Zeitschrift: Orion: Zeitschrift der Schweizerischen Astronomischen Gesellschaft

Herausgeber: Schweizerische Astronomische Gesellschaft

Band: 71 (2013)

Heft: 378

Artikel: Die Sonne feierte den längsten Tag mit einem Feuerwerk : eine

spektakuläre Flare-Region

Autor: Ourednik, Václav / Ourednik, Jitka

DOI: https://doi.org/10.5169/seals-897653

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 28.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Die Sonne feierte den längsten Tag mit einem Feuerwerk

Eine spektakuläre Flare-Region

■ Von Václav & Jitka Ourednik

«Schau mal – das ist ja phantastisch!», ruft Felix begeistert und winkt Václav zu sich, ohne sein Auge vom Okular seines neuen Sonnenteleskops zu wenden. Von Basel angereist, ist Felix Gass, wie schon so oft, wieder Gast im Astrofotografie-Zentrum Alpine Astrovillage Lü-Stailas in der Ostschweiz, um sein neuerworbenes Gerät auszutesten und neue Aufnahmen der Sonne zu erhalten.

Dr. Václav Ourednik, der Gründer und Lektor des Zentrums, leitet das Projekt. Es ist früher Nachmittag des 21. Juni 2013. Beide Freunde beobachten mit Begeisterung die erhöhte Aktivität auf der Sonnenoberfläche in H-alpha, die Ourednik bereits am Morgen einer Schulklasse gezeigt hat. Ohne zu zögern wird am

Lunt LS80T/Ha-DS das Okular entfernt und eine S/W Point Gray Flea3FW Videokamera montiert. Mit dem 2MB Sony ICX274 CCD mit 1624x1224 Pixeln von 4.4 m Kantenlänge bildet dieses System die Sonne bei 1.6 Bogensek/Pixel gerade schön formatfüllend ab. Eine 3x Barlowlinse kommt später für

Abbildung 1: Die AR1777 am südöstlichen
Rand der Sonne. (Bild:
Dr. Václav Ourednik
und Felix Gass)

Detailaufnahmen ebenfalls zum Zuge.

Einige Stunden Videoaufnahmen und Arbeit am Computer resultieren schliesslich in den hier abgebildeten Aufnahmen. Unter anderem zeigen sie eine ungewöhnlich geformte, «kraterartige» aktive Region, die sich bald als AR-1777 (oder AR-11777) herausstellt. Zum aussergewöhnlichen Aussehen gesellt sich bald die Tatsache, dass diese Region der Herd eines M2.9 Class Flares ist, der an diesem Tag um 3:16 UT von Satelliten wie Solar Dynamics Observatory (SOD) und Solar and Heliospheric Observatory (SOHO) registriert worden ist (siehe dazu http://www.youtube.com/watch?v=H _o_DuNMzto.

«Sonnensturm» am 21. Juni 2013

Die Aktivität unserer Sonne schwankt im Rhythmus von etwa elf Jahren zwischen ruhigen und besonders aktiven Phasen mit vielen Sonnenflecken, Gasausbrüchen und Strahlungsstürmen. Der aktuelle Zyklus hat mit einem kleinen Sonnenfleck 2008 begonnen und den Höhepunkt der Sonnenaktivität hat man für 2012/13 erwartet. Obwohl die Sonne am Anfang dieser Periode überraschend zurückhaltend gewesen ist, hat sie sich am 21. Juni 2013, also während des Solstitiums, vor ihrer «wilderen» Seite gezeigt.

Die aktive Sonne zeigt verschiedene interessante Oberflächenerscheinungen in ihrer Chromosphäre, die man auch als Hobby-Astronome vor allem mit den im Vergleich zu früher heute relativ erschwinglichen H-alpha Sonnenteleskopen von Coronado oder Lunt beobachten kann: Flecken, Fackeln, Granulation und Protuberanzen. Diese langlebigeren Erscheinungen können Stunden und Tage beobachtet werden. Im Gegensatz dazu gehören Sonneneruptionen zu den selteneren und kurzlebigen Phänomenen, deren Dauer in Sekunden bis Minuten gemessen wird.

In den frühen Morgenstunden des 21. Juni 2013 erfolgte ein Sonnensturm über der aktiven, kraterförmigen Region AR-1777. Diese Regionen werden bei ihrem Erscheinen auf der Sonne seit 1972 durchnumeriert und diese Nummern seit 2002 wieder auf 4 Ziffern reduziert. Auf der bekannten Web-Seite spaceweather.com waren schon vorher die Regionen AR-1775 bis AR-1778

Beobachtungen

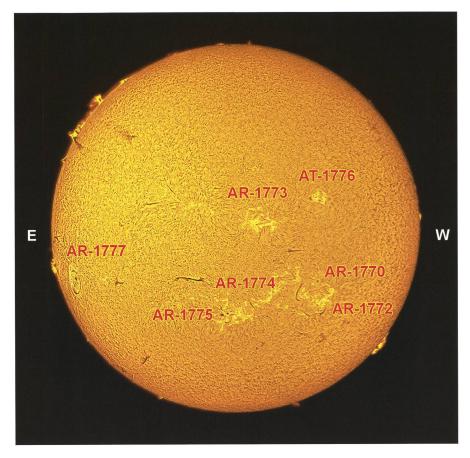


Abbildung 2: Die aktiven Regionen in der Chromosphäre der Sonne am frühen Nachmittag des 21. Juni 2013. AR-1777 war an diesem Tag der Herd eines Flares der M2.9-Klasse. Details zur Aufnahme, siehe Text. (Bild: Dr. Václav Ourednik und Felix Gass)

Mittel: 112.3 Mai 2013 **Swiss Wolf Numbers 2013** Marcel Bissegger, Gasse 52, CH-2553 Safnern 108 110 88 138 125 81 99 115 129 104 11 12 13 14 15 16 17 18 19 118 149 138 171 126 212 184 137 114 99 74 86 83 89 91 77 95 74 79 46 72 Mittel: 78.5 Juni 2013 64 105 68 59 79 76 50 41 30 23 12 13 14 15 19 36 53 75 93 115 115 123 122 112 Beobachtete, ausgeglichene und prognostizierte Monatsmittel der Wolfschen Sonnenfleckenrelativzahl 171 130 109 139 86 61 89 65 6/2013 11 11 7 Barnes H. Barnes H. Refr 76 Refr 76 Binggeli A. Bissegger M. Binggeli A. Bissegger M. Refr 85 Refr 85 Refr 100 Refr 100 Refr 115 6 12 7 7 F Dubler **Refr 115** F. Dubler Refr 102 Refr 40 Enderli P. Enderli P. Friedli T. Friedli T. Refr 40 Friedli T. Refr 80 Refl 300 Friedli T. Früh M. Refr 80 Refl 300 11 Früh M. Menet M. Möller M. Refr 102 Refr 80 Möller M. 29 7 4 26 15 5 8 12 13 5 3 13 6 Refr 80 Mutti M. Refr 126 Refr 120 13 6 2 Mutti M. Niklaus K. Refr 80 Refr 126 Niklaus K. Schenker J. SIDC S. Tarnutzer A. SIDC 1 Refl 203 Schenker J. Refr 120 SIDC 1 Refl 203 SIDC S. 10 1 2 9 Tarnutzer A. Trefzger C. Trefzger C. Von Arx O. Refr 150 Refr 100 Refr 150 Refr 100 Weiss P. Willi X. Refr 82 Refl 200 Von Arx O. Weiss P. 15 Refl 200 Zutter U. Refr 90 Willi X

als Kandidaten für bedeutendere Sonnenstürme klassifiziert worden. Die plötzliche, heftige Röntgen- und UV-Strahlung der Region AR-1777 wurde als ein M2.9-Flare klassifiziert, welchem eine eruptive Protuberanz und ein koronaler Massenauswurf (coronal mass ejection, CME) folgten. Flares werden auf einer logarithmischen Skala nach ihrer Röntgenstrahlungsenergie in die Klassen A, B, C, M und X unterteilt und diese noch in Intensitätsstärken 1.0 bis 9.9. Der Energiefluss eines Flares der Klasse M, dessen aktive Region auch wir beobachtet und fotografiert haben, bewegt sich zwischen 10-5 und 10-4 Watt/m².

Bei Flares und CMEs werden enorme Mengen geladener Teilchen vor allem Protonen und Elektronen – bis auf Energien von 10MeV beschleunigt, so dass sie sich mit etwa 10-30%-iger Lichtgeschwindigkeit von der Sonne wegbewegen. energiereichen Diese Teilchen, wenn in Richtung Erde geschleudert, können geomagnetische Stürme erzeugen und so Satelliten, Funkverbindungen und Elektrizitätsnetze stören und starke Polarlichter erzeugen. Auch die Röntgenstrahlung kann die irdische Ionosphäre durcheinanderbringen. Letzteres war auch im Zusammenhang mit dem M2.9-Flare der Fall, doch glücklicherweise nur beschränkt, da dank der Randlage der AR-1777 die CME die Erde nur tangential streifte.

Obwohl der M2.9 Flare kein extremes energetisches Ereignis darstellte, gab die Form der AR-1777, die an einen Mondkrater erinnert, der aktiven Sonne am längsten Tag dieses Jahres als ein eher seltenes Phänomen ein etwas «exotisches Flair». Es ist wunderbar, dass es dank der heutigen, ausgefeilten Digitaltechnologie und immer mehr erschwinglichen, hochpräzisen optischen Geräten auch in der Amateurastronomie-Szene möglich ist, solche interessanten Phänomene, ob im Sonnensystem oder anderswo im Universum, festzuhalten und damit oft auch wissenschaftliche Beiträge zu leisten. Der 21. Juni 2013 wird auf jeden Fall uns noch lange in schöner Erinnerung blei-

Dres. Václav und Jitka Ourednik Alpine Astrovillage Lü-Stailas Via maistra 20 CH-7534 Lü