Zeitschrift: Orion: Zeitschrift der Schweizerischen Astronomischen Gesellschaft

Herausgeber: Schweizerische Astronomische Gesellschaft

**Band:** 80 (2022)

Heft: 2

**Artikel:** Jupiter und seine Galileischen Monde

Autor: Röschli, Dominic

**DOI:** https://doi.org/10.5169/seals-1049453

#### Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

#### **Conditions d'utilisation**

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

#### Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

**Download PDF:** 09.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch



## DIE **GEGENSEITIGEN BEDECKUNGEN** UND **VERFINSTERUNGEN** DER GALILEISCHEN MONDE

#### **GRUNDLEGENDE VORAUSSETZUNGEN**

Das Institut de mécanique céleste et de calcul des éphémérides (kurz IMCCE), welches in Frankreich am Observatorium in Paris stationiert ist, rief Amateurastronomen dazu auf, gegenseitige Bedeckungen oder Verfinsterungen der Galileischen Monde mittels eines Teleskops und einer digitalen Fotokamera aufzunehmen. Dies aus dem Grund, da solche Aufnahmen dazu bei-

tragen können, die Genauigkeit von Rechenprogrammen, welche die Positionen von Objekten im Weltraum ermitteln können, zu verbessern.

Damit jedoch eine solche Aufnahme auch wissenschaftlich verwertbar ist, müssen diverse Vorgaben eingehalten werden. Diese beinhalten unter anderem, dass die Zeit in UTC erfasst werden muss und diese auf jedem einzelnen Bild als Zeitstempel ersichtlich ist.

# JUPITER UND SEINE GALILEISCHEN MONDE

Beitrag: Dominic Röschli

Dieser Artikel widmet sich meiner Maturaarbeit, in welcher das Ziel war, wissenschaftlich verwertbare Daten mit einem Schmidt-Cassegrain-Spiegelteleskop und einer digitalen Fotokamera am Beispiel der gegenseitigen Bedeckungen oder Verfinsterungen der Galileischen Monde zu generieren.

**DER AUTOR** Dominic Röschli, Astronomische Vereinigung Aarau Dominic Röschli ist 21 Jahre alt und besucht die Neue Kantonsschule Aarau. Dieses Jahr wird Dominic die Matura abschliessen und anfangs Herbst sein Physikstudium an der Universität Zürich aufnehmen. Nach dem Bachelor plant er, seinen Masterabschluss im Bereich Astrophysik an der ETH zu absolvieren.



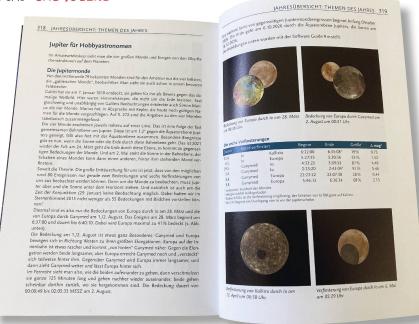



Abbildung 1: Im astronomischen Jahrbuch «Der Sternenhimmel 2021» ging Hans Roth in der Jahresübersicht auf die gegenseitigen Jupiterbedeckungen und Verfinsterungen ein. Oben rechts sehen wir die vom Autor aufgezeichnete Bedeckung von Europa durch Ganymed am 1. / 2. August 2021, dargestellt mit der Software Guide 9. In ORION 3/21 wurde das Ereignis auf Seite 36 näher beschrieben.

Scan der Seite: Redaktion ORION

Eine weitere Vorgabe war, dass der Gain nicht auf automatisch eingestellt ist, da dies sonst die Helligkeitsabnahme verfälschen würde. Auch sollte die Aufnahme des Ereignisses bereits 5 Minuten vor dem Beginn der Bedeckung oder Verfinsterung begonnen werden und erst 5 Minuten nach dem Ende des Ereignisses beendet werden, da, wie bereits kurz angeschnitten, die Rechenprogramme nicht perfekt sind und es zu Abweichungen in der Vorhersage kommen kann.

#### DIE VORBEREITUNG FÜR DIE AUFNAHME DER BEDECKUNG VON EUROPA DURCH GANYMED

Damit die Aufnahme ein Erfolg werden konnte, war eine genaue Planung sehr wichtig. Diese befasste sich mit der Auswahl des Equipments, der Software und auch dem Standort der Aufnahme.

Das gewählte Teleskop war ein Celestron Nexstar 6SE, da dieses mit nur knapp 14 Kilo recht handlich ist und eine automatische Verfolgung des Objektes von Interesse gewährleisten kann. Als Kamera diente die ZWO ASI 120 MC-S, da diese in ihrem Preissegment über eine gute Quanteneffizienz verfügt. Das heisst, dass die Kamera pro Photon, welches auf den Sensor trifft, ungefähr 0.6 Elektronen aus dem Halbleitermaterial des Sensors löst, was wichtig für die Bildentstehung ist.

Für die Aufnahme wurde das Programm Sharp-Cap gewählt, da dieses wichtige Einstellungen für die Aufnahme ermöglicht. Zum einen wurde der Gain auf einen mittleren Wert von 40 gesetzt, die Belichtungszeit wurde auf 0.04 Sekunden festgelegt, die Zeit wurde auf UTC umgestellt und mit SharpCap konnten auch die notwendigen Zeitstempel auf die Bilder gedruckt

werden. Für die spätere Auswertung wurde zuerst das Programm PIPP und danach Tangra verwendet.

Aufgrund des sehr schlechten Wetters im Sommer 2021 entfiel die Möglichkeit der Aufnahme von mehreren Ereignissen, wodurch nur noch die Bedeckung von Europa durch Ganymed übrig blieb. Damit diese ebenfalls nicht ins Wasser fiel, fuhr ich ins Tessin nach Cademario, wo die Aufnahme in der Nacht vom 1. auf den 2. August 2021 auf einem Parkplatz (46°01'11.87" N / 08°53'34.09" E) trotz leichtem Wind und teils kleinen Wolkenfeldern, welche die Sicht einschränkten, gelang.

#### DIE AUFNAHME UND DESSEN AUSWERTUNG

Die Aufnahme wurde um 22:00 UTC begonnen und um 00:20 UTC beendet. Damit die spätere Verarbeitung der einzelnen Bilder einfacher ist, wurde die Aufnahme in 5'000er-Serien gegliedert. Das heisst, dass immer nach 5'000 Bildern die Serie abgespeichert und diese ohne Verzögerung direkt fortgesetzt wurde.

PIPP: Nach erfolgreicher Aufnahme der Bedeckung von Europa durch Ganymed wurden die Serien mittels der Software PIPP für die Analyse mit Tangra und der daraus folgenden Lichthelligkeitskurve vorbereitet. Zuerst habe ich mittels des Programms PIPP die Bildsequenzen in negativer y-Achse (also nach unten) und in positiver x-Achse (nach rechts) stabilisiert, ohne dass der Teil, der von Interesse ist sowie der Zeitstempel aus dem Bild ausgeschnitten wurden. Dies ermöglichte eine erleichterte Auswertung der späteren Analyse der Helligkeit. Anschliessend wurden die besten 35 % der Bilder einer 5'000er-Serie in eine neue Sequenz umgewandelt, dies aus dem Grund, da witte-

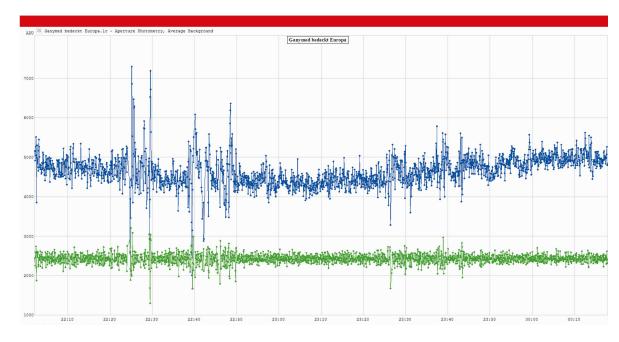



Abbildung 2: Lichthelligkeitskurve «Ganymed bedeckt Europa». Auf dem Bild entspricht der blaue Graph Europa und Ganymed, der grüne ist lo zuzuordnen. Zu erkennen sind 3 Regionen, in welchen es zu Ausreissern kam, diese sind auf die Wolkenfelder und den Wind zurückzuführen.

Bild: Dominic Röschli

rungsbedingt gewisse Bilder nicht verwendet werden konnten. Zu guter Letzt wurden die neuen Sequenzen zusammengefügt.

Daraus entstand ein Video. Diese Aufnahmen hatten trotz Zeitabhängigkeit und Extraktion eine bessere zeitliche Verteilung, als wenn nur eine Serie während des gesamten Ereignisses mit allen Bildern aufgenommen worden wäre. So war gewährleistet, dass jede Sekunde des Ereignisses eine gewisse Anzahl von Bildern aufweist, was für die nachfolgende Ausmessung der Helligkeit eine wichtige Rolle spielt, da sonst ein Loch respektive ein Teil des Zeitraums ohne Messung ersichtlich wäre.

Tangra: Das soeben erstellte Video wurde im Programm Tangra eingefügt, welches eine Messung der Helligkeit ermöglicht. Vorab musste ich jedoch im Programm Tangra definieren, welcher der beiden Galileischen Monde jener mit der Helligkeitsabnahme ist und welchen ich als Referenz wähle. Wichtig ist, dass Ganymed während des Ereignisses Europa bedeckte und dass diese so nahe beieinander waren, dass sie nicht mehr auseinandergehalten werden konnten. Man kann also bei der Abnahme der Helligkeit von einer Abnahme der Helligkeit beider Monde Ganymed und Europa sprechen. Als Referenzmond diente Io. Eine Referenz ist deshalb wichtig, da man Umwelteinflüsse, die eine Auswirkung auf die Messung haben, erkennen kann und es somit auch möglich ist, zwischen dem

Ereignis und beispielsweise einer Wolke unterscheiden zu können. Nach der Ausmessung aller Bilder erhält man die Rohform einer Lichthelligkeitskurve. Nun muss die Lichthelligkeitskurve mittels des Referenzmondes normalisiert werden; das heisst, dass die Helligkeit des Mondes Io als Referenz verwendet wird und sich die Helligkeit der Monde Ganymed und Europa danach richten.

Anschliessend werden die Messpunkte ebenfalls durch das Programm Tangra gemittelt; dies geschieht so, dass immer 32 Bilder summiert werden, wodurch das Rauschen verringert wird. Dasselbe geschieht auch mit der Zeit der einzelnen Bilder, das heisst, dass die Zeit, welche dem entstandenen Messwert zugeordnet wird, der mittleren Zeit des ersten und des letzten Bildes der 32er-Serie oder in anderen Worten der Zeit des 16. Bildes entspricht. Daraus entsteht die Lichtkurve der Bedeckung von Europa durch Ganymed, welche in Abbildung 2 dargestellt ist.

#### DIE ZUSAMMENARBEIT MIT IMCCE

Die Messdaten wurden anschliessend ans IMCCE gesendet, welches diese ebenfalls verarbeitete und daraus eine Lichthelligkeitskurve erstellte (siehe Abbildung 3).

Auch in dieser Lichthelligkeitskurve kann man eine Abnahme der Helligkeit gut erkennen. Auffallend ist, dass die Uhrzeit mit 1'320 beginnt und mit 1'460 endet. Dies ist damit zu erklären, dass das System des

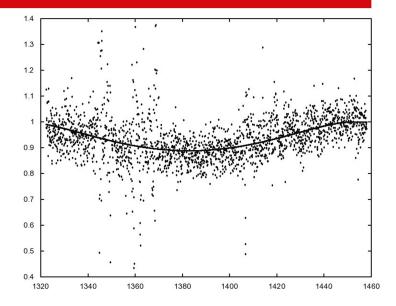



Abbildung 3: Lichthelligkeitskurve des IMCCE (Emelyanov N. 2021, Obs: CAD)

Quelle: Emelyanov, N. (2021). Astrometric results of observations of mutual occultations and eclipses of the Galilean satellites of Jupiter in 2021. Gefunden am 17.09.2021 unter

https://perso.imcce.fr/nicolai-emelianov/data/PHEMU-2021/astrom.htm#secondtype

IMCCE die Daten des Graphen in Minuten ab 12:00 vom Tag des Ereignisses erfasst. Das heisst also, dass 1'320 Minuten exakt 22:00 entspricht und 1'460 Minuten folglich 00:20 des darauffolgenden Tages zuzuordnen ist.

### DER VERGLEICH ZWISCHEN DER VORHERSAGE UND DER MESSUNG

Durch geometrisch technisches Zeichnen wurde die maximale Abnahme der Helligkeit bestimmt, wodurch man anschliessend über einen Dreisatz zur Uhrzeit 23:03:04.615 UTC kam, welche der maximalen Abnahme der Helligkeit entspricht.

Auf der Webseite des IMCCE [1] wird angegeben, dass die Bedeckung von Cademario aus gesehen um 21:59:01.769 UTC begann und 128.27 Minuten dauerte. Addiert man die Hälfte der Dauer zur Uhrzeit, zu welcher die Bedeckung laut dem IMCCE beginnt, erhält man exakt die Mitte des Ereignisses oder in anderen Worten exakt den Zeitpunkt, zu welchem die maximale Bedeckung stattfindet:

21:59:01.769 UTC + 1h + 4min + 8.1s = 23:03:09.869 UTC

Beim Vergleich beider Uhrzeiten ist, unter der Annahme, dass die Umlaufbahnen der Galileischen Monde gleichmässige Kreisbewegung seien, ersichtlich, dass diese nicht übereinstimmen. Die Abweichung von der erwarteten zur tatsächlichen Zeit beträgt somit ungefähr 5.254 Sekunden.

Das heisst, dass bei einer mittleren Orbitalgeschwindigkeit Europas von 13.74 km/s dies einer räumlichen Abweichung von rund 72 Kilometern entspricht.

#### LINKS & LITERATUR

- [1] https://www.imcce.fr/ Phénomènes de satellites naturels Calcul | IMCCE
- https://de.wikipedia.org/wiki/Europa\_(Mond) → bezüglich Orbitalgeschwindigkeit von Europa

Abbildung 4: In der Mitte des Bildes ist Jupiter, links davon sind die Galileischen Monde Europa und Ganymed. Diese erscheinen zu einem Punkt verschmolzen, da sie so nahe beieinander sind, dass sie nicht mehr auseinandergehalten werden können. Auf der rechten Seite sieht man den Galileischen Mond Io, welcher während der späteren Ausmessung der Helligkeitsänderung als Referenz diente.

Bild: Dominic Röschli





#### **Swiss Wolf Numbers 2022**

Marcel Bissegger, Gasse 52, CH-2553 Safnern



| Janu | ar 20 | )22 |    |    |    |    |    | Mi | ttel: | 60.9 |
|------|-------|-----|----|----|----|----|----|----|-------|------|
| 1    | 2     | 3   | 4  | 5  | 6  | 7  | 8  | 9  | 10    |      |
| 47   | 31    | 30  | 11 | 19 | 30 | 44 | 45 | 61 | 83    |      |
| 11   | 12    | 13  | 14 | 15 | 16 | 17 | 18 | 19 | 20    |      |
| 56   | 78    | 81  | 94 | 99 | 99 | 77 | 57 | 55 | 60    |      |
| 21   | 22    | 23  | 24 | 25 | 26 | 27 | 28 | 29 | 30    | 31   |
| 22   | 24    | 22  | 11 | 54 | 79 | 80 | 72 | 67 | 92    | 124  |

| Febr | Februar 2022 Mittel: 57.6 |    |     |    |     |    |    |    |    |  |  |
|------|---------------------------|----|-----|----|-----|----|----|----|----|--|--|
| 1    | 2                         | 3  | 4   | 5  | 6   |    | 8  | 9  | 10 |  |  |
| 126  | 108                       | 74 | 120 | 86 | 79  | 75 | 79 | 67 | 72 |  |  |
| 11   | 12                        | 13 | 14  | 15 | 16  | 17 | 18 | 19 | 20 |  |  |
| 76   | 57                        | 52 | 72  | 86 | 113 | 27 | 58 | 81 | 49 |  |  |
| 21   | 22                        | 23 | 24  | 25 | 26  | 27 | 28 |    |    |  |  |
| 49   | 34                        | 39 | 35  | 23 | 23  | 32 | 61 |    |    |  |  |

| März 2022 Mittel: 71. |    |    |    |    |    |    |     |     |     | 71.1 |
|-----------------------|----|----|----|----|----|----|-----|-----|-----|------|
| 1                     | 2  | 3  | 4  | 5  | 6  | 7  | 8   | 9   | 10  |      |
| 65                    | 60 | 85 | 84 | 87 | 72 | 78 | 81  | 80  | 89  |      |
| 11                    | 12 | 13 | 14 | 15 | 16 | 17 | 18  | 19  | 20  |      |
| 78                    | 95 | 86 | 68 | 42 | -  | 49 | 40  | 45  | 40  |      |
| 21                    | 22 | 23 | 24 | 25 | 26 | 27 | 28  | 29  | 30  | 31   |
| 48                    | 42 | 45 | 49 | 49 | 57 | 79 | 118 | 111 | 107 | 121  |

| 1/2022 | Name           | Instrument | Beob. |
|--------|----------------|------------|-------|
|        | Bissegger M.   | Refr 100   | 5     |
|        | Ekatodramis S. | Refr 120   | 3     |
|        | Enderli P.     | Refr 102   | 2     |
|        | Erzinger T.    | Refr 90    | 13    |
|        | Friedli T.     | Refr 40    | 6     |
|        | Friedli T.     | Refr 80    | 6     |
|        | Früh M.        | Refl 300   | 17    |
|        | Käser J        | Refr 100   | 6     |
|        | Meister S.     | Refr 125   | 10    |
|        | Menet M.       | Refr 102   | 1     |
|        | Schenker J.    | Refr 120   | 5     |
|        | SIDC S.        | SIDC 1     | 3     |
|        | Weiss P.       | Refr 82    | 11    |
|        | Zutter U.      | Refr 90    | 18    |

| 2/2022 | Name           | Instrument | Beob. |
|--------|----------------|------------|-------|
|        | Bissegger M.   | Refr 100   | 2     |
|        | Ekatodramis S. | Refr 120   | 4     |
|        | Enderli P.     | Refr 102   | 3     |
|        | Erzinger T.    | Refr 90    | 13    |
|        | Friedli T.     | Refr 40    | 7     |
|        | Friedli T.     | Refr 80    | 7     |
|        | Früh M.        | Refl 300   | 17    |
|        | Käser J.       | Refr 100   | 18    |
|        | Meister S.     | Refr 125   | 15    |
|        | Schenker J.    | Refr 120   | 5     |
|        | SIDC S.        | SIDC 1     | 4     |
|        | Trefzger C.    | Refl 125   | 3     |
|        | Weiss P.       | Refr 82    | 13    |
|        | Zutter U.      | Refr 90    | 21    |

| 3/2022 | Name           | Instrument | Beob. |
|--------|----------------|------------|-------|
|        | Bissegger M.   | Refr 100   | 4     |
|        | Ekatodramis S. | Refr 120   | 5     |
|        | Enderli P.     | Refr 102   | 3     |
|        | Erzinger T.    | Refr 90    | 18    |
|        | Friedli T.     | Refr 40    | 9     |
|        | Friedli T.     | Refr 80    | 9     |
|        | Früh M.        | Refl 300   | 27    |
|        | Käser J.       | Refr 100   | 22    |
|        | Meister S.     | Refr 125   | 25    |
|        | Menet M.       | Refr 102   | 3     |
|        | Schenker J.    | Refr 120   | 8     |
|        | Trefzger C.    | Refl 125   | 4     |
|        | Weiss P        | Refr 82    | 23    |
|        | Zutter U.      | Refr 90    | 24    |

#### Swiss Occultation Numbers 2022 (Fachgruppe Sternbedeckungen SOTAS (www.occultations.ch)

| Januar, Februar & Marz 2022                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     | Stationen |     |                                  |     |     |     |     |                                  |     |     |     | Stationsinformationen                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|-----|----------------------------------|-----|-----|-----|-----|----------------------------------|-----|-----|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Datum                                                                                                                                                                            | Asteroid                                                                                                                                                                                                                                                                                                                                                                                          | Bedeckter Stern                                                                                                                                                                                                                                                                                                                                                                                                                                 | BUE | CUG       | FLU | GNO                              | нім | LOC | MCE | MEN | MUZ                              | SCH | SMA | ZHN | Beobachter                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| 01.01.<br>06.01.<br>09.01.<br>10.01.<br>12.01.<br>24.01.<br>24.01.<br>25.02.<br>08.02.<br>11.02.<br>11.02.<br>13.02.<br>26.02.<br>06.03.<br>07.03.<br>20.03.<br>20.03.<br>20.03. | (195153) 2002 CG213<br>(754) Malabar<br>(746) Marlu<br>(2808) Belgrano<br>(4229) Plevitskaya<br>(3701) Purkyne<br>(4448) Phildavis<br>(2204) Lyyli<br>(138) Tolosa<br>(45671) 2000 WW102<br>(28P) Neujmin<br>(930) Westphalia<br>(1171) Rusthawelia<br>(982) Franklina<br>(76690) 2000 HZ73<br>(683) Lanzia<br>(919) Ilsebill<br>(572) Rebekka<br>(147) Protogenia<br>(26491) BT3<br>(438) Zeurya | UCAC4 593-007543<br>UCAC4 388-022610<br>TYC 2983-01418-1<br>UCAC4 581-040294<br>UCAC4 561-032609<br>UCAC4 607-021346<br>UCAC4 607-021346<br>UCAC4 395-009142<br>HIP 32194<br>UCAC4 558-049011<br>UCAC4 558-049011<br>UCAC4 538-016921<br>UCAC4 539-047374<br>TYC 2388-01569-1<br>UCAC4 523-052157<br>UCAC4 528-013492<br>UCAC4 485-044691<br>UCAC4 4558-011060<br>UCAC4 558-011060<br>UCAC4 558-011060<br>UCAC4 558-011060<br>UCAC4 558-0107091 | 0+  |           |     | 0+<br>0+<br>0+<br>0+<br>0+<br>0+ |     |     | 0+  | 0+  | 0+<br>0+<br>0+<br>0+<br>0+<br>0+ | 0+  |     | 0+  | BUE Sternwarte Bülach (S. Meister S. / A. Schweizer) CUG Stat. Cugnasco (A. Manna) FLU Stat. Filuminimaggiore (St. Spos GNO Obs. Gnosca (St. Sposetti) HIM Obs. Himmelried (J. Schenker) LOC Specola Solare Locarno (St. Spos MCE Station Monte Ceneri (St. Spos MEN Station Mendrisio (St. Sposetti) MUZ Station Muzzano (A. Ossola) SCH Sternwarte Schafmatt (J. Käser / J. Schenker) SMA Station St. Margarethen (C. Sauz ZHN Obs. Zürich-Nord (P. Englmaier) |  |





viel Bezonderez - bei unz ebenfalls! Universelle Instrumente wir beraten Sie gerne!

