Zeitschrift: Orion: Zeitschrift der Schweizerischen Astronomischen Gesellschaft

Herausgeber: Schweizerische Astronomische Gesellschaft

Band: 71 (2013)

Heft: 378

Artikel: Was liest man aus einem Spektrum? : Das Spektrum des Quasars

3C273

Autor: Walker, Richard

DOI: https://doi.org/10.5169/seals-897660

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 14.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Was liest man aus einem Spektrum?

Das Spektrum des Quasars 3C273

Von Richard Walker

In dieser Zeitschrift sind bereits früher Einführungsartikel zur Astrospektroskopie erschienen, so z. B. «Die Farben der Sterne» von Roger Brüderlin in Orion 343. Darauf aufbauend soll hier nun am spektakulären Beispiel von 3C273 gezeigt werden, welche Informationen Amateure heute mit bescheidenem Aufwand und einfachen Formeln aus einem Spektrum gewinnen können und dass wir bei solch extremen Distanzen bei der Datenauswertung auch mit «kosmologischen Effekten» konfrontiert werden.

Abbildung 1: DADOS-Spektrograf mit vorgeschaltetem Klappspiegel, Spaltkamera DSI II und Aufnahmekamera Atik 314L+. (Bild: Richard Walker)

Verwendet wurden der niedrig auflösende DADOS-Spaltspektrograf [6], der für sehr lichtschwache Objekte, aber auch für Einsteiger gut geeignet ist, ein Celestron C8 sowie die Astrokamera Atik 314L+ (Abb. 1). Die Erstellung und Auswertung der Spektralprofile erfolgte mit der Freeware IRIS und Visual Spec.

In den Dokumenten unter [1] sind eine ausführlichere Darstellung zu 3C273, mit entsprechendem Literaturverzeichnis und einer Aufsuchkarte, aber auch generelle Einführungstexte zur Spektroskopie zu finden. Für weitere Informationen und Ratschläge stehen sowohl der Autor als auch die anderen Mitglieder der SAG Fachgruppe Spektroskopie [2] gerne zur Verfügung.

Quasar 3C273

Der scheinbar hellste Quasar ist 3C273 im Sternbild Jungfrau. Er wird mit seiner Distanz von ca. 2.5 Mrd. Lichtjahren häufig als das ent-

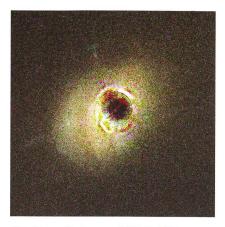


Abbildung 2: Quasar 3C273, Bild Koronograf HST. (Quelle: NASA/ESA)

fernteste Objekt bezeichnet, welches mit durchschnittlichen Amateurmitteln, rein visuell und ohne den Einsatz von Astrokameras, noch gesehen werden kann. Die Bezeichnung 3C273 bedeutet die Objektnummer 273 in Ryles 3. Cambridge Katalog der Radioquellen von 1959. Die Bezeichnung «Quasar» stammt von Quasistellar Object (QSO), weil diese Objekte als punktförmige Lichtquellen erscheinen. Eine solche entdeckte Maarten Schmidt 1963 bei den Koordinaten eines entsprechenden Eintrages im besagten Katalog. Schnell wurde klar, dass dieses Objekt die damals grösste bekannte Rotverschiebung zeigte und somit kein Stern sein konnte. Zudem unterschieden sich die gewonnenen Spektren drastisch von stellaren Profilen und glichen eher solchen von Wolf Rayet Sternen oder gar Nova Ausbrüchen.

Nach aktuellem Forschungsstand sind Quasare die energiereichste und leuchtkräftigste Variante der Galaxien mit aktiven Kernen (AGN). Im Zentrum solcher Objekte sitzt immer ein supermassives Schwarzes Loch, welches über eine

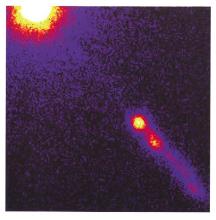


Abbildung 3: Quasar 3C273 mit Jet, Röntgensatellit Chandra. (Bild: NASA)

Spektroskopie

Akkretionsscheibe gewaltige Mengen an Materie aus der umgebenden Galaxie ansammelt. Deshalb sind Quasare auch starke Quellen von Röntgen- und Radiostrahlung. Die stark streuenden Literaturwerte deuten für das Schwarze Loch von 3C273 auf ca. eine Mrd. Sonnenmassen (Abb. 2).

Das punktförmige Erscheinen der Quasare wird durch die enorme Helligkeit ihrer Kerne erklärt, welche den Rest der Galaxie völlig überstrahlen. Sie gelten, abgesehen von den episodisch auftretenden Supernova-Explosionen, als die leuchtkräftigsten Objekte des Universums. Abb. 3, aufgenommen mit dem Röntgensatelliten CHANDRA,

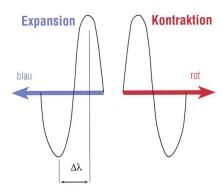


Abbildung 5: Schematische P Cygni Profile. links Expansion, rechts Kontraktion. (Grafik: Thomas Baer)

zeigt einen Jet mit der geschätzten Länge von 200'000 Lj. Dieser wird durch einen umgelenkten Teil des Akkretionsflusses verursacht, welcher vom Schwarzen Loch mit ca. 70% der Lichtgeschwindigkeit in die Richtung seiner Rotationsachse ausgestossen wird. Dieses Merkmal ist für Amateure, im uns zugänglichen, optischen Spektralbereich, weder nachweis- noch messbar.

Da Quasare nur in sehr grosser Entfernung beobachtet werden, sehen wir möglicherweise ein Frühstadium der Galaxienentwicklung. Auch gewöhnliche Galaxien wie die Milchstrasse besitzen im zentralen «Bulge» ein massives Schwarzes Loch, dessen Akkretionsprozess aber zum Erliegen gekommen ist.

Spektrale Merkmale von 3C273

Das Diagramm in Abb. 4 zeigt das Spektrum des Quasars im optischen Wellenlängenbereich. Dieses mit einer scheinbaren Helligkeit von +12.7^{mag} leicht veränderliche Objekt

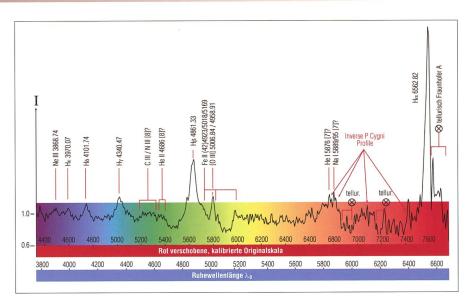


Abbildung 4: Spektrum des Quasars 3C273 im optischen Wellenlängenbereich, aufgenommen mit dem DADOS Spaltspektrografen (Gitter: 200 Linien/mm) (Grafik: Thomas Baer nach Richard Walker)

wurde mit 5x20 Minuten im 2x2 Binning Mode belichtet. Die rote Skala zeigt die massiv rotverschobenen Wellenlängen in Angström [Å], wie sie sich nach der Kalibration mit der Eichlichtquelle ergeben. Die blaue Skala bezieht sich auf die nicht verschobenen, sog. Ruhewellenlängen λ_0 , wie sie hier im Labor gemessen werden. Im Wesentlichen sind hier die nach oben ausschlagenden Emissionslinien der Wasserstoff-Balmerserie (Hα, Hβ, Hγ, Hδ, Hε) sowie diejenigen des ionisierten Heliums (He II), Eisens (Fe II) und Neons (Ne III) zu sehen. Die Hα-Emission ist soweit rotverschoben, dass sie hier von der intensiven, erdatmosphärisch verursachten und daher nicht verschobenen Fraunhofer A-Linie überlagert und so stark deformiert wird.

Radialgeschwindigkeit v, der Materiebewegung

Die eindrückliche, hauptsächlich Doppler-Effekt bedingte Verbreiterung der Emissionslinien zeigt, dass hier eine intensive Materiebewegung mit hoher Radialgeschwindigkeit v_r, d.h. auf der Achse unseres Sehstrahls zu 3C273, stattfindet. In welchem Bereich um das Schwarze Loch kann nicht festgestellt werden, da wir dieses punktförmig erscheinende Objekt nur im integrier-

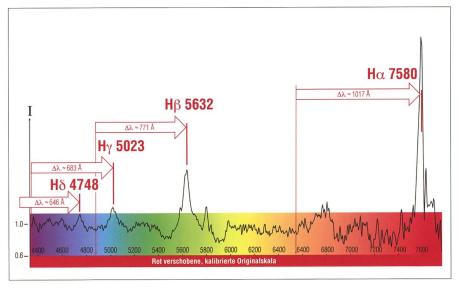


Abbildung 6: Rotverschiebung der Wasserstoff Emissionen im Spektrum von 3C273. (Grafik: Thomas Baer nach Richard Walker)

Spektroskopie

ten Licht aufnehmen können. Dieser Geschwindigkeitswert v_r wird hier mit der sog. Halbwertsbreite (oder FWHM, Full Width at Half Maximum) der H β Emissionslinie von ca. 88 Å abgeschätzt. Dies erfolgt über das spektroskopische Dopplergesetz, wobei $\lambda_{0~H\beta}$ die nicht verschobene Ruhe- oder Laborwellenlänge der H β -Linie von 4861 Å und c die Lichtgeschwindigkeit bedeutet.

$$v_{\rm r} \approx \ \frac{FWHM_{\rm \ Emmission \ H\beta}}{\lambda_{0 \ H\beta}} \cdot c \eqno{\{1\}}$$

Dies ergibt einen Wert von $v_r > 5000 \text{km/s}$.

Kontraktionsprozesse

Dass neben den obigen, hohen Radialgeschwindigkeiten, vermutlich im Bereich der Akkretionsscheibe, Kontraktionsbewegungen mit der wesentlich geringeren Geschwindigkeit v_k ablaufen, zeigen in Abb. 4 die sog. inversen P Cygni Profile, speziell im Bereich von 6100 – 6400 Å. Dieses häufig zu beobachtende, spektrale Merkmal ist nach P Cygni benannt und besteht aus einer nach oben abgehenden Emissionslinie und einer direkt folgenden, nach unten tauchenden Absorption (Abb. 5). Beim namengebenden Stern sind die Absorptionen «blauseitig» versetzt und zeigen die Expansion seiner Sternhülle. Hier, bei 3C273, sind sie aber «invers», d.h. auf die «rote Seite» der Emission verschoben und dokumentieren deshalb einen Kontraktionsvorgang.

Mit dem gemessenen Verschiebungsbetrag $\Delta\lambda \approx 20~\text{Å}$ ergibt die Abschätzung mit dem spektroskopischen Dopplergesetz $v_k \approx 1000 \text{km/s}$.

$$v_{\rm k} = \frac{\Delta \lambda}{\lambda_0} \cdot c \tag{2}$$

Verschiebungsmessung im Spektralprofil

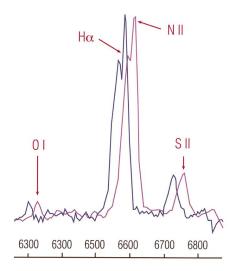
Die Differenz $\Delta\lambda = \lambda - \lambda_0$, zwischen einer verschobenen Spektrallinie mit der Wellenlänge λ und ihrer genau bekannten Ruhewellenlänge λ_0 kann sehr einfach in einem Profil gemessen werden, welches mit einer Eichlichtquelle absolut kalibriert worden ist. In Abb. 6 sind im Spektralprofil die eindrücklichen Verschiebungsbeträge der Wasserstoff-Emissionen markiert, deren Grösse sich proportional zu den je-

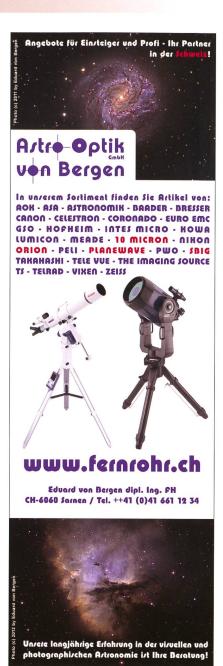
Linie	λ rotverschoben	λο	Δλ	Z
Ηβ	5632	4861	771	0.1586
Ηγ	5023	4340	683	0.1574
Ηδ	4748	4102	646	0.1574

Tabelle 1: Aus den Rotverschiebungen $\Delta\lambda$ berechnete z-Werte für 3C273

weiligen Ruhewellenlängen λ_0 verhält.

Die Rotverschiebung bedeutet, dass sich das Objekt von uns entfernt. Das Gegenteil erfolgt, mit negativem Vorzeichen, bei einer Blauverschiebung, wie wir sie z.B. bei M31 oder M33 messen (siehe Tabelle 2).




Abbildung 7: Rotverschiebung der Hα.-, N II- und S II Emissionen im Spektrum von M77. (Grafik: Thomas Baer nach Richard Walker)

Der z-Wert

Der z-Wert hat kosmologisch fundamentale Bedeutung und kann sehr einfach aus den einzelnen $\Delta\lambda$ Beträgen, im Verhältnis zu den entsprechenden Ruhewellenlängen λ_0 , berechnet werden.

$$z = \frac{\Delta \lambda}{\lambda_0}$$
 {3}

Der Literaturwert für z liegt gemäss NASA Extragalactic Database NED [4] bei z ≈ 0.1583. Damit sind die hier gewonnenen Messwerte auf fast drei Kommastellen konsistent. Dass dies kein Zufallstreffer ist, zeigen eigene Wiederholungen der Messung sowie eine weitere, welche Thomas Sauer in der Umgebung von München mit vergleichbarem Equipment durchgeführt hat. Die

Werte für $\lambda_{\text{rotversch.}}$ wurden hier mit Visual Spec an sog. Gaussfits der Wasserstofflinien gemessen. Die Auswertung der um ca. 1017 Å (!) verschobenen H α -Linie fehlt, weil diese Emission durch die Überlagerung mit der atmosphärischen Fraunhofer A-Absorption zu stark deformiert erscheint (siehe Abb. 4).

Z-Wert und «Fluchtgeschwindigkeit» v.

Mit bekanntem z-Wert lässt sich nun einfach die scheinbare «Fluchtgeschwindigkeit» $v_{\rm f}$ von 3C273 abschätzen – «scheinbar» deshalb, weil ab einigen hundert Millionen Lj, d.h. im «kosmologisch relevanten Distanzbereich», die kinematische Eigenbewegung der Galaxien gegenüber der Ausdehnung des sog.

Spektroskopie

«Raumzeitgitters» zunehmend bedeutungslos wird. Die Rotverschiebung hat hier deshalb nichts mit dem Dopplereffekt zu tun.

Zur Berechnung von v_f muss nun der z-Wert von 0.1583 lediglich mit der Lichtgeschwindigkeit c multipliziert werden.

$$v_f = c \cdot z \tag{4}$$

Dies ergibt $v_{\rm f}\approx 47'490{\rm km/s}$ oder ca. 16% der Lichtgeschwindigkeit. Es ist aber leicht zu sehen, dass hier bei Werten ab z>1 die «Fluchtgeschwindigkeit» $v_{\rm f}$ die Lichtgeschwindigkeit c übertreffen würde. Somit beschränkt sich der Gültigkeitsbereich von {4} auf Werte von z<<1. Für den allgemeingültigen Fall steht eine einfache, modifizierte «Dopplerformel» zur Verfügung, welche relativistische Effekte berücksichtigt und somit das Überschreiten von c verhindert.

$$v_{\rm frel} = c \cdot \frac{(z+1)^2 - 1}{(z+1)^2 + 1} \tag{5}$$

Wenn z in $\{5\}$ eingesetzt wird, reduziert sich die «Fluchtgeschwindigkeit» von 3C273 deutlich auf $v_{\rm f\,rel}$ = 43'808 km/s (CDS Datenbank [3]: 43'751 km/s).

Z-Wert und Distanzbestimmung

Infolge der Konstanz der Lichtgeschwindigkeit hat sich der z-Wert im extragalaktischen Bereich sowohl als Mass für die Distanz als auch für die Vergangenheit etabliert. Zudem bleibt er völlig unabhängig von den debattierten, kosmologischen Modellparametern und kann sehr einfach, d.h. direkt im Spektralprofil, gemessen werden. Der aktuelle Rekord liegt bei $z \approx 10$ (Abell 1835).

Die Distanz D lässt sich gemäss Edwin Hubble zwar einfach ermitteln, indem man die «Fluchtgeschwindigkeit» $v_{\rm f}$ durch den Hubbleparameter $H_{\rm (t)} \approx 73 {\rm km~s^{-1}~Mpc^{-1}}$ dividiert (Mpc = Megaparsec).

$$D \approx \frac{V_f}{H_{(t)}} \tag{6}$$

Infolge der Raumexpansion wird jedoch bei solch extremen Entfernungen die klassische Vorstellung von Distanz, gemessen in Lichtjahren [Lj] oder Parsec [pc], problematisch und das Hubble-Gesetz $\{6\}$ darf spätestens ab z ≈ 0.1 (~ 400 Mpc) nicht mehr als proportional, d.h. ohne Berücksichtigung kosmologischer

Galaxie	Sternbild	Entfernung D [Mio. Lj]	z-Wert	Effektive Radialgeschwin- digkeit v, [km/s]	Kosmologische Flucht- geschwindigkeit v _f [km/s]
M 31	Andromeda	2.6	-0.0010	-300	+58
M 33	Dreieck	2.9	-0.0006	-179	+64
M 81	Grosser Bär	12	-0.0001	-34	+270
M 82	Grosser Bär	12	+0.0007	+203	+277
M 101	Grosser Bär	22	+0.0008	+241	+503
M 51	Grosser Bär	27	+0.0020	+600	+606
M 66	Löwe	32	+0.0024	+727	+730
M 77	Walfisch	44	+0.0038	+1137	+986
M 98	Haar der Berenike	52	-0.0005	-142	+1168
M 86	Jungfrau	53	-0.0008	-244	+1182
M 87	Jungfrau	55	+0.0044	+1307	+1226
M 85	Haar der Berenike	55	+0.0024	+729	+1241
M 88	Haar der Berenike	62	+0.0076	+2281	+1380
M 58	Jungfrau	64	+0.0051	+1517	+1431
M 109	Grosser Bär	81	+0.0035	+1048	+1917

Tabelle 2: Effektiv gemessene Radialgeschwindigkeiten einiger Messiergalaxien, verglichen mit der distanzabhängigen, kosmologischen «Fluchtgeschwindigkeit».

Modellparameter, angewendet werden. Die Rotverschiebung von 3C273 liegt da bereits deutlich über diesem «Limit». So wird auch verständlich, dass sich renommierte Datenbanken wie CDS [3] und NED/NASA [4] in diesem Distanzbereich auf die Angabe der z-Werte beschränken. Berechnet man hier die «Distanz» trotzdem «klassisch», d.h. gemäss {6}, ergibt sich für 3C273 eine Entfernung von ca. 600 Mpc, entsprechend ca. 2 Mrd Lj. Die etwas streuenden Literaturwerte liegen für 3C273 aber höher, d.h. im Bereich von ca. 2.5 Mrd Lj.

Veränderungen im Spektrum

Ähnlich wie die Helligkeit von 3C273 (siehe AAVSO [5]) ist sowohl die Intensität als auch die Halbwertsbreite der einzelnen Spektrallinien Schwankungen unterworfen. Dieses Objekt wäre daher ein interessanter Kandidat für ein spektroskopisches Monitoring-Projekt. Zwangsläufig faszinierend ist jedenfalls die Tatsache, dass sich diese, innerhalb kurzer Zeit beobachtbaren Änderungen vor ca. 2.5 Mrd. Jahren ereignet haben, als sich unsere Erde noch im geologischen Zeitalter des Präkambriums befand und sich das Leben auf primitive Einzeller beschränkte.

Vergleich zu Messier's Galaxienwelt

Im Vergleich zum aktuellen Rekordwert von z ≈ 10 befindet sich 3C273 mit 0.1583 noch sehr weit vom Rande des aktuell beobachtbaren Universums entfernt. Anderseits bewirken die bescheidenen

z-Werte der Messier-Galaxien, dass uns dieses Himmelsareal, im kosmischen Massstab gesehen, extrem klein erscheint. Abb. 7 zeigt die um lediglich ~24 Å rotverschobenen O I-, H α -, N II- und S II Emissionen der Seyfert-Galaxie M77 entsprechend $v_{\rm f} \approx +1137$ km/s (NED [4]).

Abschliessend folgen hier noch z-Werte gemäss NED [4] für eine kleine Auswahl aus den 40 Messier-Galaxien. Die «kosmologischen Fluchtgeschwindigkeiten» sind hier mit Formel (6) aus den Distanzen D berechnet worden – positive Werte rotverschoben, negative Werte gleich blauverschoben. Es wird ersichtlich, dass bei den näher gelegenen Objekten die kinematische Eigenbewegung noch klar dominiert. Von den 40 Messier-Galaxien streben, entgegen der Raumexpansion, immerhin noch sechs tendenziell in unsere Richtung. Dazu gehören, selbst noch in ~50 Mio Lj Entfernung, M 86 und M98.

Richard Walker

Im Mattler 24 CH-8911 Rifferswil richiwalker@bluewin.ch

Links

- [1] RICHARD WALKERS Page mit mehreren Publikationen zum Thema Spektroskopie:http://www.ursusmajor.ch/ astrospektroskopie/richard-walkers-page/
- [2] SAG Fachgruppe Spektroskopie
 - http://www.astronomie.info/forum/spektroskopie.php
- [3] CDS Strassbourg: SIMBAD Astronomical Database http://simbad.u-strasbg.fr/simbad/
- [4] NASA Extragalactic Database (NED) http://nedwww.ipac.caltech.edu/
- [5] AAVSO http://www.aavso.org/
- [6] http://www.baader-planetarium.de/dados/dados.htm