Zeitschrift: Physiotherapeut : Zeitschrift des Schweizerischen

Physiotherapeutenverbandes = Physiothérapeute : bulletin de la Fédération Suisse des Physiothérapeutes = Fisioterapista : bollettino

della Federazione Svizzera dei Fisioterapisti

Herausgeber: Schweizerischer Physiotherapeuten-Verband

Band: 22 (1986)

Heft: 10

Artikel: Modèle théorique de genèse des craquements pulmonaires : pour une

kinésithérapie respiratoire spécifique de l'encombrement bronchique

distal

Autor: Postiaux, G. / Lens, E. / Chapelle, P. DOI: https://doi.org/10.5169/seals-930222

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 23.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Modèle théorique de genèse des craquements pulmonaires

pour une kinésithérapie respiratoire spécifique de l'encombrement bronchique distal

Professeur G. Postiaux - E. Lens - P. Chapelle

Résumé

Sur la base d'analyses acoustiques spécialisées et de paramètres cliniques précis, les auteurs proposent un modèle théorique de la genèse des craquements pulmonaires utile au diagnostic et à la kinésithérapie respiratoire spécifique.

En outre ces méthodes de quantification des bruits réspiratoires ayant fait leurs preuves sont d'ores et déjà utilisées par leur groupe comme moyen didactique efficace pour la formation à l'auscultation pulmonaire des médecins et des kinésithérapeutes.

Riassunto

Basata su analisi acustici specializzati e su parametri clinici, gli autori propongono un modello teoretico della genesi dei crepiti polmonati, utili alla diagnostica e alla fisioterapie respiratoria specifica.

Inoltre, questi metodi di quantificazione dei rumori respiratori che hanno già dato le loro prove, vengono utilizzati dai loro gruppi come mezzi didattici efficaci per la formazione all'auscultazione polmonare, da parte dei medici e dei fisioterapisti.

Zusammenfassung

Aufgrund spezieller akustischer Analysen und präziser klinischer Parameter stellen die Autoren ein theoretisches Modell zur Herkunft von Lungengeräuschen vor, das für Diagnostik und spezifische Atemtherapie von Nutzen ist. Darüber hinaus bewährten sich diese Methoden der Quantifikation von Lungengeräuschen in dieser Gruppe als didaktisches Mittel bei der Ausbildung von Ärzten und Physiotherapeuten in Lungenauskultation.

1. Introduction

Parmi les bruits adventices, les craquements intéressent au premier chef le kinésithérapeute; en effet, mis à part les craquements pleuraux, ils peuvent correspondre à une situation d'encombrement bronchique, quelle que soit l'étiologie de celui-ci.

Encore faut-il pouvoir les distinguer les uns des autres pour faire la part de ce qui est réellement de l'encombrement bronchique, de ce qui relève plutôt d'une atteinte interstitielle par exemple. Des paramètres stéthacoustiques précis et l'analyse acoustique aideront le kinésithérapeute.

2. Les craquements

D'après la terminologie recommandée par l'American Thoracic Society, les bruits respiratoires adventices comprennent les sibilances et les craquements. Ces derniers (râles muqueux et humides de l'ancienne nomenclature) sont définis comme des bruits brefs, explosifs et discontinus. Il en sera donc question dans cet exposé.

3. Paramètres stéthacoustiques

L'auscultation médiate est livrée à la subjectivité de l'observateur. A des fins diagnostiques, dans le but de supprimer les différences perceptives entre observateurs et de créer des repères pour un même observateur, Lens (1) a proposé quatre paramètres stéthacoustiques précis:

- la fréquence hertzienne (Hz)
- la situation dans la phase inspiratoire
- la position-dépendance
- la kinésie-dépendance.

En kinésithérapie respiratoire, ces paramètres ont acquis une toute pre-

mière importance, car ils permettent de repérer les bruits adventices témoins d'une affection intéressant le kinésithérapeute, de leur appliquer des manœuvres analytiques précises, et d'en contrôler les effets. Des études cliniques sur des grands nombres ont été effectuées précédemment pour affiner les techniques de soins (3, 4). Précisons ces différents paramètres:

La fréquence hertzienne

des craquements.: nous corrélons notre méthodologie stéthacoustique avec la phonopneumographie. Celleci nous a permis de grouper les craquements en catégories suivant leur contenu énérgétique. Trois groupes sont ainsi retenus: 200, 400 et 800 Hz.

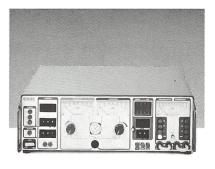
Le deuxième paramètre est la situation des craquements

dans la phase inspiratoire. A la suite de Nath (5) et Forgacs (6), il convient de corréler à la nosologie leur situation dans la phase inspiratoire. Mais plus précisément, Lens propose de diviser l'inspiration en 3 tiers, le premier étant la protophase, le second la mésophase, le troisième la téléphase. Les craquements occupant toute la durée de l'inspiration sont appelés holophasiques.

La position-dépendance

est l'apparition en infralatéral (en decubitus latéral: poumon côté plan d'appui) d'accidents acoustiques peu ou pas perçus en position assise, ou leur nette atténuation voire leur disparition en supralatéral. L'exploitation de l'infralatéral (qui remplace en fait la manœuvre penché en avant de Forgacs [6]) permet une détection précoce des craquements téléphasiques inspiratoires de haute fréquence (800 Hz). L'infralatéral assure en effet la meilleure déflation possible du poumon dépendant pour un même volume respiratoire (fig. 1) grâce à la gravitation qui s'exerce sur le tissu pulmonaire et à la poussée viscérale sur l'hémidiaphragme infralatéral qui occupe ainsi une position plus

RÜEGGE MEDICAL


STARKEN MARKEN VERTRAUEN.

Die Therapie bestimmen Sie. Ob nun mit Ultraschall, Wärme, Reizstrom, Kaltwind oder Laser.

ERBE HAT FÜR JEDE BEHANDLUNG DAS RICHTIGE THERAPIE-GERÄT. BEDIENUNGSFREUNDLICH UND MODERN.

wellen-Gerät für ein grosses Indikationsspektrum in der Wärmetherapie. Einfachste Bedienung (nur 2 Knöpfe sind einzustellen) und einfacher Strahlerwechsel. Besonders geeignet für die Bestrahlung von inneren Organen, grösseren Gelenken und Muskelschichten.

Erbogalvan IM 2,

das Gerät für die sichere Reizstromtherapie mit mittelfrequenten Strömen («Interferenzstrom»). Mit integriertem Vakuummodul für Saugelektroden. Sehr grosser Bedienungskomfort und breites Einsatzgebiet dank tetrapolarer und biopolarer Applikationsmöglichkeit.

Erbosonat US 1,

das handliche Hochfrequenzgerät für alle Anwendungen der <u>Ultraschalltherapie</u> in Klinik und Praxis. 2 verschiedene, ergonomisch geformte Schallköpfe ermöglichen eine ermüdungsfreie Behandlung aller Körperteile. Mit Anschlussmöglichkeit an unsere Reizstromgeräte für die Kombinationstherapie.

Das umfassende ERBE-Programm wird sinnvoll durch den Infrarot-Therapielaser, die Niederfrequenz-Reizstromgeräte für Therapie und Diagnostik und dem Medivent für die Kaltwindbehandlung bei rheumatischen und entzündlichen Erkrankungen ergänzt. Geräte im gleichen modernen Design und mit grosser Auswahl an anwendungsfreundlichem Zubehör. Interessiert? Einfach Coupon einsenden.

Apparate für Medizin und Forschung. Praxiseinrichtungen.

Rüegge Medical AG Täfernstrasse 20 5405 Baden-Dättwil Telefon 056 / 84 02 84 Aussendienststellen in Lausanne und Lugano-Caslano

COUPON

Dokumentieren Sie mich über ERBE-Geräte für die

3.			
☐ Wärmetherapie ☐ Reizstromtherapie ☐ Ultraschalltherapie	☐ Lasertherapie ☐ Kaltwindtherapie		
Vorname	Name		
Spital / Institut			
Strasse	Telefon		
PLZ / Ort			

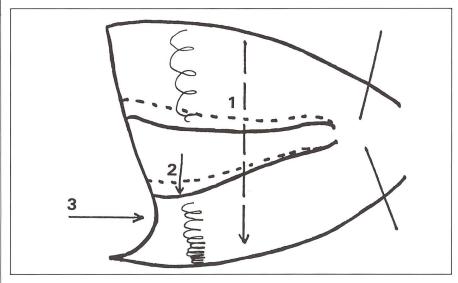


Fig. I En décubitus latéral, trois facteurs provoquent la déflation du poumon infralatéral et l'inflation du poumon supralatéral:

- 1° la gravitation agit sur le tissu pulmonaire
- 2° le diaphragme infralatéral subit la pression de la masse viscérale abdominale et occupe une situation plus craniale dans la cage thoracique.
- 3° le médiastin est entrainé par son propre poids et descend de 1 ou 2 cm vers le plan d'appui.

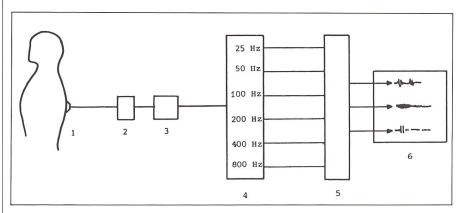


Fig. 2 Schéma du phonopneumographe:

- 1. capteur de vibration thoracique
- 2. pré-amplificateur
- 3. amplificateur des signaux
- 4. banc de filtres (25, 50, 100, 200, 400, 800 Hz)
- 5. sélecteur de canal
- 6. inscripteur graphique

craniale dans le thorax, ajouté à la chute relative du médiastin vers le plan d'appui.

La kinésie-dépendance:

en position infralatérale, nous suivons l'évolution des signaux sonores pulmonaires en inspiration et expiration profondes, et lors de la toux à différents volumes pulmonaires.

4. Méthodologie de l'analyse acoustique

La phonopneumopgraphie que nous pratiquons depuis plusieurs années et l'analyse spectrale mise au point dans notre équipe par le laboratoire d'acoustique de la Faculté polytechnique de Mons (11, 12) ont été menées parallèlement aux premiers pas ac-

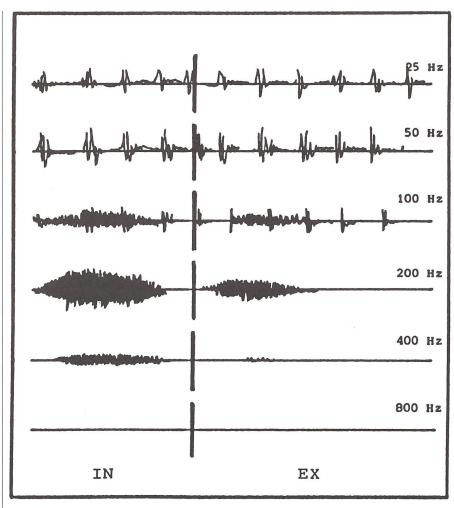
complis dans ces domaines par quelques chercheurs anglo-saxons et japonais (7, 8, 9, 10).

Grâce à cette nouvelle manière de quantifier l'auscultation, l'appréciation des techniques kinésithérapiques sur le poumon distal et régional fut rendue possible (3, 4, 13, 14, 16).

Phonopneumographie (fig. 2)

Les signaux pulmonaires sont captés à la paroi thoracique au moyen d'un capteur de vibrations (Siemens Elema EMT 25C) et dirigés vers un banc de filtres différenciant en 6 bandes de fréquence bruits respiratoires normaux et adventices: 5 filtres passebandes à 25, 50, 100, 200, 400 Hz, et un filtre passe-haut à partir de 750 Hz (que nous appelons canal à 800 Hz). L'inscription graphique des signaux filtrés (fig. 3) est faite au moyen d'un inscripteur graphique à projection d'encre dont les injecteurs sont rapprochés du papier afin d'éviter les déflections inertielles (Siemens Mingograph 81). Les mesures sont effectuées à volume courant contrôlé si nécessaire par pneumotachygraphie.

Analyse spectrale (fig. 4)


Les signaux sont captés à la paroi thoracique au moyen d'un capteur microphonique spécial fabriqué au laboratoire d'acoustique à partir d'un microphone à condensateur Brüel et Kjaër. Il satisfait à un certain nombre de propriétés (courbe de réponse, absence de bruit de surface...) (11, 12). Les signaux sont enregistrés sur bande magnétique (enregistreur Nagra) et stockés.

L'unité de traitement différé des signaux se compose d'un analyseur de Fourier (ONO-SOKKI CF 300) qui échantillonne et calcule directement la transformée de Fourier par échantillonnage temporel puis fréquentiel et d'un support informatique qui systématise les opérations d'analyse. L'ordinateur (Apple II e) gère une imprimante graphique, une unité de disque et l'analyseur.

D'emblée, nous tenons ici à rassurer le lecteur éventuellement découragé

No 10 – Octobre 1986

Phonopneumogramme d'un sujet normal. Enregistrement des bruits respiratoires normaux. La charge énergetique des bruits respiratoires normaux est importante au canal 200 Hz, fréquence de résonnance du thorax.

Par débordement d'intensité, présence d'une charge moindre aux canaux 100 et 400 Hz. Les filtres 25 et 50 montrent les bruits du cœur, de basse fréquence.

Absence de signal au canal 800 Hz.

par l'impossibilité de se procurer et d'utiliser un tel matériel. Cette crainte pourrait davantage se faire jour chez le practicien indépendant qui ne dispose pas des moyens ni de l'infrastructure d'un milieu hospitalier. En réalité cet équipement spécialisé sert à analyser et confirmer les signaux perçus au simple stéthoscope ainsi qu'à objectiver nos techniques et nos méthodes de soins afin de leur donner le caractère scientifique indispensable. Mais sur le terrain, et à la suite d'une formation en auscultation, le stéthoscope peut fort bien convenir comme seul outil nécessaire et suffisant.

5. Notion de tube axial

Dans cet exposé, nous ne considérerons pas l'arbre respiratoire dans sa totalité. En effet, le niveau de l'encombrement bronchique conditionne la spécificité des manœuvres de kinésithérapie et par conséquent nous nous référons à la notion anatomo-fonctionnelle de tube respiratoire axial dans son unicité segmen-

Au départ de la trachée, (première colonne du tableau 1 de synthèse) le tube axial se compose de la bronche souche extrapulmonaire, puis des éléments intrapulmonaires: bronche lobaire, la bronche segmentaire qui lui fait suite, bronche sous-segmentaire, une succession de bronches plus petites pour aboutir à la bronchiole terminale, la bronchiole respiratoire, le canal et le sac alvéolaire et l'alvéole. Par opposition à l'ensemble de l'arbre aérien que l'on peut représenter sous la forme d'un entonnioir (fig. 5) (par la somme aux différents étages des surfaces de section, de la trachée jusqu'à la périphérie) le tube axial est ici considéré comme une «tuyauterie» unique qui va en se rétrécissant de son embouchure vers sa terminaison.

Le tube axial n'est pas qu'une structure anatomique passive subissant seulement les variations d'activité du système nerveux autonome. Il peut aussi répondre à certaines sollicitations extérieures qui intéressent au premier plan le kinésithérapeute:

- la position du corps
- le volume pulmonaire.

Notre méthode, guidée par l'auscultation pulmonaire telle qu'elle est enseignée par Lens, repose en partie sur l'exploitation de cette notion.

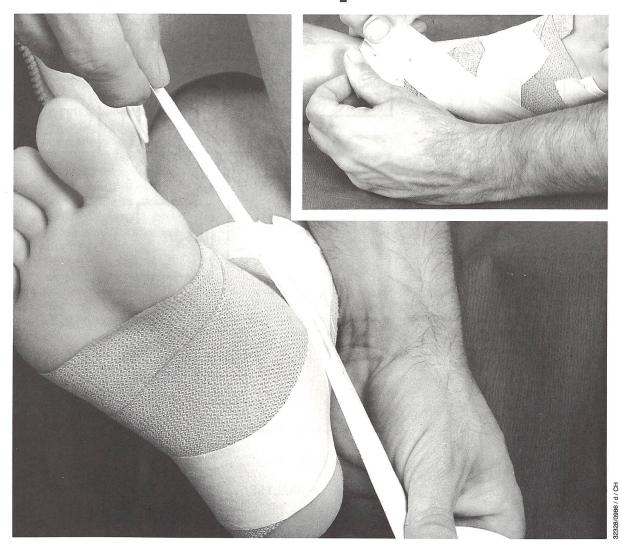
Le tube axial possède en effet une dynamique propre que nous rappelons ici brièvement (fig. 6).

Lors de l'expiration forcée (toux et hemmage par exemple), les voies aériennes sont soumises à la pression transpulmonaire qui s'applique sur la paroi bronchique et divise ainsi le tube axial en deux segments: un secteur d'aval où la pression endobronchique est inférieure à la pression pleurale et où on assiste à une compression des voies aériennes avec limitation du débit expiratoire et augmentation de vitesse du courant gazeux, et un secteur d'amont, où la

Tube respiratoire axiale		Frequence hertzienne	Situation dans la phase inspiratoire	Position Dependance	Manœuvre de kinésithérapie	Genese des craquements
bro	bronche sous-segment.	basse fréquence (200 hZ)	aléatoire	non position-dépendants	toux à haut volume, hemmage, aspiration. KINESIE- DEPENDANCE (+)	Bullage de l'air au travers des secretions bronchiques
	betites bronches	moyenne fréquence (400 hZ)	holophasiques puis méso-, télé-, puis télé-, et disparition	position-dépendants	FET, toux à bas volume, hemmage à bas volume, en infralatéral KINESIE- DEPENDANCE (+)	Bullage decollement des parois egalisation de pression
	bronchiole terminale bronchiole respiratoire canaux et sacs alvéolaires	haute fréquence (800 hZ)	téléphasiques	position-d	pas de kiné, sauf pneumonie au stade des bruits respiratoires bronchiques dans ce cas: inspirations profondes en supralatéral KINESIE- DEPENDANCE (-)	Egalisation de pression événement dynamique d'ouverture

$Tableau\ I$

Relations entre

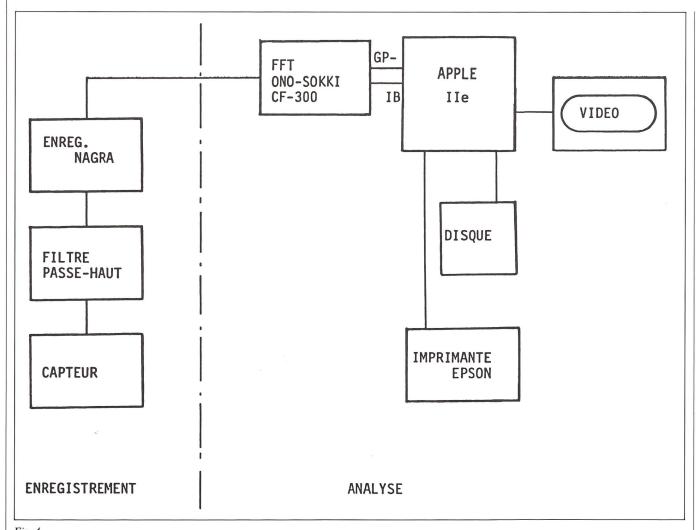

- l'étage du tube respiratoire axial (col. 1) (modifié d'après F. Netter, Respiratory System, volume 7, Ciba collection of medical illustrations, p 24)
- la fréquence hertzienne des craquements (colonne 2)
- la situation des craquements dans la phase inspiratoire (colonne 3)
- la position-dépendance des craquements (colonne 4)
- les manoeuvres actives de kinésithérapie efficaces aux différents niveaux (colonne 5)
- la genèse des craquements (colonne 6).

Rem:

 nous àttribuons la genèse des craquements de moyenne fréquence à des accidents acoustiques survenant dans les petites voies aériennes. En réalité, aucune frontière stricte ne peut être tracée pour séparer les zones à fréquences différentes. Ce schéma signifie que la fréquence s'élève des voies proximales vers les territoires pulmonaires distaux.

Partiell immobilisieren mit Tape

Partielles immobilisieren vermeidet gegenüber der völligen Ruhigstellung die oft auftretende Inaktivitätsatrophie sowie Einschränkung der Gelenkbeweglichkeit. Die Nachbehandlung kann dadurch verkürzt werden. Zum partiellen Immobilisieren wird LOHMANN Tape sowohl unmittelbar auf der Haut als auch in Kombination


mit Pflasterbinden (Porelast, Porodress) appliziert. Es ist ein weisses, nicht elastisches Pflasterband aus kräftigem Zellwollgewebe mit hautverträglichem, gut haftendem Kautschuk-Kleber. Zur einfachen Handhabung ist LOHMANN Tape quer- und längsreissbar.

LOHMANN GmbH & Co. KG Postfach 12 01 10 D-5450 Neuwied 12

Vertretung für die Schweiz: Salzmann AG Unterstrasse 52 · CH-9001 St. Gallen Tel.: 071-20.61.81 · Tix.: 77104 Salzm

1-19. 4 Configuration de l'unité de traitement pour échantillonnage et calcul de la Transformée de Fourier. D'après Bosser (12) et Chapelle (12).

pression endobronchique est supérieure à la pression pleurale et où les voies aériennes restent ouvertes. Dans ce secteur, la seule force motrice du débit est la pression engendrée par le recul élastique du parenchyme pulmonaire. L'état de tension de celui-ci peut donc être exploité passivement par la déflation.

La limite entre les deux secteurs est appelée point d'égale pression (PEP). La situation de ce point d'égale pression n'est pas constante; afin d'obtenir une compression bronchique distale et des forces de cisaillement les plus périphériques, nous obtenons le déplacement du PEP de deux manières:

- par le choix du décubitus latéral, le «ramasse» pulmonaire du poumon infralatéral diminue la pression due au recul élastique et recule le PEP vers l'amont.
- par les manœuvres d'expiration forcée (toux, hemmage, FET) à bas volume pulmonaire, le même effet est accentué.

6. Synthèse-commentaires

L'analyse et les commentaires qui suivent, étayés par des arguments cliniques et paracliniques, tentent d'établir des relations entre les paramètres proposés, le niveau de l'atteinte bronchique, la genèse des craquements pulmonaires et le traitement kinésithérapique spécifique à des situations nosologiques précises. Nous connaissons le risque de la schématisation mais il s'agit d'un passage que nécessite une modélisation didactique simple.

Cette analyse conclut, au départ de la fréquence hertzienne, paramètre essentiel, à trois catégories de craquements:

Les craquements de basse fréquence relative (200 Hz)

Ils n'occupent aucune situation systématique dans la phase respiratoire. Ils apparaissent d'une manière alé-

atoire aussi bien en inspiration qu'en expiration.

Ils envahissent les 6 filtres du phonopneumogramme (fig. 7a), témoignage de leur important contenu énergétique. Ce sont les craquements des encombrements bronchiques que l'on perçoit lors de l'application de la main sur la paroi thoracique et que l'on situe à tort dans telle ou telle région pulmonaire. Cette manœuvre reste peu précise, étant donné la grande diffusion vibratoire de ces sons de la même fréquence hertzienne que la résonance intrinsèque du thorax et notamment chez le jeune enfant au thorax de dimension réduite. Leur spectre est caractérisé par une bande passante étroite (fig. 7b). Ces craquements sont générés dans

les voies aériennes proximales, car on note leur disparition immédiate après toux à haut volume pulmonaire suivie d'expectoration ou encore après aspiration endo-bronchique.

Audibles à la bouche, ils correspondent bien au bruit du bullage de l'air au travers des sécrétions.

Le traitement kinésithérapique de ce type d'encombrement reste celui qui est classiquement appliqué: toux, aspiration. Nous ne préconisons pas le drainage postural pour des raisons d'inefficacité décrites par ailleurs (13). Il existe à l'égard de ces craquements de basse fréquence un danger de confusion avec d'autres craquements de basse fréquence qui sont non audibles à la bouche, de caractère protophasique permanent, durablement récurrents et localisés préférentiellement aux régions pulmonaires postéro-basales dépendantes. Nous avons établi (14) que ces craquements ne correspondent pas à des sécrétions mais à des altérations structuro-fonctionnelles du poumon dépendant chez les obstructifs chroniques. Leur différenciation stéthacoustique ne peut se faire qu'après écolage stéthacoustique sur le terrain.

Les craquements de moyenne fré*quence relative (400 Hz)*

Ils sont présents au filtre 400 Hz et

Fig. 5 Comparaison entre le tube axial respiratoire considéré comme entité mono-tubulaire (a) et l'ensemble des voies aériennes dont la somme des surfaces de section aux différents niveaux peut-être représentée comme un entonnoir (b), à faible section supérieure et grande section inférieure. Cet énorme gradient de section a des conséquences importantes sur la vitesse et le débit gazeux, quasi nuls en périphérie.

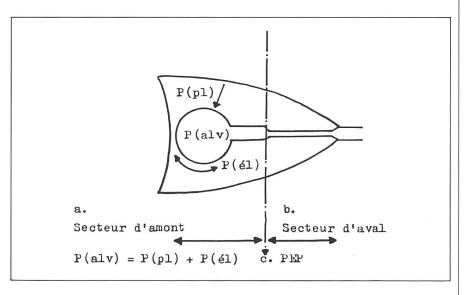


Fig. 6

Représentation schématique de la dynamique des conduits bronchiques intrathoraciques lors de l'expiration forcée (d'après Richardson P.S., Peatfield A.C., Reflexes concerned in the defence of the lungs. Bull. Europ. Physiopath. Resp. 1981, 17, 979-1012.).

- a. secteur d'amont
- b. secteur d'aval
- c. point d'égale pression

La pression alvéolaire (Palv), lors de l'expiration forcée est la somme de la pression pleurale (Ppl) et de la pression due au recul élastique pulmonaire (Pél).

 $Palv = Plp + P\acute{e}l.$

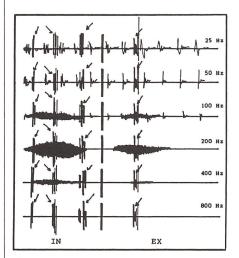


Fig. 7 a Phonopneumogramme montrant des craquements inspiratoires et expiratoires de basse fréquence présents aux 6 filtres.

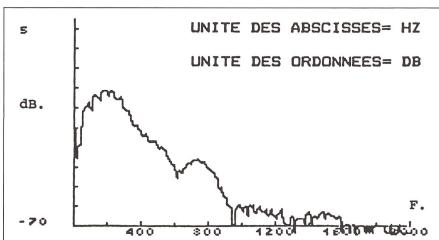


Fig. 7b Analyse spectrale d'un craquement de basse fréquence relative.

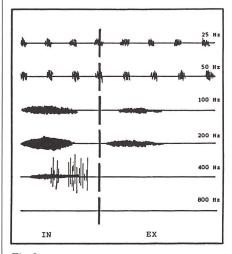


Fig. 8a Phonopneumogramme montrant des craquement téléphasiques inspiratoires de moyenne fréquence relative, mis en évidence au filtre 400 Hz.

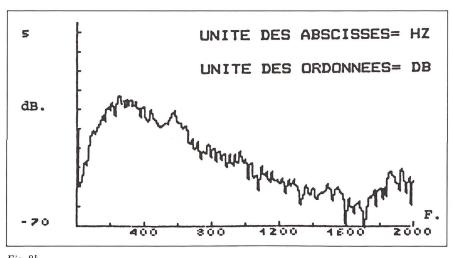


Fig. 8b Analyse spectrale d'une craquement téléphasique inspiratoire de moyenne fréquence relative.

débordent parfois quelque peu dans le filtre phonopneumographique 800 Hz par leur contenu énérgétique (fig. 8a). Au stade aigu de l'affection, ils sont holophasiques inspiratoires, ce qui correspond à un important degré d'encombrement des petites voies aériennes. Leur évolution sous traitement kinésithérapique se fait de

la manière suivante: ils deviennent méso et téléphasiques ensuite uniquement téléphasiques avant de disparaître.

Leur analyse acoustique révèle un spectre à bande passante large (fig. 8b), plus riche dans les hautes fréquences que les précédents ce qui rend compte de leur timbre.

Le traitement kinésithérapique, basé sur les propriétés dynamiques bronchiques décrites plus haut est analytique et spécifique aux craquements de moyenne fréquence. Il consiste à positionner la région malade (souvent réduite à une ou deux surfaces de stéthoscopes comme observé à la suite de pneumonies par exemple) en

JEAN HOLZER AG - WISLISTRASSE 12 - CH-8180 BÜLACH

Telefon 01 - 860 07 32 - Telex 825 986

Aus unserem Fabrikationsprogramm:

- Original-Holzer-Novodyn-System-2000 Analgesie-Reizstrom-Therapiegerät für höchste Ansprüche
- Iononda-3000 neues, superkompaktes Analgesie-Reizstrom-Therapiegerät. Für das kleine Budget.
- Dynatronic-2000 Dynatronstrom-Therapiegerät mit 4 Ausgängen. Für die hohe Schule der Elektrotherapie.
- Polytronic-2000 Superkompaktes Dynatronstrom-Therapiegerät mit 2 Ausgängen. Für die Sporttherapie.
- Rheotronic-2000 Universal-Reizstrom-Gerät für alle Formen der Elektrodiagnostik und Elektrotherapie.
- Dyna-Diatherm-2000 Hochleistungs-2000-Watt Bestrahlungs-Therapiegerät für die Dynamische Thermostimulation.
- Lymphomatic-3002 Druckwellen-Therapiegerät mit dynamisch fortlaufender Druckwelle in 5-Kammer-Manschetten.
- Lasersun-Hochleistungs-HeNe-Laser mit 5 mW Ausgangsleistung, mit oder ohne IR-Laser

Heute schon die Therapie von morgen:

Die Kombinations-Therapie Biofeedback + Elektrotraining mit Mupodyn-3000 und Polytronic-3000 potenziert die therapeutische Wirkung von 2 bewährten Therapieformen einfach und preiswert.

Elektro-Training plus EMG-Biofeedback-Training

30 Jahre Jean Holzer AG Im Dienste der physikalischen Medizin

Wir feiern unser 30jähriges Bestehen. Stolz dürfen wir auf diese Jahre zurückblicken, in denen unsere Firma zu einem weltweiten Qualitätsbegriff auf dem Gebiet der Entwicklung und Fabrikation von Therapie-Geräten herangewachsen ist.

Wir danken allen unseren Kundinnen und Kunden für Ihr Vertrauen

Ihre grosse Gewinn-Chance:

Ein Holzer-2-Kanal-Polytronic im Wert von SFr. 3660.-

(Moderne Schmerzbekämpfung und Muskeltraining mit dem Dynatron-Strom) können Sie gewinnen bei unserem

IFAS-Wettbewerb 1986

Die richtige Antwort auf 3 Fragen genügt zur Teilnahme an der Auslosung. Verlangen Sie das Teilnahmeformular an unserem Stand 148 in Halle 1.

Ein nützliches Geschenk, das die Therapie erleichtert, bekommt jeder Teilnehmer sofort mit nach Hause.

Wir freuen uns sehr auf Ihren Besuch.

Halle 1, Stand 148: Der Hauptgewinn wartet auf Sie – Wert Fr. 3660.–

Nr. 10 – Oktober 1986

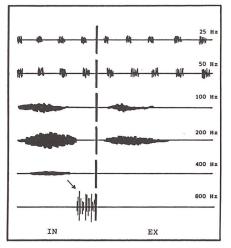


Fig. 9a Craquements téléphasiques inspiratoires de haute fréquence d'un patient souffrant d'hypoalbuminémie, indiqués par la flèche au filtre 800 Hz.



Fig. 9 b Analyse spectrale d'un craquement téléphasique de la figure 9a. En abscisse: les fréquences. En ordonnée: l'amplitude.

infralatéral, soit près du plan d'appui. Il faut de plus demander au malade des efforts de toux à bas volume pulmonaire (si le patient n'est pas trop âgé, auquel cas les fréquentes dyskinésies bronchiques rendent la toux inefficace), du hemmage ou des manœuvres d'expiration forcée (FET des anglais = forced expiratory technique). En supralatéral, le vibromassage appuyé donne quelques résultats, inconstants toutefois. Le genèse de ces craquements est à rapprocher du bullage, mais aussi à des ouvertures brusques de bronches aux parois accolées, dont le décollement pourrait constituer la source intrinsèque du bruit perçu, ou encore à des égalisations rapides de pression d'un territoire à l'autre après ouverture soudaine de la bronche comme le proposait Forgacs (6).

Les craquements de haute fréquence relative (800 Hz)

Ils sont quasi toujours téléphasiques et non influencés par la kinésithérapie, ce qui nécessite à l'évidence que l'on soit capable de les reconnaître. On les trouve dans la fibrose pulmonaire, dans l'oedème interstitiel...

Le phonopneumogramme les individualise au filtre 800 Hz (fig. 9a) et leur spectre présente une bande passante très large, presque horizontale aux hautes fréquences. La genèse de ces craquements proposée par Forgacs correspond à des égalisations soudaines de pression après ouverture soudaine d'une voie aérienne préalablement fermée. Fredberg (cité par Dalmasso, 7) postule que le craquement est dû à l'événement dynamique d'ouverture consécutif à un changement brutal de tension élastique.

Bien que ces craquements ne soient habituellement pas influencés par la kinésithérapie, la pneumonie doit retenir notre attention car au cours de son évolution, nous avons montré (16) qu'au stade des bruits respiratoires bronchiques (ancien souffle trachéo-bronchique ou souffle tubaire), qui correspond à l'état d'hépatisation rouge de Laënnec (1), nous avons pu faire apparaître des craquements téléphasiques inspiratoires de haute fréquence au moyen d'inspirations ré-

pétées à la capacité pulmonaire totale en supralatéral.

7. Discussion des paramètres

La fréquence

Quoique que très schématique, une relation fréquence Hz-dimension du conduit n'est pas à exclure et Lens la propose comme première approche simplifiée à titre de modélisation «stratégique» utile au disgnostic et à la kinésithérapie.

On peut en effet constater que la fréquence Hz des craquements s'élève au fur et à mesure que la pathologie concerne des étages pulmonaires de plus en plus distaux.

L'encombrement des gros troncs après anesthésie ou lors d'une bronchite simple par exemple, s'accompagne de craquements de basse fréquence. Au décours de la pneumonie, au stade de défervescence où les petites voies aériennes commencent à être envahies par des sécrétions, les craquements de moyenne fréquence prédominent.

Enfin les craquements de haute fréquence sont rencontrés dans les at-

teintes interstitielles, affections distales du parenchyme.

La position-dépendance

Les craquements de moyenne et haute fréquence semblent position-dépendants. La position-dépendance est en rapport avec l'importance de l'encombrement bronchique périphérique, d'où l'intérêt de ce paramètre dans l'évaluation du degré de l'atteinte. Par exemple, au stade aigu d'une infection bronchique distale, les craquements sont présents en infralatéral et en supralatéral, puis au fur et à mesure de l'amélioration, ils ne sont plus présents qu'en infralatéral avant de disparaître (16).

La situation dans la phase inspiratoire

La situation des craquements de moyenne fréquence dans la phase inspiratoire est également liée au degré de l'encombrement.

D'holophasiques, ils deviennent méso et téléphasiques puis seulement téléphasiques avant de disparaître. Ce mode de disparition dans la phase inspiratoire suit un schéma constant parallèle à la détersion pulmonaire. Il s'agit dès lors d'un bon repère pour le kinésithérapeute qui peut ainsi apprécier le stade de l'affection auquel le malade lui est adressé et adapter sa conduite thérapeutique en conséquence, soit au niveau de la fréquence des séances de soins, soit au niveau de leur durée.

La kinésie-dépendance:

est un indice utile par lequel le médecin tente d'évaluer l'indication d'un traitement de kinésithérapie. Lorsqu'après une manœuvre de toux à bas volume ou des inspirations et expirations amples, il y a modification passagère de la situation des craquements dans la phase inspiratoire, un traitement de kinésithérapie peut habituellement être envisagé.

8. Conclusion

A la lumière des connaissances actuelles sur la dynamique bronchique

d'une part, des travaux d'analyse des signaux sonores pulmonaires d'autre part, nous avons pu montrer qu'une kinésithérapie respiratoire différentielle, spécifique de l'encombrement bronchique à des étages différents pouvait être mise en œuvre; de plus, cette approche nouvelle de l'encombrement bronchique nous a imposé une remise en question fondamentale de certaines techniques de kinésithérapie respiratoire (13).

La connaissance de cette «nouvelle manière d'ausculter» nous est apparue un apport précieux à plusieurs égards:

- 1. une terminologie stéthacoustique précise permet au médecin et au kinésithérapeute de parler le même langage
- 2. les paramètres que nous avons commenté sont des repères indispensables au choix affiné des techniques kinésithérapiques que nous proposons et à leur contrôle
- l'analyse acoustique conduit à une meilleure interprétation des bruits respiratoires normaux et adventices

Elle est de plus d'un intérêt didactique évident à la formation des étudiants médecins et kinésithérapeutes à l'auscultation pulmonaire.

Références

- Laënnec R.T.H. De l'auscultation médiate ou traité du diagnostic des maladies des poumons et du cœur. Brosson et Chaudé. Rep. Culture et civilisation. Bruxelles, 1968; 927 p., 2 vol.
- Lens E., Postiaux G., Chapelle P. L'auscultation en décubitus latéral des craquements inspiratoires téléphasiques. Louvain Med. 104: 85–94, 1985.
- Postiaux G. La kinésithérapie respiratoire guidée par l'auscultation pulmonaire. Kinésithérapie-scientifique. No spécial 220, janvier 1984.
- Merz P. Lungenauskultation in der Atemphysiotherapie. Rev. Soc. Suisse Phys. No 5: mai 1985; 2–25. «Physiothérapeute»
- 5. Nath Ar., Capel L.H. Inspiratory crackles and mechanical events of breathing. Thorax 1974; 29: 695–698.
- 6. Forgacs P. Crackles and wheezes. Lancet 1967; 2: 203–205.

- Dalmasso F., Guarene, Spagnolo R., Benedetto G., Righini G. A computer system for timing and acoustical analysis of crackles: a study in cryptogenic fibrosing alveolitis. Bull. Eur. Physiopathol. Respir. 1984, 20, 139–144.
- Kudoh S., Ichikawa K., Kosaka K. Analysis of the rales in patients with fibrosing alveolitis by a new phonopneumographic method using a soundspectrograph. Rion publ., Japan 1978.
- Mori M., Kinoshita K., Morinari H., Shiraishi T., Koike S., Murao S. Waveform and spectral analysis of crackles. Thorax 1980; 35: 843–850.
- Kraman S. Does the vesicular sound come only from the lung? Am. Rev. Respir. Dis. 1983: 128: 622-626.
- Bosser T., Chapelle P., Lens E., Postiaux G. L'analyse acoustique des bruits respiratoires. Revue française d'acoustique. IN PRESS.
- 12. Bosser T. Analyse spectrale des sons pulmonaires à l'aide d'un analyseur de Fourier et d'un micro-ordinateur. Mémoire. Faculté polytechnique, Mons, Belgique.
- Postiaux G., Lahaye J.-M., Lens E., Chapelle P. Le drainage postural en question. Kinésithérapie-scientifique. Sept. 1985.
- 14. Postiaux G., Lens E., Chapelle P. Conduite à tenir en kinésithérapie respiratoire face aux craquements protophasiques inspiratoires de basse fréquence. Acta 3èmes Journées européennes de kinésithérapie respiratoire et cardio-vasculaire. Paris, octobre 1984.
- 15. Forgacs P. The functional basis of pulmonary sounds. Chest 1978; 73: 399–405.
- 16. Postiaux G., Lens E., Chapelle P., Bosser T. Intérêt de la phonopneumographie et de l'analyse acoustique spécialisée en kinésithérapie respiratoire. IN PRESS. Annales de kinésithérapie.

Adresse des auteurs:

- G. Postiaux, Kinésithérapeute, Service de médecine interne, Clinique Reine Fabiola, Montignies-sur-Sambre, Belgique.
- E. Lens, Chef du Service de Médecine interne, Clinique Reine Fabiola.
- P. Chapelle, Professeur d'acoustique, Faculté polytechnique, Mons, Belgique.

Travail réalisé dans le cadre du Groupe d'étude pluridisciplinaire stéthacoustique, ASBL, rue de Miaucourt, 43, (B) 6180 Courcelles.

Pour toute correspondance, adresse ci-dessus.