Zeitschrift: Physiotherapeut : Zeitschrift des Schweizerischen

Physiotherapeutenverbandes = Physiothérapeute : bulletin de la Fédération Suisse des Physiothérapeutes = Fisioterapista : bollettino

della Federazione Svizzera dei Fisioterapisti

Herausgeber: Schweizerischer Physiotherapeuten-Verband

Band: 25 (1989)

Heft: 11

Artikel: Gelenkstabilität und arthrokinetische Reaktionen

Autor: Kandel, Michel

DOI: https://doi.org/10.5169/seals-930025

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 12.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Gelenkstabilität und arthrokinetische Reaktionen

Michel Kandel

Dieser Artikel handelt von der Stabilität und Instabilität des Kniegelenkes. Die Folgen der Instabilität werden auf systematische Weise besprochen und das physiotherapeutische Handeln anhand von neurophysiologischen Aspekten erklärt. Wird die Propriosensorik der Gelenkkapsel und der Muskulatur stimuliert, kann es eine phasische und/oder tonische Entladung geben. Die Bedingungen für diese propriozeptive Stimulation und deren praktische Anwendung (Training der muskulären Stabilität) wird u.a. anhand eines Fallbeispieles verdeutlicht.

Die Stabilität eines Gelenkes wird oft künstlich aufgeteilt in: aktive und passive Stabilität.

Dabei ist die Muskulatur für die aktive Stabilität (statisch und dynamisch) verantwortlich. Die passive Stabilität wird bestimmt durch die Knochenstrukturen, die Gelenkkapsel, die Ligamente und Menisci.

Dass diese Aufteilung künstlich ist, zeigt sich aus der Tatsache, dass muskuläre Reaktionen in grossem Masse abhängig sind von Kapsel und Ligamenten. Auf der anderen Seite ist die Spannung in verschiedenen Kapselstrukturen abhängig von der muskulären Aktivität. Wenn die Rede ist von vergrösserten unphysiologischen Bewegungen, spricht man von passiver Instabilität. Diese Instabilität wird bestimmt durch das Testen von Bewegungen in drei Ebenen:

- sagittaler Ebene
- transversaler Ebene
- frontaler Ebene

In diesem Artikel möchte ich zuerst die (In)Stabilitäten des Kniegelenkes besprechen. Anhand der Tests in den genannten drei Ebenen machte Hughston eine Klassifikation der Instabilitätsformen des Kniegelenkes (6):

1. Lineare Instabilität

Man versteht darunter eine Instabilität in einer Ebene, z.B.: (straight) Medial – (straight) Lateral (straight) Ventral – (straight) Dorsal

2. Rotationsinstabilitäten

Bei einer Rotation der Tibia gegenüber dem Femur (um eine Achse, die durch das hintere Kreuzband verläuft) findet eine Subluxation des medialen oder lateralen Tibiacondylus nach vorne oder hinten statt.

Möglichkeiten: anteromediale Instabilität – anterolaterale Instabilität – posterolaterale Instabilität

Hughston kannte keine posteromediale Instabilität, weil diese immer gepaart ist mit einer hinteren Kreuzbandruptur, die die Rotationsachse verschwinden lässt. Eine richtige Rotationsinstabilität findet man dann nicht mehr, da die Tibia nur noch um die intakten Strukturen rotiert.

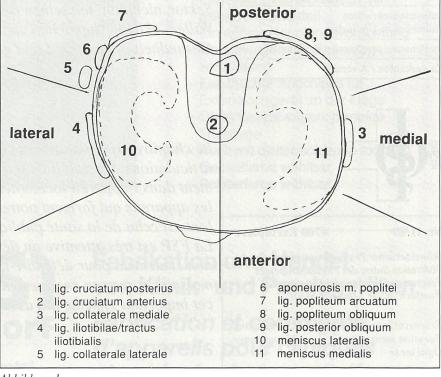
3. Kombinierte Instabilitäten

Anhand der Rekonstruktion des

Traumas in der Anamnese, der gefundenen Instabilitätsform(en) im Funktionsuntersuch und der Grösse der gefundenen Instabilität kann man schliessen, welche Strukturen lädiert sind.

Mit Hilfe eines Kniequerschnittes können wir die Strukturen gemäss *Abb.1* finden.

Wir können diese Strukturen in drei verschiedene Komplexe aufteilen:


- einen medialen
- einen lateralen und einen zentralen Komplex

Die medialen und lateralen Komplexe werden wieder in drei Segmente (12) aufgeteilt.:

Im medialen Komplex finden wir die folgenden Strukturen:

Im vorderen Drittel:

- lig. menisco-tibiale (lig. coronarium)
- lig. menisco-femorale
- Retinaculum patellae mediale
 Im mittleren Drittel:
- lig. menisco-tibiale (lig. coronarium)

bbildung I

Schematische Darstellung des rechten Tibiaplateaus

ABER SIE WÄHLEN IHRE APPARATUR NATÜRLICH AUF GRUND GANZ ANDERER KRITERIEN. DER PHYACTION 787 IST DAS VOLLSTÄNDIGSTE GERÄT AUF DEM MARKT! DER 787 HEBT DIE BESCHRÄNKUNGEN IHRER MÖGLICHKEITEN AUF, DENN DAS GERÄT KANN ALLES FÜR SIE TUN UND BEHÄLT ALLES FÜR SIE IM GEDÄCHTNIS. SEHEN SIE SELBST:

Sie können aus dem Indikationsmenü von wohlgemerkt 50 Anwendungen wählen, oder Sie stellen das Gerät völlig nach eigenen Erkenntnissen ein.

Sie erhalten interessante neue Möglichkeiten für Segmenttherapie, Interferenz mit speziellen Vektortechniken, diadynamische Ströme, automatische I/t Kurve, biphasische Ströme.

Sie verbinden bei Bedarf die Elektroden mit der eingebauten flüsterleisen Vakuumeinheit.

Sie speichern Behandlungsdaten oder Vorwahleinstellungen mühelos im Speicher (mit Batteriesicherung)...

Und das ist noch lange nicht alles!

Umständlich in der Bedienung? Im Gegenteil, sollten Sie trotzdem mit den Tasten nicht zurechtkommen, "sagt" Ihnen der 787, was zu tun ist. In einer der vier Sprachen, die Sie selbst einstellen.

Einfacher geht es wirklich nicht.

Möchten Sie mehr über dieses einzigartige Gerät wissen? Rufen Sie uns gleich an. Unsere Verkäufer können Ihnen alle Informationen über die Möglichkeiten erteilen.

Oder schreiben Sie an eine der untenstehenden Adressen.

Sie sehen es, erstklass

PHYACTION 787

VISTA med S.A. Chemin du Croset 9 1024 Ecublens (021) 691 98 91 VISTA med AG Altisbergstrasse 4, Postfach 4562 Biberist (065) 32 10 24

Levenberger Medizintechnik AG Kanalstrasse 15 8125 Glattbrugg (01) 810 46 00

- lig. menisco-femorale
- lig. collaterale mediale

Im hinteren Drittel:

- lig. menisco-tibiale (lig. coronarium)
- lig. menisco-femorale
- lig. popliteum obliquum
- lig. posterius obliquum
- aponeurosis m. semimembranosi

Im lateralen Komplex finden wir die folgenden Strukturen:

Im vorderen Drittel:

- lig. menisco-tibiale (lig. coronarium)
- lig. menisco-femorale
- Retinaculum patellae laterale

Im mittleren Drittel:

- lig. menisco-tibiale (lig. coronarium)
- lig. menisco-femorale
- lig. iliotibiale/tractus iliotibialis

Im hinteren Drittel:

- lig. menisco-tibiale (lig. coronarium)
- lig. menisco-femorale
- lig. collaterale laterale
- lig. popliteum arcuatum
- aponeurosis m. poplitei

Im zentralen Komplex finden wir:

- lig. cruciatum anterius
- lig cruciatum posterius

Die Strukturen im zentralen Komplex sind für die (straight) ventrale und (straight) dorsale Stabilität verantwortlich. Eine isolierte vordere Kreuzbandruptur würde eine (straight) ventrale Instabilität verursachen. Beim Durchschneiden des vorderen Kreuzbandes in vivo fand man denn auch aus 90°-Flexion und neutraler Rotationsstellung ein Schubladenphänomen in ventraler Richtung. Diese ventrale Schublade war aber gering (weniger als 5mm) und verschwand in Rotationsstellung.

Die klinische Diagnose ist in so einem Fall schwierig, der Pivot Shift (nach McIntosh) bietet jedoch oft einen Ausweg.

Bei diesem Pivot Shift flektiert man das Bein unter Innenrotation und Valgusspannung. Bei 30–40° -Flexion verhindert (im Fall einer vorderen Kreuzbandruptur) der Tractus iliotibialis die entstandene Subluxation des lateralen Tibiaplateaus nach ventral mit einem Klick. Dies weil sich der Tractus iliotibialis über die Bewegungsachse schiebt.

Eine hintere Kreuzbandruptur verursacht eine (straight) dorsale Instabilität, die aber viel ausgeprägter ist. Zwei Zentimeter beträgt die Schublade nach dorsal (in 90°-Flexion und neutraler Rotationsstellung) und verschwindet in Rotationsstellung nicht ganz. Im Prinzip verursacht eine isolierte hintere Kreuzbandruptur auch eine kleine posterolaterale Rotationsinstabilität.

Der Verletzungsmechanismus Valgus– Aussenrotation–Flexion kann Bandverletzungen im medialen (und zentralen) Komplex verursachen. Dies könnte eine anteromediale Instabilität zur Folge haben. Das Ausmass der entstandenen Instabilität deutet auf die Komplexität der Bandläsionen hin. Die Instabilität wird nach folgenden Massstäben gemessen (12, 15):

- 1+: <5 mm

-2+:5 mm-10 mm

-3+:>10 mm

Die Grösse in Millimeter zeigt den Unterschied der Aufklappbarkeit zwischen dem gesunden und verletzten Gelenk.

Eine Ruptur in der dorsomedialen Kapselecke (v.a. lig. posterius obliquum, lig. popliteum obliquum) verursacht eine anteromediale Instabilität von 1+. Ist dabei auch noch das lig. collaterale mediale und das vordere Kreuzband zerrissen, so spricht man von einer Triade und findet eine anteromediale Instabilität von 3+. Im Funktionsuntersuch findet man in diesem Fall eine seitliche Instabilität und ein Schubladenphänomen, wobei gleichzeitig eine Subluxation des medialen Tibiaplateaus nach vorne entsteht. Zusammengefasst finden wir eigentlich eine anteromediale Instabilität, bestehend aus einer medialen und einer ventralen Instabilität. Dies ist die am meisten vorkommende Instabilitätsform des Kniegelenkes. Eine andere Möglichkeit, die posterolaterale Instabilität, wird durch Läsionen des lig. collaterale laterale, der dorsolateralen Kapselecke (lig. popliteum arcuatum) und eventuell sogar

des hinteren Kreuzbandes verursacht. Wir können aber auch kombinierte Instabilitäten finden, wie eine anterolaterale und posterolaterale Instabilität. Im Funktionsuntersuch sieht man, dass bei einer Schublade nach ventral eine Subluxation des lateralen Tibiaplateaus nach vorne entsteht (relative Innenrotation). Bei einer Schublade nach dorsal sehen wir zugleich eine Subluxation des lateralen Tibiaplateaus nach dorsal (relative Aussenrotation).

Die Folgen einer (chronischen) Knieinstabilität sind sehr unterschiedlich. Verschiedene Autoren schreiben das Entstehen von Meniscusläsionen, Chondropathiepatellae und degenerativen Veränderungen am Gelenkknorpel dem Vorhandensein von Knieinstabilitäten zu (1, 7, 9, 10). Andere Literatur beschreibt sehr gute (langfristige) Resultate bei konservativer Nachbehandlung von Bandrupturen (3,4).

Werner Müller (13) teilt Bandverletzungen in drei Schweregrade auf: Grad I entspricht einer Überdehnung des Bandes, wobei die Kontinuität des Bandes gewährleistet ist. Das Band ist nur «locker und schlaff».

Grad II entspricht einer Zerrung/Teilruptur, wobei das Band seine Kontinuität noch hat, verschiedene Fasern jedoch zerrissen sind. Unter Grad III versteht man eine totale Ruptur des Bandes. Die Kontinuität ist dabei unterbrochen.

Bei einer vollständigen Ruptur ist spontane Heilung unmöglich. Nur ein operativer Eingriff kann die Kontinuität des Bandes wieder herstellen. Bei Grad I und II ist spontane Heilung durch Neubildung von Kollagenfasern möglich. Dabei muss einerseits verhindert werden, dass das beschädigte Band dauernd unter maximalem Stress steht, da es sonst in seinem verlängerten Zustand heilt. Andererseits braucht es eine gewisse Spannung um die Kollagenfasern zu "richten" (5). Eine absolute Immobilisation würde zu einer Kollagennarbe führen, wobei die Fasern kreuz und quer gelagert werden. Dies würde eine Bewegungseinschränkung zur Folge haben.

Die Frage, ob eine vollständige Band-

ruptur tatsächlich operiert werden muss, wird durch jeden orthopädischen Chirurgen anders beantwortet. Wichtig aber ist die Anzahl der betroffenen Strukturen, das Alter des Patienten, seine beruflichen und sportlichen Tätigkeiten, seine subjektiven Beschwerden und Kompensationsmöglichkeiten (13).

Auf jeden Fall spielt der Physiotherapeut in der Nachbehandlung eine wichtige Rolle – entweder postoperativ oder konservativ. Die wichtigste Funktion des Physiotherapeuten ist meiner Meinung nach das Verbessern der muskulären Stabilität, besser noch: das Verbessern der arthrokinetischen Reaktionen.

Verschiedene Autoren behaupten, dass mit Krafttraining von einzelnen Muskelgruppen eine bestimmte Instabilitätsform zu kompensieren ist (4, 8). Ich dagegen bin der Meinung, dass die Muskulatur in ihrer totalen Funktion trainiert werden muss. Das heisst, dass neben Kraft auch Muskeldurchhaltevermögen und Koordination trainiert werden sollten.

Es fällt mir schwer zu glauben, dass man durch das Krafttraining der Hamstrings eine ventrale Instabilität zu kompensieren vermag, ohne zuvor Reaktionsvermögen, Haltungs- und Bewegungsgefühl trainiert zu haben. (Ein Bodybuilder wirft einen Speer auch nicht weiter als ein Speerwerfer, obwohl er mehr Kraft hat).

Ausserdem muss man beim Training der Muskelkraft im Fall von Knieinstabilitäten vernünftig arbeiten. Wenn die Kraft des Quadriceps trainiert wird bei einer ventralen Instabilität, muss man die Widerstände auf richtige Weise anbringen. Rondhuis (16) zeigte den Translationsunterschied von Tibia gegenüber Femur in 30°-Flexion beim Training des Quadriceps mit einem proximalen und distalen Widerstand. Ein Patient mit einer ventralen Instabilität (2+ bis 3+) musste auf einer Quadricepsbank das Bein strecken gegen einen distalen Widerstand von 5kg. Nachher in gleicher Ausgangsstellung gegen einen dementsprechend grösseren proximalen Widerstand (wegen kürzerem Lastarm). In der Ausführung mit dem distalen Widerstand entstand eine so grosse Translation im Kniegelenk, dass das Tibiaplateau nach ventral subluxierte! In der Ausführung mit dem

DORMAFORM

Das Kissen für den gesunden Schlaf. Rückenschmerzen, Nackenschmerzen, Kopfschmerzen, schlecht geschlafen?

Hier hilft das medizinische, anatomisch geformte Kopfkissen DORMAFORM, die Schweizer Qualitätsmarke.

Ganz einfache Wahl – Kissengrössen nach Kleidergrössen, passend auf jede Schulterbreite:

DORMAFORM-Kopfkissen wird ärztlich empfohlen bei: Cervikalsyndrom, Migräne-Cervikale, Skoliose, Bechterew, Nervenwurzelirritation, Lumbago-Ischiassyndrom, eingeschlafene Hände etc...

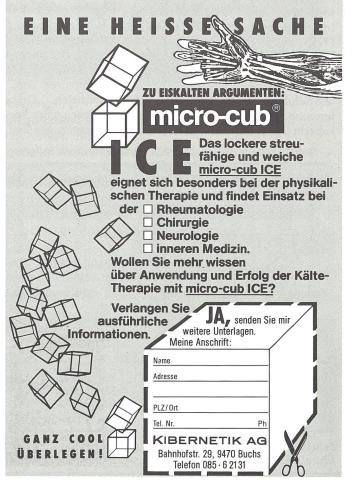
Die DORMAFORM-Kissen haben sich seit Jahren auch in Rheumasanatorien erfolgreich bewährt.

Verlangen Sie Prospekte mit Bezugsquelle inkl. Gutschein.

MECOSANA

CH-8103 Unterengstringen

Weiningerstrasse 48 Telefon 01/750 55 84


Moderne Geräte für Therapie und Leistungsmessung

preisgünstig und mit einwandfreiem Servicedienst. TUNTURI-Puls-messgerät 295.—, TUNTURI-Ergometer standard 845.—, elektronisch 3980.—, TUNTURI-Laufbandtrainer 1430.—

Z GTSM 0 032/23 69 03 2532 Magglingen

Bitte Prospekt und Bezugsquellen-Nachweis senden

Name/Adresse: _

proximalen Widerstand reichte die Translation gerade, um das Bein strekken zu können. Ein ähnliches Phänomen kann im Verhältnis Hamstringsdorsale Instabilität entstehen. Bei einer dorsalen Instabilität ist es sogar möglich, dass auf Grund der Quadricepskraft eine Subluxation nach dorsal stattfinden kann. Dies weil in grösserer Flexionsstellung (<45°) der Momentarm des lig. patellae gegenüber der Rotationsachse eine Translation der Tibia nach dorsal verursacht.

Die physiotherapeutische Behandlung von Knieeinstabilitäten kann wahrscheinlich besser verstanden werden, anhand einer (neuro)physiologischen Einsicht in der Problematik.

Neurophysiologische Aspekte

Die Haltungs- und Bewegungskoordination ist nicht nur abhängig von afferenten Informationen aus dem tendomyogenen Apparat. Alle propriosensorischen und exterosensorischen Informationen spielen dabei eine Rolle (11).

Bei der Tonusregulation der quergestreiften Muskulatur spielen also nicht nur Informationen aus Muskelspindel und Sehne eine Rolle, sondern auch Afferenzen aus Augen, Ohren, Gelenkkapseln und Haut rund ums Gelenk.

Arthrokinetische Reaktionen bilden einen Teil von diesem ganzen System. In der Literatur werden muskuläre Reaktionen, die ausgelöst werden durch Stellungs- und Bewegungsänderungen, arthrokinetische Reaktionen genannt (14). Diese Stellungs- und Bewegungsänderungen werden einerseits durch den tendomyogenen Apparat, andererseits durch die Gelenkrezeptoren wahrgenommen.

In Hinsicht auf die Gelenksinnervation können wir bei jedem Gelenk ein nocisensorisches und ein mechanosensorisches System unterscheiden (11, 14, 18) (Siehe Tabelle 1).

Typ-I-Gelenkrezeptoren

Sie geben in jedem Moment statische Informationen des Gelenkes weiter, sogar wenn das Gelenk immobilisiert ist. Verschiedene Rezeptoren sind in einem bestimmten Winkel aktiv, so dass man wissen kann, in welcher Stellung ein Gelenk sich befindet. Die Entladungsfrequenz ändert durch eine Bewegung im Gelenk (akiv oder passiv), aber auch unter Einfluss von muskulärer Spannung. Man findet die meisten Rezeptoren dort, wo Kapselteile bei normalen Gelenkbewegungen am meisten unter Spannung kommen.

Zusammengefasst sind Typ-I-Rezepto-

ren statische und dynamische Rezeptoren, die über Stellung des Gelenkes informieren, sowie die Grösse, Richtung und Geschwindigkeit der aktiven und passiven Bewegungen.

Typ-II-Gelenkrezeptoren

Sie geben die dynamischen Informationen des Gelenkes weiter. Wegen ihrer niedrigen Reizschwelle und ihrer schnellen Adaptation sind sie bei plötzlicher schneller Spannungsänderung in der Kapsel aktiv. Diese Aktivität dauert nur sehr kurz (meistens <1 s.) Wenn keine Bewegung im Gelenk stattfindet, sind sie ganz inaktiv. Zusammengefasst sind Typ-II-Gelenkrezeptoren dynamische Beschleunigungs- und Verzögerungsrezeptoren.

Typ-III-Gelenkrezeptoren

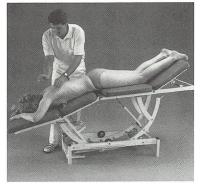
Dies sind Gelenkrezeptoren, die sich in der Nähe von periostalen Ansätzen der Ligamente befinden. Ihre Reizschwelle ist hoch, so werden sie dann auch erst bei extremen Bewegungsausmassen der Gelenke aktiv. Sie sind verbunden mit Typ-I-Nervenfasern, weshalb die Information mit hoher Geschwindigkeit fortgeleitet wird.

Typ-IV-Gelenkrezeptoren

Diese Rezeptoren sind unter normalen


Histolo- gischer Typ	Typ nach Wyke	Struktur	Lokalisation	Verhalten			Nerven- fasern
				Funktion	Reizschwelle	Adaptation	
Ruffini	I	Globular	fibröse Kapsel oberflächlich	Statisch + Dynamisch	niedrig	langsam	6–9 μm Typ-II
Pacini	II	Konisch	fibröse Kapsel tief	Dynamisch	niedrig	schnell	9–12 μm Typ-II
Golgi	III	Fusiform	Ligamente	Dynamisch	hoch	sehr langsam	13–17 μm Typ-I
freie Nerven enden	IV	Plexus und freie Nerven- enden	Kapsel, Periost Ligamente, Blutgefässe, Fettkörper	Nocisensorisch		Ja/Nein	2–5 μm Typ-III 2 μm Typ-IV

Tabelle 1


Übersicht der verschiedenen Kapselrezeptoren mit ihren Eigenschaften

Dr. SCHUPP® Rondoliege

Anders als alle anderen Die perfekte Lösung Das neue Konzept

- Langlebig, stabil, schwingungsfrei
- Mit liegendem Patienten von Hand verstellbar
- Hochwertige Polsterung, Kanten umpolstert
- Hautsympatischer, angenehm weicher Bezug aus orig. Skai®, Farbe creme
- Metallteile kratzfest kunststoffbeschichtet, hell elfenbein
- Ohne Motoren, kein Kabel, kein Elektroanschluss
- In Sitzposition 51 cm hoch, ideal für Rollstuhl-Patienten
- Extensionsmöglichkeiten: In Schräglage mit Fixiergurt; Halswirbelsäule über Rollenhalterung mit Glissonschlinge und Gewichtsstock

Interessiert? Besuchen Sie unsere permanente Ausstellung in Burgdorf. Gerne stellen wir Ihnen unser umfangreiches Sortiment vor: Massage- und Therapieliegen, Massageöle, Einreibe-In bitte un desantikatato Adresse i tung mittel in verschiedenen Sorten, Fangoparaffin, Sauna-Konzentrate, Kälte- und Wärmepackungen, Heilbäder, Extrakte und vieles andere mehr.

Wir beraten Sie gerne.

Simon Keller AG

Fachbedarf für Massage/Physiotherapie Pédicure und Kosmetik Lyssachstrasse 83

Tel. 034 22 74 74 + 75 3400 Burgdorf / BE

Nr. 11 - November 1989

Umständen völlig inaktiv. Gereizt werden sie nur unter pathologischen Umständen, wo eine übermässige mechanische oder chemische Reizung entsteht. Eine chemische Reizung kann zB. durch Histamine oder Bradykinine entstehen, welche bei Gewebeschädigung produziert werden. Die Typ-III-Nervenfasern können adaptieren, die Typ-IV-Nervenfasern nicht.

Propriozeptive Information wird sowohl auf spinalem, wie auch auf supraspinalem Niveau verarbeitet. Aufsteigende Fasern erreichen das somatosensorische Zentrum des Cerebellums und den Cortex cerebri. Wenn propriozeptive Informationen bewusst werden, redet man von Statesthesie und Kinesthesie (= gnostische Sensibilität). Im allgemeinen wird einem Haltung und Bewegung aber nicht bewusst. Offensichtlich verlaufen diese Reaktionen automatisch.

Über die spinalen Reaktionen, die Gelenkrezeptoren verursachen, ist nur wenig bekannt. Man nimmt aber an, dass ihre Reaktionen vergleichbar sind mit denen der Sensorik aus dem tendomyogenen Apparat (11).

Die Typ-I- und -II-Gelenkrezeptoren sind in ihrem Verhalten zu vergleichen mit dem Muskelspindelmechanismus, wie auch die Typ-III-Rezeptoren mit den Sehnerezeptoren von Golgi. Die Typ-I-Rezeptoren sollen auf die Depolarisation von A\alpha_2 Motoneuronen Einfluss haben. Sie verursachen damit einen Basistonus in der Muskulatur über die tonischen Fasern. Die Typ-II-Rezeptoren sollen mehr Einfluss haben auf die Depolarisation der grösseren Aa₁ Motoneuronen. Diese Motoneuronen innervieren phasische Muskelfasern, wovon diese Aktivität auf die der tonischen Fasern aufgebaut wird.

Zuerst wird die Kraft durch die Entladungsfrequenz der Motoneuronen bestimmt (tonisch), nachher folgt die Beanspruchung von mehreren (grösseren) Motoneuronen (dieser Verlauf zeigt immer eine konstante Reihenfolge: Size Principle). So sehen wir unter bestimmten Umständen in einer synergetischen Muskelgruppe eine Umwand-

lung von tonischer zu phasischer Aktivität.

Die Typ-III-Rezeptoren, die bei endgradigen Bewegungen aktiv werden, kann man vergleichen mit den Sehnenrezeptoren. Ihr bremsender Einfluss auf die Bewegung gleicht einem Schutzreflex des Gelenkes.

Freeman und Wyke (2) haben die Effekte der Gelenkrezeptoren studiert und fanden u.a. heraus, dass beim Vernichten der Gelenkrezeptoren, die muskulären Effekte abnahmen oder gar verschwanden. Das Gleiche fand man bei Durchtrennung der artikulären Nerven. In der Praxis finden wir ähnliche Situationen, zB. nach einer Bandläsion des Kniegelenkes, einer Synovektomie, einer Menisektomie (v.a. nicht arthroskopische) und Frakturen. Oft findet man in diesen Situationen einen Ausfall oder eine Abnahme der arthrokinetischen Reaktionen. Dies bedeutet übrigens nicht, dass das Ganze nur auf eine Schädigung der Gelenkrezeptoren zurückzuführen ist (auch Schädigungen in der Haut und in Muskeln können eine Rolle spielen). Wichtig aber ist, dass Ausfall oder Abnahme der arthrokinetischen Reaktionen eine muskuläre Instabilität des betroffenen Gelenkes ergibt. Dies führt ebenso zu einer Störung in der ganzen Koordination von Haltung und Bewegung!

Konsequenzen für die Praxis

Bandläsionen des Kniegelenkes ergeben nicht nur eine passive, sondern auch eine aktive Instabilität des Kniegelenkes. Mit einem operativen Eingriff kann man die passive Instabilität wahrscheinlich aufheben, die aktive Instabilität damit jedoch vergrössern. Eine eventuelle Immobilisation kann die aktive Instabilität nochmals verstärken.

Das Ziel der Physiotherapie besteht darin, die aktive Instabilität aufzuheben. Man muss dabei die arthrokinetischen Reaktionen trainieren. Die Meinung dabei ist, auf einen willkürlichen Impuls, eine möglichst optimale muskuläre Reaktion zu bekommen, so dass das Gelenk nicht traumatisieren-

den Kräften und Bewegungen ausgesetzt wird.

Durch einen sensorischen Input versucht man eine motorische Reaktion auszulösen. Im Anfang braucht man viel Afferenz für eine muskuläre Reaküber (Stimulation mehrere Gelenke, Haut, visuelle Unterstützung u.s.w.). Der Patient arbeitet noch bewusst mit, im Laufe der Zeit aber gibt man immer mehr unbewusste Formen von Stabilisationen. Ausserdem soll man darauf achten, dass stabilisierende Übungen stattfinden während einer tonischen Basisspannung der Muskulatur. Es ist ja funktionell, dass eine phasische Reaktionskraft aufgebaut wird auf eine tonische Aktivität. Hieraus folgt, dass man in einem geschlossenen Muster üben soll.

Die Behandlungsathmosphäre, Stimulation des Physiotherapeuten und die Motivation des Patienten tragen dazu bei, dass mehr oder weniger Motoneuronen beansprucht werden.

Diese funktionelle Methode ist damit ein Training einer totalen Einheit. Propriozepsis (incl. Gleichgewichtsorgan) und Exterosensorik (Haut, Ohren, Augen) sollen aufeinander abgestimmt sein, damit eine völlige Koordination von Haltung und Bewegung stattfindet. In der Praxis ist es aber nicht immer so leicht anwendbar. So ist es bei Schmerzen im zu stabilisierenden Bewegungsbereich unmöglich, ein stabilisierendes Training durchzuführen. Schmerz zerstört nämlich die arthrokinetischen Reaktionen. Ausserdem ist der Physiotherapeut im postoperativen Zustand an die erlaubte Belastbarkeit und Beweglichkeit des operierten Gelenkes gebunden. Man muss deswegen den Aufbau der stabilisierenden Übungen dem Patienten anpassen.

Um zu zeigen, wie das Training der muskulären Stabilität in der Praxis aussieht, beschreibe ich hier einen Patienten, der im grossen und ganzen nach diesem Prinzip behandelt worden ist.

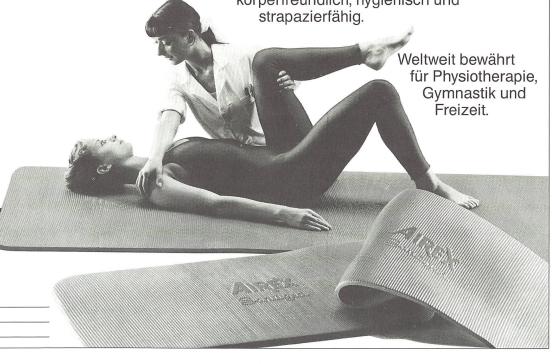
Fallbeispiel

Ein 23jähriger Spitzenathlet (Hürdenläufer) zog sich in 1987 eine vordere

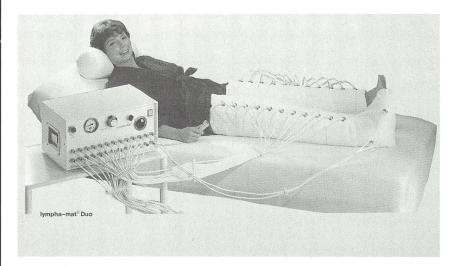
AIREX Matten Sanitiged®

körperfreundlich, hygienisch und strapazierfähig.

Bezugsquellen-Nachweis: Eugen Schmid AG, CH-5610 Wohlen Telefon 057 22 16 89 Telex 828 087


Coupon:

PT


Senden Sie uns mehr Information über Airex-Matten für

☐ Physiotherapie ☐ Gymnastik

☐ Freizeit

Ödeme unter Druck setzen!

lympha-mat®

Kompressionssystem mit intermittierenden Druckwellen

INDIKATIONEN:

- primäres und sekundäres Lymphödem
- Phlebödem
- Lipödem
- zyklisch-idiopatisches Ödem
- Mischformen
- Ödem infolge Arthritis, multipler Sklerose oder rheumatischer Affektion
- Armlymphödem nach Brustamputation
- Ödem nach Entfernung von Gipsverbänden
- posttraumatisches Ödem
- Schwangerschaftsvaricosis
- Lymphdrüsenexstirpation in der Leistenbeuge
- Venenligatur, postoperativ (Crossektomie oder Strippingoperation)
- Thromboseprophylaxe

FRITAC MEDIZINTECHNIK AG 8031 Zürich Hardturmstrasse 76 Telefon 01/271 86 12

_	_	
		IO II
\mathbf{H}	a n	
		11 W

Bitte ausschneiden und einsenden an

FRITACAG Postfach 8031 Zürich

ch	interessiere	mich	für:	(Gew.	bitte	ankreuzen)

Offerte für	

Ш	Demonstration von: _		
П		7	

9

' Ш		
Name		4
Strasse	<u> </u>	
PLZ/Ort		

Nr. 11 - November 1989

Kreuzbandruptur zu. Die sportlichen und beruflichen Tätigkeiten konnten aber schnell wieder ohne Probleme durchgeführt werden. Im März 1988 kam nach einem Sprung, wobei er in Flexion-Rotation landete, eine Meniscusläsion dazu. Ab dieser Zeit blieben vor allem auf sportlicher Ebene intermittierende Beschwerden bestehen.

Am 5.7.88 wird deshalb eine vordere Kreuzbandplasik mit Patellarsehne und eine mediale Teilmenisektomie vorgenommen.

Ab dem Operationstag wird das Knie auf einer Bewegungsschiene passiv durchbewegt, mit dem Ziel (16):

- einen besseren Regenerations- und Ernährungszustand des Gelenkknorpels zu erreichen
- eine Mobilitätsverbesserung, die so wenig wie möglich schmerzhaft ist
- Adhäsionsprophylaxe der Bursa suprapatellaris.

Der Patient bekommt eine Gipsschiene in 10° -Flexion, die nur in der Therapie entfernt wird und darf 30 kg teilbelasten. Die ersten acht Wochen besteht die Therapie aus dem Erhalten der Gelenksmobilität und Verbesserung der und Narbenbeweglichkeit (Abb. 2). Um Atrophien zu verhindern Elektrostimulation gemacht, welche durch den Patienten zu Hause, während 2-3 Stunden pro Tag durchgeführt wird. Man muss sich aber bewusst sein, dass man damit nur lokale Faktoren beeinflussen kann und zB. nicht die Beanspruchung von Motoneuronen auf Rückenmarksniveau.

Auch aktive isometrische Spannungsübungen werden dem Patienten instruiert. In diesem Fall wird eine Mantelspannung aufgebaut und zwar werden zuerst aus 10°-Flexion die Hamstrings, dann zusätzlich auch der Quadriceps isometrisch angespannt. Diese Übung ist postoperativ sehr schwer auszuführen. Das lässt sich möglicherweise durch eine Zerstörung der arthrokinetischen Reaktionen erklären. Die Zerstörung findet aufgrund der Schmerzen und einer Verminderung der Propriosensorik (wegen der starken Kapselreaktionen) statt. Wenn der Patient die beschriebene Mantelspannung gut

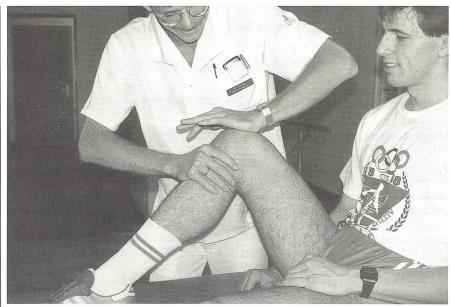


Abbildung 2 Verbesserung der Patellabeweglichkeit. In maximaler Flexionsstellung wird die Patella nach caudal mobilisiert.

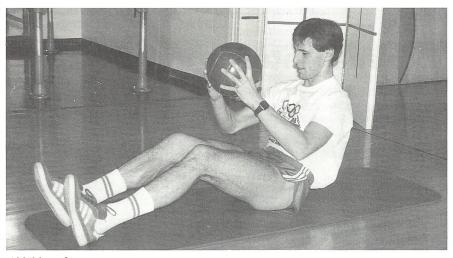


Abbildung 3 Muskelmantelspannung der Beine kombiniert mit Rumpfmuskelübungen.

ausführen kann, wird diese mit Rumpfmuskelübungen kombiniert. (Abb. 3). Hamstrings und Abduktoren werden ausserdem mittels PNF aus Bauchlage trainiert. Nach den ersten acht Wochen betrug das Bewegungsausmass 130-0-0. Der Patient durfte voll belasten und trug die Schiene nur noch nachts. Da die Nullstellung des Gelenkes erreicht war, konnte in diesem Stadium mit stabilisierenden Übungen angefangen werden. Der Übungsauf-

bau geht von Teil- zu Vollbelastung. Der Patient sass auf der Bank und belastete so sein rechtes (operiertes) Bein nur zum Teil (Abb. 4). Der Physiotherapeut gab direkt am Knie in verschiedenen Richtungen Impulse. Der Patient versuchte, die Ausgangsstellung des Kniegelenkes durch angepasste Reaktionen zu halten. Eine gute Instruktion ist bei dieser Übung erforderlich, da die Patienten das Bein oft dermassen anspannen, dass es zu einer Kokontrak-

Eine EDV-Anlage für Ihre Praxis

Computer ATARI ST (Fr. 1500.-) Programm ST-PHYSIO (Fr. 2800.-) Drucker EPSON (Fr. 1000.-)

Komplettpreis

Fr. 5300.-!

Ein überdurchschnittlich leistungsfähiger und trotzdem preisgünstiger Computer. Ein Matrixdrucker mit ansehnlicher Schrift. Bedienungsfreundliche, zuverlässige, praxiserprobte Software (als Arztprogramm über 40mal installiert).

Die Anlage wird automatisch gestartet. Sie tippen die Patientenpersonalien ein (für die nächste Behandlungsserie bleiben sie gespeichert). Sie geben die verordneten Leistungen als Tarifziffer oder Kürzel, dann die Behandlungsdaten ein. Der Computer beherrscht alles übrige: er fertigt eine Rechnung und gleichzeitig einen Behandlungsrapport an, der Drucker druckt beides auf einen gewöhnlichen Briefbogen aus, die Rechnung wird gespeichert. Es hat sie ca. 2 Minuten Zeit gekostet.

Nach dem Zahlungseingang verbuchen Sie die Zahlung auf dem Bildschirm manuell oder anhand einer Referenznummer (VESR) automatisch. Debitoren, Honorare, Behandlungshäufigkeit und der dazugehörige Umsatz lassen sich jederzeit überblicken. Mit einer integrierten Textverarbeitung können Sie komfortabel Briefe schreiben, speichern, nochmals verwenden und sauber drucken, wievielmal Sie wollen. Die Bedienung ist kinderleicht, Sie können gleich die ersten Rechnungen schreiben. Eine Buchhaltung ist auch dabei.

Auskunft, Vorführung, Programmverkauf: Dr. med. F. Kuthan, 7500 St.Moritz, Tel. 082/3 18 48

Zu reduzierten Preisen

Muskeldehnung

warum und wie?

Olaf Evjenth und Jern Hamberg

Eine erfolgreiche Behandlungsmethode bei Schmerzen und beschränkter Beweglichkeit

Nur solange Vorrat

Teil I

Die Extremitäten. 178 Seiten mit mehr als 260 Bildern, Muskelregister und 16 Tabellen mit Schema über die bewegungshindernde Funktion verschiedener Muskeln. SFr. 65.-Teil II

Die Wirbelsäule. 128 Seiten mit mehr als 190 Bildern, Muskelregister und 16 Tabellen mit Schema über die bewegungshindernde Funktion verschiedener Muskeln. SFr. 60.-Beide Teile zusammen SFr. 115.-

Verlangen Sie kostenlos unsere Broschüre mit Leseproben

Bestellschein

Senden Sie mir bitte gegen Nachnahme Muskeldehnung, warum und wie?

Anzahl	Teil I SFr. 65+Verp. u. Vers.sp.
Anzahl	Teil II SFr. 60+Verp. u. Vers.sp.
Anzahl	Teil I und II SFr.115+Verp. u. Vers.sp.
Name	
Strasse	Nr
PLZ	Ort Land
Einsenden an	Remed-Verlags AG

Postfach 2017, 6302 Zug/Schweiz

die orthopädische Kopfund Nackenstütze

Aufgrund der ausgedehnten klinischen Prüfung indiziert bei:

- · Nacken- und Schulterbeschwerden
- · hartnäckigem und resistentem Kopfweh
- · Rückenbeschwerden.

«the pillow»® ermöglicht eine optimale Lagerung von Kopf und Nacken: in Seitenlage bleibt der Kopf in Mittelstellung, in Rükkenlage entsteht eine unauffällige aber wirksame Extension.

Die Bewegungsfreiheit bleibt voll erhalten.

Es gibt 3 Modelle:

Normal: «Standard» und «Soft» für Patienten über bzw. unter 65 kg Körpergewicht. «Travel»: «Standard» und «Soft», als Reisekissen und für Patienten mit Flachrücken oder kurzem Nacken.

NEU: «Extra Comfort», aus Latex (Naturmaterial), «Standard» und «Soft», besonders angenehm und dauerhaft.

the pillow®: das professionelle Kissen, das den spontanen Schmerzmittelkonsum signifikant senkt.

Senden Sie mir bitte:

- ☐ Prospekte und Patientenmerkblätter zum Auflegen
- ☐ eine vollständige Dokumentation
- ☐ einen Sonderdruck der Publikation «Evaluation eines Kopfkissens bei cervikalen Beschwerden» aus der Schmerzklinik Basel.

BERRO AG
Postfach
4414 Füllinsdorf

Stempel

Nr. 11 – November 1989 11

Abbildung 4 Unter Teilbelastung des operierten Beines werden manuelle Impulse am Knie gegeben. Der Patient versucht auf diese Balancestörung zu reagieren.

tion der Muskeln kommt. Das Knie wird in dieser Situation aktiv blockiert und die Übung verliert ihre Funktion. Die gleiche Übung wurde im Stand auf zwei Beinen ausgeführt. Die Impulse kann man so geben, dass eine bestimmte Instabilitätsform trainiert wird. Man kann aber auch die Geschwindigkeit und den Widerstand erhöhen um mehr Motoneuronen zu aktivieren und somit die muskuläre Reaktion zu vergrössern. Auf einem Balanco (zuerst mit, nachher ohne Stützen) wird die Haltungsfunktion stark beansprucht. Der Patient stand auf zwei Beinen. Nachdem er sich an die labile Position gewöhnt hatte, wurden Impulse gegeben. Zuerst interne, d.h. durch Bewegen der Arme, nachher externe durch den Physiotherapeuten via Schultern, Becken, Balanco und Knie.

Selbstverständlich wurden in dieser Phase auch noch mobilisierende Techniken durchgeführt, ebenso Training von Kraft und Dauerleistungsvermögen (lokal und total) mittel PNF und Velofahren.

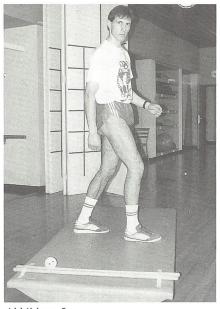


Abbildung 5 Auf dem Schaukelbrett sind verschiedene Übungen möglich. In dieser Ausgangsstellung wird die Stabilität in ventrale und dorsale Richtung trainiert.

Von der 12. Woche an lag der Schwerpunkt fast ausschliesslich auf dem Verbessern der Stabilität. Auf einem Schaukelbrett wurden die Stabilität vorwärts, rückwärts und in seitlicher Richtung trainiert (Abb. 5). Auf einer Zylinderrolle wurde ebenfalls die Stabilität in ventrale und dorsale Richtung trainiert (Abb. 6). Die Übungen auf dem Balanco wurden jetzt auch einbeinig gemacht, wobei die Sicherheit beachtet wurde. Auch verschiedene Laufformen auf der Schwedenbank wurden trainiert. Nachdem das Seilhüpfen auf zwei Beinen keine Schwellung im Kniegelenk verursachte, begann man mit einem leichten Lauftraining von zehn Minuten. Dabei spielte die Wahl des Schuhwerks und des Untergrundes eine wichtige Rolle, ebenso wie die Beobachtung des Bewegungsmusters. Zusätzlich wurde auch Laufen im Wasser mit einer speziellen Weste, die das Körpergewicht trägt, therapeutisch eingesetzt. Vor allem der koordinative Ablauf der Bewegungen konnte auf diese Weise ohne Belastung trainiert werden.

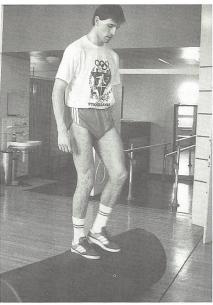


Abbildung 6 Auf einer Zylinderrolle kann man auch die Stabilität in ventrale und dorsale Richtung trainieren. Ein guter Aufbau ist aber erforderlich

Ab der 18. Woche wurde die Stabilität mittels verschiedener Sprungformen und vor allem unbewusster Übungsformen, durch Einbezug des Spielelementes, trainiert (*Abb. 7*). Laufformen auf einer schräggestellten Bank sind koordinativ anspruchsvolle Übungen. Beim rückwärts Hochlaufen übt man zusätzlich die aktive Streckung des Kniegelenkes (*Abb. 8*).

Krafttraining wurde in langsamen oder schnelleren Serien auf dem Cybex Orthotron ausgeführt und das Lauftraining wurde weiter ausgebaut.

Nach 24 Wochen war eine volle Beweglichkeit erreicht, konnte der Patient einen Dauerlauf von einer Stunde absolvieren und bemerkte nur einen leichten Unterschied in der Abstosskraft bei grösseren Serien von Laufsprüngen.

Eine Metallentfernung und eine kontrollmässige Arthroskopie, wobei man noch eine kleine Adhäsion löste, wurde vorgenommen. Anschliessend wurde die Therapie beendet und der Patient war 100% fähig, seine sportlichen Tätigkeiten wieder aufzunehmen.

No 11 – Novembre 1989

Abbildung 7 Hüpfen auf einem Bein ist eine gute stabilisierende Übung. Das Spielelement sorgt dafür, dass der Patient sich nicht nur auf das Knie konzentriert.

Summary

After a discussion of ligamentary lesions and the forms of knee-instability, the consequences for the physical therapy are described. The physical therapy is based on neurophysiological aspects. It seems that a ligamentary lesion not only leads to a passive instability, but to an active instability as well. This can be explained by a disturbance of the arthrokinetic reactions. An operation, which would eliminate the passive instability, can make the active instability worse, especially when an immobilisation of the joint follows. How to train the arthrokinetic reactions is shown at a patient example.

Literatur

- Freagin, J.A.; W.W. Curl: Isolated Tear of the Anterior Cruciate Ligament 5-Year Follow-up Study Am. J. Sports Med., 4,95–100, 1976.
- Freeman, M.A.R., B. Wyke: Articular Contributions to Limb Muscle Reflexes: The effects of partial neurectomy of the knee joint on postural reflexes.
 British Journal of Surgery, 53,1,1966.
- 3. Fulkerson, J.P.: Common Athletic Knee

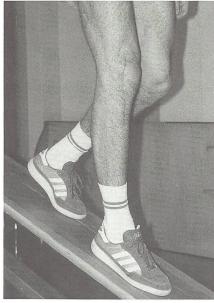


Abbildung 8 Mit Übungen auf einer schräggestellten Bank trainiert man Kraft, Stabilität und ausserdem beim rückwärts Hochlaufen die aktive Streckung.

- Ligament Injuries and Their Treatment Comp. Ther., 7,62–66, 1981.
- Giove, T.P., S.J. Miller, u.a.: Non-Operative Treatment of the Torn Anterior Cruciate Ligament
 - J. Bone Joint Surg., 65a, 184-192, 1983.
- Hagenaars, L.H.A., L.J. Dekker, u.a.: Effecten van het orthosympatische zenuwstelsel op de dwarsgestreepte spier Ned. Tijdsch .v. Fysioth., 95, 77–88, 1985.
- Hughston, J.C., J.R. Andrews, u.a.: Classification of Knee Ligament Instabilities Part I The medial compartment and cruciate ligaments, Part II The lateral compartment
- J. Bone Joint Surg. 58a, 159-179, 1976.
- Jacobsen, K.: Osteoartritis following Insufficiency of the Cruciate Ligaments
 Man. Acta Orthop. Scandinavica, 48,
 520–526, 1977.
- Marshall, J.L., R.M. Rubin: Knee Ligament Injuries
 Orthop. Clin. North America, 8, 641–
- Marshall, J.L., R.M. Rubin, u.a.: The Anterior Cruciate Ligament Orthop. Rev., 7, 35–46, 1978.

668, 1977.

10. Marshall, J.L., R.F. Warren, u.a.: Primary Surgical Treatment of Anterior Cruciate Ligament Lesions Am. J. Sports Med., 10, 103–107, 1982.

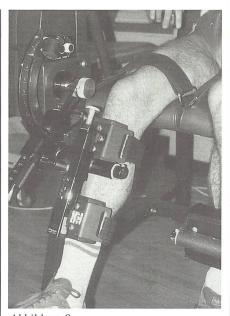


Abbildung 9 Auf dem Cybex Orthotron mit dem speziellen Schubladenschutz verhindert man eine grosse Belastung des vorderen Kreuzbandes beim Quadricepstraining.

- 11. Mink, A.J.F., H.J. ter Veer, u.a.: Extremiteiten, Inleiding Schalkhaar, vijfde druk, 1983.
- Muhr, G., M. Wagner: Kapsel-Band-Verletzungen des Kniegelenkes Springer-Verlag, Berlin, 1982.
- 13. Müller, W.: Das Knie Springer-Verlag, Berlin, 1982.
- 14. Oostendorp, R.A.B., J.A.W. v.d.Sande: Arthrokinetische reakties en musculaire stabiliteit
 - Ned. Tijdsch. v. Fysioth., 93, 63–72, 1983.
- Ritter, M.A., C. Gosling: The Knee Charles C. Thomas Publisher, Springfield USA, 1979.
- 16. Rondhuis, G.B.: Oefentherapie na Kruisbandoperaties Ned. Tijdsch. v. Fysioth., 94, 178–183, 1984.
- 17. Stolk, E.: Revalidatie na een voorste kruisband-reconstructie Gneeskunde en Sport, 21, 159–160, 1988
- 18. Wyke, B.: Articular Neurologty, A Review Physiotherapy, 60, 94–99, 1972.

Adresse des Autors:

Michel Kandel, Physiotherapeut Kant'spital St. Gallen, 9007 St. Gallen