung erhaltenen Zielkoordinaten (Seitenwinkel, Höhenwinkel und Entfernung) werden durch ein elektrisches Übertragungssystem den Eingangswellen des elektronischen Rechengerätes zugeführt. Dieses berechnet Seiten- und Höhenvorhalt für 3 verschiedene Geschützstandorte, addiert die Vorhaltewerte zu den Eingangswerten und überträgt die neu erhaltenen Werte an die Geschütze (Geschützsteuerung).

Richtgerät

Das Richtgerät befindet sich auf einer drehbaren Plattform im Zentrum des Feuerleitgerätes und ist mittels einer Schleifringsäule elektrisch mit diesem verbunden. Der Antrieb des Richtgerätes in Seiten- und Höhenwinkel er-

Rechengerät mit Radarteil

folgt durch eine Thyratron-Steuerung. Auf der Drehplattform sind die folgenden Teile aufgebaut:

Radarantenne mit Suchmechanismus Sender-Modulator und Empfangsteil des Radargerätes Richtoptik mit umschaltbarer Vergrösserung Steuerknüppel Kontrollpult

Zur Erleichterung der optischen Zielerfassung ist ein Kollimator auf das Fernrohr aufgebaut. Eine Fadenkreuzbeleuchtung erleichtert das Erfassen von Zielen bei Nacht.

Sitz für den optischen Richter

Such- und Feuerleitradar AFR 150

Das Radargerät arbeitet als Mikrowellen-Impuls-Radar. Die ausgesandten Hochfrequenzimpulse werden vom Parabolreflektor der Antenne in einen scharfen Strahl von 4,5° Öffnungswinkel (Halbwertsbreite des rotierenden Strahles) gebündelt. Um diesen Strahl beweglich im Raume zu führen, ist der Reflektor um eine horizontale Achse kippbar. Mittels der drehbaren Plattform kann zudem jeder beliebige Seitenwinkel eingestellt werden.

Wird ein Ziel vom Radarstrahl getroffen, was auf dem Indikatorschirm erkennbar ist, so ermittelt sich aus der Laufzeit der Echoimpulse die Schrägentfernung zum Flugzeug, während die Winkelstellung von Antenne und Plattform den Höhen- bzw. Seitenwinkel des Zieles ergibt. Die so erhaltenen Zielkoordinaten werden mit Hilfe elektrischer Gebersysteme laufend an das elektronische Rechengerät weitergeleite, welches daraus die Richtelemente für die Flabgeschütze errechnet.

Der Sender des AFR-150-Radars ist mit zwei Magnetrons ausgerüstet, so dass bei feindlichen Störeinwirkungen ein wechselweiser Betrieb auf zwei abstimmbaren Frequenzen durchgeführt werden kann.

Dem Radaroperateur stehen für seine Arbeit zwei *Indikatoren* zur Verfügung, nämlich:

der Suchindikator, der automatisch oder von Hand wahlweise auf die PPIoder RHI-Darstellung (Plan Position Indicator/Range Height Indicator) umgeschaltet werden kann. Der Bereich auf diesem Indikator beträgt 50 km. der Entfernungsindikator, der in einer Zweispurenanzeige gleichzeitig den Bereich von 0...40 km (A-Darstellung) und den stark gedehnten Bereich von ± 1 km um die einstellbare Entfernungsmessmarke (R-Darstellung) anzeigt.

Elektronisches Rechengerät

Das elektronische Rechengerät berechnet auf Grund der eingespiesenen Zielkoordinaten die Vorhaltewinkel in Seite und Höhe, addiert diese zu den Eingangswerten und liefert hierauf ohne Zeitverzug die individuellen Schiesselemente für bis zu drei Geschützstellungen, wobei die Tagesunstimmigkeiten, wie Luftgewichtsänderung und Windeinfluss, sowie die Anfangsgeschwindigkeitsänderungen ebenfalls verarbeitet werden. Bei eingeschaltetem Beschleunigungsrechner erlaubt das Rechengerät auch beschleunigte Ziele wirkungsvoll zu bekämpfen (Stechflüge).

v₀-Messanlage Typ 154

Die v₀-Messanlage Type 154 erlaubt die laufende Überwachung der Anfangsgeschwindigkeit der Geschosse für die Rohre einer ganzen Batterie. Diese Überwachung erfolgt im Seriefeuer während des feldmässigen Einsatzes der Batterie. Die aus dieser Messung resultierenden Korrekturwerte werden an den elektronischen Rechnern des Feuerleitgerätes eingestellt.

Die Messung selbst erfolgt mit Hilfe eines elektronischen Zählers, einer Zählfrequenz von 1 MHz und einer Meßstrecke von 50 cm, die auf das Geschützrohr aufgesetzt ist. Die Meßstrecke wird begrenzt durch zwei Meßspulen von 7 cm Durchmesser, wobei die Steuerimpulse für den elektronischen Zähler aus der Induktionsänderung beim Durchgang des Geschosses durch die stromdurchflossenen Meßspulen resultieren. Die Geschosse selbst brauchen für die Durchführung der Messung nicht vormagnetisiert zu werden.

Eine «optische» Radaranlage wurde in den USA entwickelt. Als Sender wird ein Rubin-Maser verwendet, das intensives Licht im roten Bereich mit einer äusserst scharf begrenzten Bündelung abgibt. Ohne Hilfsmittel konnte ein Öffnungswinkel von 0,02° erreicht werden. Als Empfänger dient eine mit einem Teleskop gekoppelte Fernsehkamera.

Für fünfeinhalb Millionen Dollar entsteht in der Nähe des Städtchens Arecibo (Puerto Rico, Süd-Amerika) das grösste Radarteleskop der Welt. Für das Bauvorhaben wurde eine von der Natur geschaffene Mulde, die ringsum von Bergen umgeben ist, als Fundament benutzt. Der Durchmesser des schüsselförmigen Reflektors misst 304 Meter. Um den ganzen Umfang zu umschreiten, würde man bei gutem Schritt mindestens 20 Minuten brauchen. Das Riesenteleskop soll schon dieses Jahr in Betrieb genommen werden.

Auf dem Lägernkamm ragt seit kurzem ein schlanker Betonturm aus den Baumwipfeln, nahe der Hochwacht: eine neue Langdistanz-Radaranlage, die zusammen mit ihrem Gegenstück auf dem Dôle bei Genf den «Flugsicherungsplan Schweiz» für unsere Zivilluftfahrt bilden wird. Der Turm dient als Träger für die rotierende Antenne. Die Hochfrequenzimpulse der Station reichen bis 370 km im Umkreis und bis in eine

Höhe von 20 000 m. Der Flugsicherungsdienst von Radio Schweiz wird die Türme im Auftrag des Eidgenössischen Luftamtes in Betrieb nehmen.

Depuis peu de temps, une tourelle élancée en béton se dresse sur Lägern-Hochwacht, non loin de la ville de Zurich. L'immense écran radar rotatif qui couronne la tourelle indique qu'il s'agit là des nouvelles installations radar qui ont été construites par l'Office fédéral de l'air et qui seront prises en service par les réseaux de «Radio Suisse». Le pendant de cette tourelle se trouve sur la Dôle près de Genève. Ces deux stations à longue distance peuvent repérer des avions dans un rayon de 370 km et jusqu'à une hauteur de 20 000 m, assureront ainsi notre aviation civile.

Eine amerikanische Firma entwickelte ein Mikrowellen-Verstärkersystem äusserst hoher Leistung, das massgeblich zum Gelingen der vor einiger Zeit durchgeführten Versuche beitrug, in deren Verlauf Funksignale empfangen werden konnten, die von der Venus reflektiert wurden. Kern des Verstärkersystems ist das Klystron VA-800C, das eine Ausgangsleistung von 10 Kilowatt bei einer Frequenz von mehr als 2000 Megahertz aufweist. Um störanfällige Verbindungen zwischen Verstärker und Antenne zu vermeiden, sind das Klystron und die zugehörigen Bauteile im Gerüst des Reflektors eingebaut, der in der Mohave-Wüste in Kalifornien errichtet wurde. Die im Auftrag der NASA von Wissenschaftlern des Jet Propulsion Laboratory durchgeführten Versuche verliefen insofern besonders erfolgreich, als die von der Venus reflektierten Funksignale zum ersten Mal mit einer solchen Klarheit empfangen wurden, dass keine mühevolle und zeitraubende Analyse erforderlich war. Die wenigen gleiche Ausrüstung diente vor Monaten zur Übertragung von Funksignalen zwischen Kalifornien und Australien, wobei der Mond als Reflektor diente.