Zeitschrift: Orion: Zeitschrift der Schweizerischen Astronomischen Gesellschaft

Herausgeber: Schweizerische Astronomische Gesellschaft

Band: 81 (2023)

Heft: 4

Artikel: Messung der Rotverschiebung bei Galaxien und Quasaren

Autor: Walker, Richard

DOI: https://doi.org/10.5169/seals-1049507

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 01.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

WIE AMATEURE MIT DER **ROTVERSCHIEBUNG** DIE **EXPANSION DES UNIVERSUMS** VERMESSEN KÖNNEN

MESSUNG DER ROTVERSCHIEBUNG BEI GALAXIEN UND QUASAREN

Beitrag: Richard Walker

Die spektrometrische Messung der Rotverschiebung von Galaxien und Quasaren ist das wichtigste Werkzeug zur grossskaligen Vermessung des expandierenden Universums. Der Nachvollzug ist auch für Amateure, mit relativ bescheidenem Aufwand und trotzdem erstaunlicher Präzision, möglich. Für die Auswertung des ermittelten z-Wertes und die spannende Beschäftigung mit der Kosmologie stehen mehrere online Tools zur Verfügung.

Amateure können heute auch im extragalaktischen Bereich die Wellenlängenverschiebung von Spektrallinien messen. Der daraus berechnete z-Wert wird, dank den spektakulären JWST-Bildern, jetzt sogar in Kreisen diskutiert, die mit der Aufzählung unserer Planeten überfordert wären. Tatsächlich ist z für die Kosmologie als Distanz- und Zeitmass fundamental wichtig und lässt sich verblüffend einfach und meistens mit hoher Präzision ermitteln. Dazu wird lediglich ein Spaltspektrograf mit Eichlichtquelle, ein durchschnittliches Amateurteleskop mit einer Öffnung ab ca. 8 Zoll und gutes Seeing benötigt. Dies bietet nebenbei auch einen spannenden Einblick in die

Kosmologie [10]. Die hier vorgestellten Profile wurden mit dem DADOS Spektrografen und dem 200 Linien/mm Gitter aufgenommen.

DEFINITION DER

WELLENLÄNGENVERSCHIEBUNG

Eine mit der Wellenlänge λ vermessene Spektrallinie kann entweder in roter- (langwelliger) oder blauer (kurzwelliger) Richtung verschoben erscheinen. Als Referenz dient das neutrale Spektrum einer Kalibrierlichtquelle mit der sog. Ruhewellenlänge λ_0 . Als Masseinheit dienen Angström [Å] oder Nanometer [nm].

Abbildung 1: Definition Wellenlängenverschiebung (links). Rechts wird gezeigt, wie die Lichtwellen gedehnt werden, wenn sich eine Galaxie von uns wegbewegt (Rotverschiebung), oder gestaucht werden, wenn sie auf uns «zufliegt» (Blauverschiebung).

Grafiken: Richard Walker

Die Verschiebung oder «Shift» $\Delta\lambda$ wird definiert mit $\Delta\lambda = \lambda - \lambda_0$ {1}. Falls $\Delta\lambda$ positiv, sehen wir eine Rotverschiebung oder engl. Redshift. Das Objekt entfernt sich von uns und der Wellenzug erscheint deshalb gedehnt. Ist $\Delta\lambda$ negativ, sehen wir eine Blauverschiebung oder engl. Blueshift. Das Objekt nähert sich uns und der Wellenzug erscheint dadurch gestaucht.

DEFINITION DES Z-WERTES

Daraus kann nun mit einer simplen Division der dimensionslose z-Wert berechnet werden:

$$z = \frac{\Delta \lambda}{\lambda_0} \{2\}$$

DIE RADIALGESCHWINDIGKEIT V_R

Multipliziert man den z-Wert mit der Lichtgeschwindigkeit c $\approx 300'000$ km/s, resultiert für den «kosmologischen Nahbereich» die Komponente der Radialgeschwindigkeit $v_{\rm r}$ welche in der Richtung unseres Sehstrahls zum Objekt wirkt.

$$v_r = c \cdot z \{3\}$$

EIGENSCHAFTEN DES Z-WERTES

Dieser nur spektroskopisch messbare Wert ist im «kosmologisch» relevanten Bereich, d. h. ab einigen 100 Mio. Lj, das einzig existierende, absolute Mass für die Distanz und somit auch der Vergangenheit. Unabhängig von kosmologischen Modellen, und ohne irgendwelche Korrekturen, ermöglicht er einen absoluten Distanzvergleich zwischen einzelnen Objekten. Deshalb ist er im Bereich ab ca. 500 Mio. Lj der bevorzugte Distanzwert in wissenschaftlichen Publikationen. Er ist der Schlüsselwert zur Berechnung weiterer Distanzmasse, wozu kosmologische

Modelle und entsprechende Tools notwendig sind [5] [6] [7].

DER GRAVIERENDE NACHTEIL DES Z-WERTES

Der Plot (Abbildung 2) des «Cosmologic Calculator» von $Nick\ Gnedin\ [6]$ zeigt, dass der z-Wert sich nur bis zu z ≈ 0.8 einigermassen proportional zur Lichtlaufzeit (Look Back Time) verhält! Das Tool basiert auf dem aktuell akzeptierten, flachen und beschleunigt expandierenden Universum des ΛCDM -Modells, mit den entsprechend aufgeführten Parametern [10]. Am Limit des Urknalls oder «Big Bang» strebt der z-Wert bei 13.8 Mrd. Jahren (GYR) sogar gegen unendlich, weshalb hier ein bestimmter Zuwachs von z eine zunehmend geringere Steigerung der Distanz erzielt (JWST!). Eingetragen ist noch eine Auswahl von Quasaren, heller als $+16^{mag}$, deren Rotverschiebung von Amateuren bereits erfolgreich gemessen worden ist [13].

EXTREM- UND ECKWERTE VON Z

z = 0 Gegenwart $t = t_0 = 13.8$ Mrd. Jahre

 $z = \infty$ «Urknall» t = 0

z = 1'089 Mikrowellenhintergrund $t \approx 380'000$ Jahre

Die sog. «kosmologische Zeit t», engl. Cosmologicaloder Comoving time, startet beim hypothetischen Urknall mit t = 0 und gilt differenzlos für beliebige Punkte des expandierenden Universums [10].

MESSUNGEN IM BEREICH BIS CA. 500 MIO. LJ

Gemäss Hubble-Lemaître Gesetz gilt, dass in diesem Distanzbereich die Radialgeschwindigkeit v_r einer Galaxie [km/s] noch linear mit der Distanz D [Mpc] zunimmt.

$$v_r = D \cdot H(0) \{4\}$$

Die Hubblekonstante H(0) ist der aktuell gültige, aber noch debattierte Wert des über die Zeit t variablen Hubbleparameters H(t). So basiert der aktuell tiefere Wert von $H(0) = 68 \text{ km s}^{-1} \text{ Mpc}^{-1} \text{ (km pro Sekunde und$ Megaparsec) auf der Mikrowellen-Hintergrundstrahlung und wird von den meisten kosmologischen Tools als Defaultwert verwendet. Infolge der Raumexpansion dehnt sich demnach eine Strecke von 1 Mpc oder 3.26 Mio. Lj pro Sekunde um 68 km. Basierend auf der Allgemeinen Relativitätstheorie postulierte in den 1920er Jahren als erster der belgische Priester Georges Lemaître, dass die Radialgeschwindigkeit v, nicht kinematisch, sondern durch die Dehnung des Raumes verursacht wird [10]. In diesem «kosmologischen Nahbereich», zu dem mit max. 80 Mio. Lj auch die Messier-Galaxien gehören, ist die Raumexpansion noch sehr gering. Infolge des Dopplereffektes wird sie deshalb signifikant von der kinematischen Eigenbewegung der Galaxien überprägt und die Messwerte müssen auch heliozentrisch korrigiert werden.

MESSBARE SPEKTRALE SIGNATUREN

In dieser Zone tummeln sich zahlreiche Galaxien mit unterschiedlichem Entwicklungsstand und Kernaktivität. Die meisten wie M31, M33 und M87 zeigen sternähnliche Absorptionsspektren, entsprechend ungefähr den Spektralklassen G – K [13]. Solche Kompositspektren setzen sich aus Milliarden überlagerter Einzelprofile zusammen. Deshalb erscheinen die resultierenden Absorptionslinien meistens deformiert und verbreitert, was die Messgenauigkeit deutlich beschränkt. Die Starburstgalaxie M82 zeigt hingegen, fast ausschliesslich relativ genau messbare Wasserstoff Emissionen und die hochaktiven Kerne der Seyfert Galaxien M77 und M88 zusätzlich noch ionisier-

ten Sauerstoff, Stickstoff, Helium, Neon und Schwefel [13].

BEISPIEL ANDROMEDAGALAXIE M31

Wie allgemein bekannt, zeigt unsere Nachbargalaxie M31 eine Bewegungskomponente in Richtung der Milchstrasse. Infolge der Eigenbewegung resultiert hier ein sehr kleiner, negativer z-Wert von -0.00099 [1], was gemäss {3} einer negativen Radialgeschwindigkeit von $v_{\rm r}\!\approx\!-300$ km/s entspricht. Gemäss Hubble-Lemaître Gesetz {4} und einer Distanz von ca. 0.76 Mpc ist hier die kosmologische Raumexpansion mit $\sim\!52$ km/s, noch sehr gering.

Das Kompositspektrum der Kernregion von M31 (blau) zeigt Ähnlichkeiten mit dem Profil des gelben G8III Riesen Vindemiatrix, ε Vir (Abbildung 3). Die Montage der beiden kalibrierten Spektren zeigt bei vier, in beiden Profilen identifizierten Absorptionen eine deutlich erkennbare Blauverschiebung von M31. Quantitativ ausgewertet ergibt sich für die Radialgeschwindigkeit ein Streubereich von ca. -220 bis -400 km/s. Diejenige des Referenzsterns ε Vir beträgt ca. -14 km/s [2].

MESSUNGEN JENSEITS VON 500 MIO. LJ

Erschlossen wurde dieser gigantische, und dank JWST nun bis nahe zur kosmischen Hintergrundstrahlung reichende Beobachtungsbereich erst 1963, nach der Entdeckung des ersten Quasars 3C273 im Sternbild Jungfrau [8]!

Hier dominiert nun zunehmend die kosmologisch bedingte Raumexpansion und die Eigenbewegung der Galaxien wird vernachlässigbar. Bereits bei 500 Mio. Lj beträgt gemäss {4} die Raumdehnung >10'000 km/s. Heliozentrische- und ähnliche Korrekturen werden immer bedeutungsloser. Das Hubble-Lemaître Gesetz

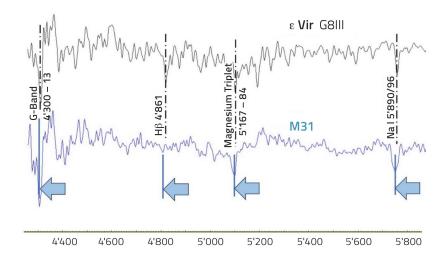



Abbildung 2: z-Wert und Lichtlaufzeit.

Grafik: Richard Walker

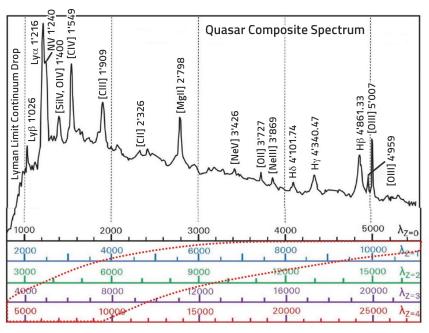
Abbildung 3: Blauverschiebung identifizierter Absorptionslinien von M31.

Grafik: Richard Walker

{4} verliert seine Gültigkeit (Linearität) und muss durch kosmologische Modelle ersetzt werden [10].

MESSBARE SPEKTRALE SIGNATUREN

Für Amateure sind ab etwa z > 0.1 nur noch Quasare messbar. Diese Galaxien haben im Kernbereich Supermassereiche Schwarze Löcher und erscheinen so als extrem helle, sternförmige oder «quasi stellare» Punkte, was die Aufzeichnung der Spektren deutlich erleichtert. Die Identifikation der spektralen Signaturen ist einfach, weil Quasare sehr ähnliche Emissionsspektren erzeugen. Bei hohen z-Werten muss aber berücksichtigt werden, dass die vertraute Wasserstoff-Balmerserie in den Infrarotbereich verschoben wird und dafür Signaturen auftauchen, die sonst im UV-Bereich angesiedelt sind. Das folgende Diagramm zeigt als Hilfsmittel ein synthetisch erzeugtes Quasar Spektrum, ergänzt mit den Wellenlängenskalen, passend für z = 0 bis z = 4 und berechnet gemäss $\{2\}$ und


{5}. Der für Amateure messbare Bereich von ca. 3'700
− 9'500 Å ist im Skalenfeld rotpunktiert umrandet.

$$\lambda_z = \lambda_0 (1 + z) \{5\}$$

Die Lyman α Emission des Wasserstoffs (Ly α) bei $\lambda_{z=0}$ = 1'216 Å ist meistens die kurzwelligste, noch auswertbare Signatur und rückt ab z > 2 in den optisch detektierbaren Bereich. Die ultimative Grenze ist am linken Rand das sog. «Lyman Limit». Infolge der zunehmenden Energie ionisieren die UV-Photonen ab λ < 912 Å den verbreitet vorhandenen Wasserstoff und werden bei diesem Vorgang gleichzeitig absorbiert. Dies erzeugt hier den abrupten Abfall (Continuum drop) des Photonenflusses.

BEISPIEL QUASARE 3C273 UND KUV 18217+6419

In Quasarspektren erscheinen die meisten Emissionen glockenförmig verbreitert, was eine relativ

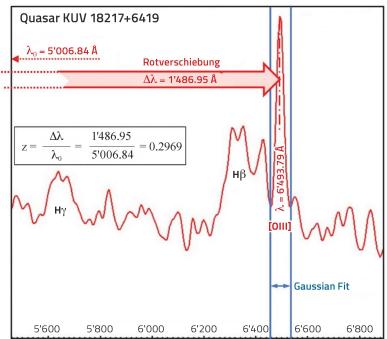
Abbildung 4: Quasar-Spektrum mit unterschiedlich rotverschobenen Wellenlängenskalen.

Grafik: Richard Walker

Z=0 Z=1 Z=2 Z=3

Z = 4

präzise Wellenlängenmessung mittels Gauss Fit ermöglicht.


Das Profil des mit +12.8 mag hellsten Quasars 3C273 [8] wurde vom Verfasser mit einem C8 aufgezeichnet. Die Verschiebung wurde hier im Scheitelbereich der H β -Linie gemessen, weil H α von der atmosphärischen O $_2$ -Absorption bei 7'600 Å überprägt wird. Der H β -Gauss Fit der Software «Visual Spee» [3] resultiert in einer Rotverschiebung von 768.4 Å. Der berechnete z-Wert von 0.1581 stimmt bis auf 3 Nachkommastellen mit $z_{\rm NED}$ =0.15834 der NED NASA-Datenbank überein [1].

Das Profil des Quasars KUV18217+6419 (+14.2^{mag}) im Sternbild Drache wurde anlässlich einer Maturaar-

beit mit dem 14 Zoll RC 360 Astrografen an der Sternwarte Bülach aufgezeichnet [4]. Die Verschiebung wurde hier im Scheitelbereich der ungewöhnlich intensiven, verbotenen [OIII]-Linie des zweifach ionisierten Sauerstoffs gemessen. Die Balmerserie H α , H β , H γ zeigt Doppelpeaks, mutmasslich infolge von Gasströmen im Bereich der Akkretionsscheibe um das zentrale Schwarze Loch. Der [OIII]-Gauss Fit der Software «Visual Spec» resultiert in einer Rotverschiebung von 1'486.95 Å. Der berechnete z-Wert von 0.2969 stimmt auch hier bis auf fast 3 Nachkommastellen mit z_{NED} = 0.29705 der NED NA-SA-Datenbank überein [1].

Abbildung 5: Rotverschiebung der Hβ Emission von 3C273.

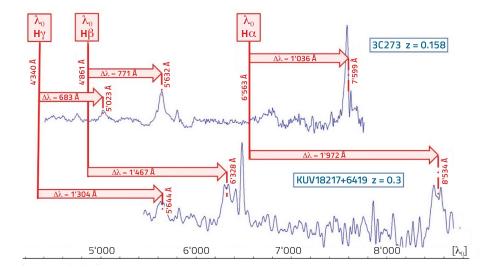


Abbildung 6: Rotverschiebung der [OIII] Emission von KUV18217+6419.

Grafik: Richard Walker

Quasar	z-Wert	Lichtlaufzeit	Aktueller Abstand
3C273	0.158	2.06 Mrd. Jahre	679 Mpc = 2.21 Mrd. Lj
KUV18217+6419	0.297	3.56 Mrd. Jahre	1'242 Mpc = 4.05 Mrd. Lj

Abbildung 7: Vergleich der Rotverschiebung von 3C273 und KUV18217+6419.

Grafik: Richard Walker

KOSMOLOGISCHE AUSWERTUNG DES Z-WERTES

Weil das Hubble-Lemaître Gesetz hier nicht mehr gilt, wurden die zwei wichtigsten Distanzmasse mit dem «Cosmology Calculator» von *Josh Kempner* berechnet [5].

Die Lichtlaufzeit wird im Tool als «Look Back Time» und der aktuelle physikalische Abstand (engl. Proper Distance) als «Comoving Radial Distance» bezeichnet. Dabei wird auch die mit der Zeit zunehmende Raumexpansion berücksichtigt. Detaillierte Erläuterungen siehe [10].

VISUALISIERUNG DER ROTVERSCHIEBUNG

Die relativ niedrigen z-Werte beider Quasare erlauben hier anhand der Wasserstoff-Balmerserie ($\text{H}\alpha$, $\text{H}\beta$, $\text{H}\gamma$) die Rotverschiebung grafisch darzustellen. Eindrücklich ist erkennbar, dass der Shift tatsächlich proportional zur Ruhewellenlänge λ_0 erfolgt und die unterschiedlichen Verschiebungsbeträge immer denselben z-Wert ergeben. Dieser kann somit theoretisch an Linien beliebiger Wellenlänge bestimmt werden.

LINKS

- [1] NASA/IPAC Extragalactic Database NED https://ned.ipac.caltech.edu/
- [2] SIMBAD Astronomical Database CDS (Strasbourg) https://simbad.u-strasbg.fr/simbad/
- [3] *V. Desnoux*, Visual Spec, Free Software to process astronomical spectra http://www.astrosurf.com/vdesnoux/
- [4] Sternwarte Bülach, https://sternwartebuelach.ch/
- [5] J. Kempner, Cosmology Calculator, Kempner. Net https://www.kempner.net/cosmic.php
- [6] N. Gnedin, Cosmological Calculator for the Flat Universe, University of Chicago https://astro.uchicago.edu/~gnedin/cc/
- [7] N. Wright, Javascript Cosmology Calculator, Wright (2006, PASP, 118, 1711), UCLA http://www.astro.ucla.edu/~wright/CosmoCalc.html
- [8] R. Walker, Das optische Spektrum des Quasars 3C273 https://www.ursusmajor.ch/downloads/das-spektrum-des-quasars-3c273-2.3.pdf
 [9] R. Walker, Das optische Spektrum des Quasars KUV18217+6419 https://www.ursusmajor.ch/downloads/quasar-kuv-182176419.pdf
- [10] R. Walker, Spektroskopische Bestimmung kosmologischer Distanzen und Parameter
- https://www.ursusmajor.ch/downloads/spektroskopische-bestimmung-kosmologischer-dis.pdf
- [11] Homepage des Autors u. a. mit Schriften zum Thema Astrospektroskopie: https://www.ursusmajor.ch/astrospektroskopie/richard-walkers-page/index.html

LITERATUR

- [12] M. F. M. Trypsteen, R. Walker: Spectroscopy for Amateur Astronomers-Recording, Processing, Analysis and Interpretation, 2017 Cambridge University Press, ISBN: 9781107166189
- [13] R. Walker: Spectral Atlas for Amateur Astronomers A Guide to the Spectra of Astronomical Objects and Terrestrial Light Sources, 2017 Cambridge University Press, ISBN: 9781107165908

Von der Rotverschiebung, dem z-Wert bis zur Distanzbestimmung

Der Doppler-Effekt ist uns allen bekannt.
Fährt ein Ambulanzfahrzeug mit
Martinshorn auf uns zu, erklingt die
Sirene höher, als wenn sich das
Fahrzeug von uns entfernt. Denselben Effekt hören wir bei einem
Formel 1-Rennen. Die Schallwellen
werden gestaucht, wenn das Fahrzeug

auf uns zufährt und gedehnt, sobald es uns überholt hat. Genauso verhält es sich mit Lichtwellen. «Fliegt» zum Beispiel eine Galaxie auf uns zu (z. B. die Andromedagalaxie), so wird die Wellenlänge kürzer – das Spektrum verschiebt sich leicht nach blau, entfernt sie sich von uns, wird sie länger; wir sprechen dann von der Rotverschiebung. Dieses Dehnen und Stauchen der Wellenlänge können wir mit einem Laborspektrum (Standardspektrum) vergleichen.

Aufgrund zahlreicher untersuchter Galaxien entdeckte Edwin Hubble, dass mit wachsender Distanz die Rotverschiebung und damit – wie er zunächst glaubte - infolge des Dopplereffekts, die «kinematische Fluchtgeschwindigkeit» zunimmt. Der Belgier Georges Lemaître erkannte aber bereits mehrere Jahre zuvor, dass dafür, aufgrund der Allgemeinen Relativitätstheorie, die kosmologisch bedingte Raumexpansion verantwortlich ist. Und genau dies ist ein äusserst spannendes Betätigungsfeld für Amateurastronomen! Die Rotverschiebung oder «Redshift» entspricht der Differenz zwischen der gemessenen Wellenlänge einer beobachteten Spektrallinie und dem entsprechenden Wert, welcher die ruhende Eichlichtquelle des Spektrografen erzeugt (siehe dazu Abbildung 1). Ein Spektrograf spreizt das Licht, ähnlich einem Regenbogen, zu einem streifenförmigen Spektrum mit einer bestimmten Bandbreite. Ausgewertet werden dabei die Wellenlänge und Intensität der spektralen Signaturen, wie Emissions- oder Absorptionslinien, welche die Elemente des beobachteten Objekts generieren. Daraus lässt sich der für die grossskalige Vermessung des Uni-

versums fundamentale z-Wert errechnen. Dieser Wert wird, infolge der kosmologisch bedingten Raumexpansion, mit zunehmender Distanz immer grösser, vereinfacht gesagt; je weiter ein Objekt von uns entfernt ist, desto schneller entfernt es sich von uns. Seit dem Urknall vor 13.8 Mrd. Jahren ändert sich diese Ausdehnungsrate ständig. Die Verwendung von z als Distanz- und Zeitmass erfordert daher die Umrechnung mit dem aktuell akzeptierten, kosmologischen ACDM-Modell des flachen und beschleunigt expandierenden Universums. Dazu stehen im Internet entsprechende Tools zur Verfügung. Der im historischen Hubble-Lemaître Gesetz postulierte, lineare, also gleichmässige Zusammenhang zwischen Rotverschiebung und Expansionsgeschwindigkeit kann näherungsweise nur bis zu einigen 100 Mio. Lj angewendet werden. Der Autor zeigt in seinem Beitrag an ausgewählten Beispielen das Verhalten gewisser Objekte. Bei der Andromedagalaxie (M31) etwa ist der z-Wert klein, wir haben sogar eine negative Radialgeschwindigkeit, was zeigt, dass unsere Nachbargalaxie mit etwa 300 km/s auf uns «zufliegt» und eine deutliche Blauverschiebung zeigt. In unserer unmittelbaren Umgebung ist die Raumexpansion mit ~52 km/s

In Entfernungen grösser als 500 Mio. Lj steigt die Raumausdehnung auf über 10'000 km/s. Für Amateure sind in Bereichen, wo z > 0.1 ist, nur noch Quasare, also Galaxien mit Supermassereichen Schwarzen Löchern in ihren Zentren, messbar. Am Beispiel des Quasars KUV 18217+6419 konnte im Rahmen einer Maturaarbeit gezeigt werden, wie genau der z-Wert aus dem aufgezeichneten Spektrum ermittelt werden kann; bis auf die dritte Stelle nach dem Dezimalpunkt!

DER AUTOR Richard Walker

Als pensionierter Bauingenieur befasst sich der Autor seit über 50 Jahren mit Astronomie – in letzter Zeit vorwiegend mit der Spektralanalyse. Er ist Verfasser mehrerer Publikationen zum Thema Astrospektroskopie [8], [9], [10], [12], [13] und Mitglied der Fachgruppe Spektroskopie der SAG. Als lizenzierter Kurzwellenamateur interessiert er sich auch für die Radioastronomie. Weiter analysiert er die archäoastronomische Relevanz der Ausrichtung prähistorischer Steinsetzungen und Gräbern, sowie der Gebäudeachsen von Sakralbauten [11].

Swiss Wolf Numbers 2023

Marcel Bissegger, Gasse 52, CH-2553 Safnern

7/2023	Name	Instrument	Beob.
	Bissegger M.	Refr 100	4
	Ekatodramis S.	Refr 120	1
	Enderli P.	Refr 102	1
	Erzinger T.	Refr 90	1
	Erzinger T.	Refr 90	9
	Friedli T.	Refr 40	7
	Friedli T.	Refr 80	7
	Früh M.	Refl 300	6
	Käser J	Refr 100	22

Meister S.

Meister S. Niklaus K.

Weiss P.

Zutter U.

Refr 125

Refr 140

Refr 82

Refr 90

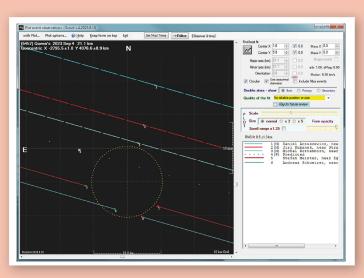
SDO 2048

10

25

Juli 2	2023	Mit	tel: 1	42.5						
	2	3			6		8	9	10	
182	136	126	137	101	138	159	149	127	157	
11	12	13	14	15	16	17	18	19	20	
192	133	129	136	118	124	138	161	170	132	
21	22	23	24	25	26	27	28	29	30	31
139	142	119	86	94	_	136	150	166	173	161

August 2023 Mittel: 114.										
1	2	3	4	5	6		8	9	10	
188	145	141	134	103	154	120	127	112	115	
11	12	13	14	15	16	17	18	19	20	
107	96	97	121	101	165	160	124	132	105	
21	22	23	24	25	26	27	28	29	30	31
102	106	92	79	75	101	94	94	98	103	65


8/2023	Name	Instrument	Beob.
	Bissegger M.	Refr 100	3
	Ekatodramis S.	Refr 120	2
	Enderli P.	Refr 102	1
	Erzinger T.	Refr 90	4
	Friedli T.	Refr 40	5
	Friedli T.	Refr 80	5
	Früh M.	Refl 300	6
	Käser J.	Refr 100	15
	Kortschak H.	Refr 125	3
	Kortschak H.	Refr 140	1
	Meister S.	Refr 125	17
	Meister S.	Refr 140	1
	SIDC S.	Refr 102	5
	Weiss P.	Refr 82	15
	Zutter U.	Refr 90	21

Sept	emb	Mit	tel: 135.1						
	2				6		8	9	10
79	79	103	109	112	126	136	125	137	180
11	12	13	14	15	16	17	18	19	20
190	141	139	142	108	94	95	136	133	169
21	22	23	24	25	26	27	28	29	30
121	208	207	178	186	131	140	108	111	123

9/2023	Name	Instrument	Beob.
	Bissegger M.	Refr 100	3
	Ekatodramis S.	Refr 120	2
	Erzinger T.	Refr 90	2
	Erzinger T.	Refr 90	7
	Friedli T.	Refr 40	8
	Friedli T.	Refr 80	8
	Früh M.	Refl 300	14
	Käser J.	Refr 100	19
	Meister S.	Refr 125	16
	Meister S.	Refr 140	2

Swiss Occultation Numbers 2023 (Fachgruppe Sternbedeckungen SOTAS (www.occultations.ch)

Juli, Augu	Stationen								Stationsinformationen				
Datum	Asteroid / Mond	Bedeckter Stern	BEL	BUE	CUG	EGL	GNO	нім	MUZ	SWD	WET		Beobachter
08.07. 09.07. 22.07. 19.08. 23.08. 04.09. 06.09. 08.09. 11.09. 12.09.	(1161) Thessalia (153) Hilda (51919) 2001 QL86 (7102) Neilbone (52) Europa (5457) Queen's (318) Magdalena (1490) Limpopo (16614) 1993 FS35 (34564) 2000 SN292	UCAC4 379-068328 UCAC4 373-112282 UCAC4 392-073651 UCAC4 429-113086 UCAC4 520-098049 UCAC4 498-000768 G221708.5-090643 UCAC4 502-141529 UCAC4 576-024303 UCAC4 600-006708	0+	0+ 0+ 0+ 0+		0+	0+		0+		O+		BEL Station Bellinzona (St. Sposetti) BUE Sternwarte Bülach (S. Meister / A. Schweizer) CUG Stat. Cugnasco (A. Manna) EGL Station Eglisau (S. Meister) GNO Obs. Gnosca (St. Sposetti) HIM Obs. Himmelried (J. Schenker) MUZ Station Muzzano (A. Ossola) SWD Station Seewis-Dorf (C. Ziolek) WET Station Wettswil (A. Schweizer)

Hier kann man den kurzen Bedeckungsvorgang in einer Videosequenz sehen!

Abbildung 1: Stefan Meister und Andreas Schweizer haben erstmals eine Bedeckung durch den Asteroiden (5457) Queen's aufgezeichnet! Der kleine Asteroid (ca. 20 km Durchmesser) verdeckte den Stern, betrachtet von beiden Standorten EGL und BUE aus.

Quelle: http://www.occultations.ch/