Zeitschrift: Orion: Zeitschrift der Schweizerischen Astronomischen Gesellschaft

Herausgeber: Schweizerische Astronomische Gesellschaft

Band: 77 (2019)

Heft: 4

Rubrik: Rätselseite

Nutzungsbedingungen

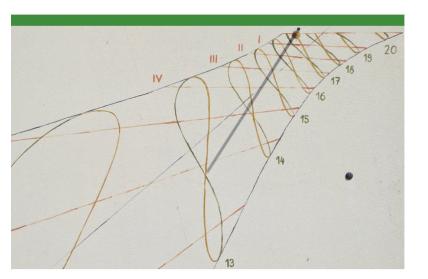
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more


Download PDF: 02.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

RÄTSELSEITE Text: Erich Laager

Des Rätsels Lösung: «Analemma-Schnittpunkte»

ORION 2/19, Seite 39

Abbildung 1: Foto meiner Sonnenuhr am 12. April um 13:05 MESZ. Sie zeigt angenähert das, was gesucht ist: Die Schattenspitze trifft den Kreuzungspunkt. – Wann ist dies im Herbst der Fall?

Bild: Erich Laager

ÜBERSICHT UND ERSTE SCHÄTZUNG

Bei Betrachten des Zifferblattes (Abbildung 1 im Rätsel) stellt man fest, dass der Kreuzungspunkt deutlich unterhalb der geraden Linie (Schattenverlauf bei Tag und Nacht-Gleiche) verläuft. Der gesuchte Zeitpunkt wird also einige Wochen nach dem 20. März und einige Wochen vor dem 23. September zu finden sein.

Die Beobachtung einer Sonnenuhr bringt ein erste angenäherte Lösung (Abbildung 1).

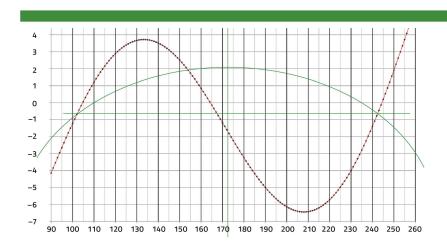
ZUR 1. FRAGE

Beim Schnittpunkt müssen sowohl die Deklination der Sonne als auch die Zeitgleichung für einen Punkt auf beiden Kurvenabschnitten gleich gross sein. Die Deklination ändert sich in Bezug auf den längsten Tag recht genau symmetrisch, d.h. in der Zeitgleichungskurve müssen die gesuchten Daten gleich weit links und rechts des längsten Tages liegen. Der Zeitpunkt für die grösste Sonnnendeklination liegt im Durchschnitt von 4 Jahren bei etwa Juni 21,4. Die senkrechte Symmetrieachse ist bei Tag 102,4 eingezeichnet. Zudem müssen die Daten beide auf derselben waagrechten Linie liegen, dies ist die Bedingung für gleich grosse Zeitgleichung.

Die grafische Lösung (Abbildung 2) zeigt, wie beide Bedingungen erfüllt sind. So vorgehen: Den Zirkel irgendwo auf der Linie des 21. Juni einstecken und einen Kreis suchen, der zwei Analemma Punkte trifft, die auf gleicher Höhe liegen. In einem Grafikprogramm dient dazu eine beliebige Ellipse. Die Ellipse trifft ungefähr die Punkte

Nr. 102 und 242. Dazu gehören die Daten 12. April und 30. August.

ZUR 2. FRAGE


Jetzt muss man rechnen! – Und dabei sollte man sich bewusst sein: Man wird auf keiner Sonnenuhr die entsprechend genauen Zeiten ablesen können. Der Schatten der Stabspitze ist ja nicht genau definiert, weil die Sonne eine flächenhafte und nicht eine punktförmige Lichtquelle ist. Etwas genauer findet man die Zeit im Prinzip mit einer Lochblende, die auf dem Zifferblatt einen hellen Fleck erzeugt, dessen Mitte massgebend ist.

Zum Finden der Lösung gibt es nun kein Verfahren, mit dem man das Resultat «direkt ansteuern kann». Man muss sich schrittweise an die gesuchte Situation «herantasten», was doch einen beträchtlichen Aufwand mit sich bringt. Dies gilt für alle drei verwendeten Programme.

PROGRAMM A

Ich verwende die Formeln aus «Astroinfo» von *Arnold Barmettler*. Deren Genauigkeit genügt vorläufig um das Lösungsprinzip aufzuzeigen.

Meine Berechnungen führen mich auf den 13. April und 31. August. (Mit der grafischen Lösung bin ich je einen Tag daneben geraten!) Ich

Abbildung 2: Der grüne Bogen liegt symmetrisch zur senkrechten grünen Achse. Er ist in senkrechter Richtung so weit verschoben, dass er die Analemma an zwei Orten schneidet, die auf derselben Höhe liegen.

Bild: Erich Laager

Weltzeit UT		-2	-1	0	1	2	3	4	5	6	7	8	9	10
Zeitgleichung (min)														
am 13. April	Z1	-0.454	-0.444	-0.433	-0.422	-0.412	-0.401	-0.390	-0.380	-0.369	-0.358	-0.348	-0.337	-0.327
am 31. August	Z2	-0.481	-0.468	-0.454	-0.441	-0.428	-0.414	-0.401	-0.388	-0.374	-0.361	-0.348	-0.334	-0.321
Differenz	Z1 – Z2	0.027	0.024	0.021	0.019	0.016	0.013	0.011	0.008	0.005	0.002	0.000	-0.003	-0.006
Deklination (Grad)														
am 13. April	D1	8.833	8.848	8,863	8.879	8.894	8.909	8.925	8.940	8.955	8.970	8.986	9.001	9.016
	D2	8.894	8.878	8,863	8.848	8.832	8.817	8.802	8.787	8.771	8.756	8.741	8.725	8.710
Differenz	D1 – D2	-0.061	0.030	0.000	0.031	0.062	0.092	0.123	0.153	0.184	0.215	0.245	0.276	0.306

Tabelle 1: Angenäherte Berechnungen, die für ein beliebiges Jahr gelten, basierend auf Mittelwerten der Jahre 2008 bis 2027. Die erste Zeile enthält die vollen Stunden für die beiden Daten. –2 und –1 bedeutet 22 Uhr und 23 Uhr am Vortag. Am 13. April und am 31. August nimmt die Zeitgleichung von Stunde zu Stunde zu, jedoch nicht an beiden Tagen gleich stark. Um 8 Uhr ist sie fast genau gleich gross. Im April wächst die Deklination (Sonne aufgehend), im August nimmt sie ab (Sonne abgehend), um 0 Uhr an beiden Tagen ist sie gleich gross.

Quelle: Erich Laager

berechne an beiden Daten für die vollen Stunden die Deklination und die Zeitgleichung. Diese vergleiche ich und suche die Stunden mit den Differenzen möglichst nahe bei Null. Bei zwei verschiedenen Zeiten ist die Differenz Null, wenn man die berechneten Zahlen auf 3 Dezimalstellen rundet.

Tabelle 1 zeigt einen Ausschnitt aus meiner Berechnungstabelle. Sie zeigt, wie sich die Zeitgleichung und die Deklination im Laufe der Stunden ändern.

Es gelingt mir jedoch nicht, eine Zeit zu finden, bei der beide Differenzen Null sind, aber bei Stunde 0 h UT und 8 h UT ist die eine Differenz praktisch Null und die andere sehr klein. Am 13. April und am 31. August je um 0 Uhr Weltzeit hat die Sonne dieselbe Deklination und die Zeitgleichungen weichen nur um 1.3 Sekunden voneinander ab. Dies ist das genaueste Zusammentreffen auf einer Stunden-Analemma.

Um dies zu beobachten müsste man also Orte auf der Erde wählen, wo um 0 Uhr und um 8 Uhr UT die Sonne scheint, d. h. irgendwo im Fernen Osten (China, Japan). Zur Genauigkeit: Die Daten zum Sonnenlauf ändern sich (u.a. wegen des Schaltjahrs) von Jahr zu Jahr geringfügig. Wir haben die Berechnungen auf Grund von Mittelwerten durchgeführt, die zwar immer (für die Zeit von 2008 bis 2027) gelten, dadurch aber recht ungenaue Resultate liefern. Und somit wären auch die 1.3 Sekunden Differenz im Schlussergebnis vollständig illusorisch...

PROGRAMM B

Verzichtet man auf die einschränkende Vorschrift, der Schnittpunkt müsse auf einer Stunden-Analemmaliegen, kann die Zeit frei gewählt werden. Gesucht sind somit in einem bestimmten Jahr Datum und Zeit in UT, bei welcher Deklination und Zeitgleichung je gleich gross sind.

Dazu suchte ich ein Berechnungsprogramm, welches mir für einen vorgegeben Zeitpunkt «exakte Resultate» liefert. Hans Roth war wieder einmal spontan hilfsbereit. Ich habe von ihm eine Excel-Tabelle mit einem Näherungsprogramm aus dem Astronomical Almanac erhalten, die mir in idealer Weise dienlich war.

Für einige Jahre habe ich die Zeiten – durch probieren – herausgesucht und zusammen gestellt (Tabelle 2). Auffallend sind die recht beträchlichen Unterschiede von Jahr zu Jahr, die nicht nur mit den Schaltjahren zusammen hängen. Zum Vorgehen: Ich habe festgestellt, dass sich die Zeitgleichung nur sehr langsam ändert:

Für den 13. April 2019 gibt das Programm während 1 Std. 33 Min. einen Zeitgleichungswert innerhalb einer Sekunde (von –40.00 bis –40.99 Sekunden). Für den 30. August dauert der entsprechende Zeitraum 1 Std. 18 Min. Innerhalb dieser Zeitspannen suche ich nun gleiche Deklinationen für beide Tage. Diese ändern recht schnell: Bei 1 Minute Zeitdifferenz erhält man bei der Deklination der Sonne.

Zur Genauigkeit: Beim Programm steht, die Genauigkeit für die Zeitgleichungs-Werte sei bes-

	Frühli	ng			Herbst			
Jahr	Datum	UT	Dekl.	Zeitgl.	Datum	UT	Dekl.	Zeitgl.
2019								
2020	12.Apr	12:06	08:57:26	-40s	29. Aug	20:36	08:57:26	-40s
2021								
2022	12.Apr	23:43	08:57:25		30. Aug	08:13	08:57:25	
2023								
2024	12.Apr	11:20	08:57:25	-41s	29. Aug	19:49	08:57:29	-41s

Tabelle 2: Angenäherte Berechnungen für bestimmte Jahre. Das verwendete Programm liefert Werte für eine frei wählbare Zeit.

Quelle:	Erich	Laage

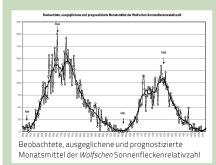
	Frühli	ng							
Jahr	Datum	UT	Dekl.	Zeitgl.		Datum	UT	Dekl.	Zeitgl.
		06:54	08:57:59					08:57:59	
2020	12.Apr	11:48	08:57:05	-40s		29. Aug	21:05	08:57:05	-40s
2021	12.Apr	17:56	08:57:22	-40s		30. Aug		08:57:22	
2022	12.Apr	22:58	08:56:16			30. Aug	09:31	08:56:16	
2023	13. Apr	03:52	08:57:47	-40s		30. Aug	15:55	08:55:47	-40s
2024	12.Apr	10:33	08:57:41	-40s		29. Aug	20:47	08:56:41	-40s

Tabelle 3: Präzisere Berechnungen für bestimmte Jahre. Das Programm liefert Werte, die sehr gut mit Daten aus dem Astronomical Almanac übereinstimmen.

Quelle: Erich Laager

ser als 3.5 Sekunden. Das heisst, wenn die Rechnung ein Resultat von –40.2 Sekunden liefert, könnten es beispielsweise auch –36.8 oder –43.6 Sekunden sein. Diese Tatsache raubt uns die Illusion, unser Problem nun sekundengenau erfasst zu haben!

PROGRAMM C


Hans Roth wollte die Berechnungen dann nochmals überprüfen, dies mit einem weiteren, fast perfekten Programm nach Jean Meeus. Seine Berechnungsresultate stehen in Tabelle 3.

Zur Genauigkeit schreibt *Hans Roth* dazu: «Die Deklinationswerte stimmen mit dem Astronomical Almanac überein, die Zeitgleichungswerte weichen manchmal um eine Hundertstelsekunde ab. Die Uhrzeiten auf Sekunden genau anzugeben, macht keinen Sinn, denn manchmal ändern die Zeitgleichungswerte überhaupt nicht, wenn man bei der Zeit um einzelne Sekunden weiterrechnet. Die «genauen» Uhrzeiten liegen also zwischen [Tabellenwert –30 s] und [Tabellenwert + 30 s].»

Rückblickend kann ich feststellen: Auch mit grossem Aufwand lässt sich die einfache Frage nur mit einer beschränkten Genauigkeit beantworten. Ganz allgemein lässt sich sagen: «Exakt» berechneten Werten – gelegentlich mit vielen Dezimalstellen – muss immer mit einer rechten Portion Skepsis begegnet werden. Wichtig ist dabei, zu wissen, wie genau die Daten sind, welche den Rechnungen zu Grunde liegen. Und gerade in der Astronomie sind diese nie absolut genau!

Swiss Wolf Numbers 2019

Marcel Bissegger, Gasse 52, CH-2553 Safnern

5/2019	Name	Instrument	Beob.
	Barnes H.	Refr 76	12
	Bissegger M.	Refr 100	4
	Ekatodramis S.	Refr 120	4
	Enderli P.	Refr 102	2
	Erzinger T.	Refr 90	21
	Friedli T.	Refr 40	5
	Friedli T.	Refr 80	5
	Früh M.	Refl 300	16
	Käser J.	Refr 100	24
	Meister S.	Refr 125	17
	Meister S.	Refr 140	4
	Menet M.	Refr 102	4
	Mutti M.	Refr 80	6
	Niklaus K.	Refr 126	4
	Schenker J.	Refr 120	7
	Tarnutzer A.	Refr 150	12
	Trefzger C.	Refl 125	8
	Weiss P	Refr 82	17

Zutter U.

Mai	2019)						Mi	ttel:	10.2
0	0	0	12	15	20	26	26	29	27	
11	12					17				
26	25	23	21	18	13	12	12	0	-	
21	22					27				31
0	0	0	0	0	0	0	0	5	0	0

Juni 2019 Mittel: 0.6										
0	0	0	0	0	0	0	0	0	0	
11	12					17				
0	0	0	0	0	0	0	0	0	0	
21	22					27				
0	0	0	15	9	6	1	0	6	1	

06/2019	Name	Instrument	Beob.
	Barnes H.	Refr 76	16
	Bissegger M.	Refr 100	3
	Ekatodramis S.		9
	Enderli P.	Refr 102	11
	Erzinger T.	Refr 90	21
	Friedli T.	Refr 40	10
	Friedli T.	Refr 80	10
	Früh M.	Refl 300	11
	Käser J.	Refr 100	16
	Meister S.	Refr 125	21
	Menet M.	Refr 102	5
	Niklaus K.	Refr 126	2
	Schenker J.	Refr 120	10
	SIDC S.	SIDC 1	1
	Tarnutzer A.	Refl 203	9
	Trefzger C.	Refl 125	4
	Weiss P.	Refr 82	20
	Zutter U.	Refr 90	20

Swiss Occultation Numbers 2018

Fachgruppe Sternbedeckungen SOTAS (www.occultations.ch)

Refr 90

22

März & April 2019			03	/19	04/	19	Positive Ereigniss	e		
Beobachter	Lage	ID	+	-	+	-	Asteroiden	Datum	Bed. Stern	Obs.
Sposetti St.	Aquarossa	AQU	0	1	0	0				
Meister / Schweizer	Bülach	BUE	0	6	1	0	(145) Adeona	22. Apr.	4UC 376-077172	0+
Manna A.	Cugnasco	CUG	1	3	0	0	(260) Huberta	22. März	4UC 376-077090	0+
Hehli Chr.	Degersheim	DEG	0	0	0	0				
Kohl M.	Dürnten	DUE	0	1	0	0				
Sposetti St.	Gnosca	GNO	1	15	0	1	(260) Huberta	22. März	TYC 1299-00032-1	0+
Sposetti St.	Locarno	LOC	0	0	0	0				
Ossola A.	Muzzano	MUZ	1	2	0	0	(664) Judith	16. März	4UC 491-028300	0+
Schenker / Käser	Schafmatt	SCH	0	1	1	0	(145) Adeona	22. Apr.	4UC 376-077172	0+