Zeitschrift:	Orion : Zeitschrift der Schweizerischen Astronomischen Gesellschaft
Herausgeber:	Schweizerische Astronomische Gesellschaft
Band:	68 (2010)
Heft:	356
Artikel:	H- und He-6678-Emission am Doppelsternsystem Scorpii : spektroskopische Beobachtungen
Autor:	Pollmann, Ernst
DOI:	https://doi.org/10.5169/seals-897960

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. <u>Mehr erfahren</u>

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. <u>En savoir plus</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. <u>Find out more</u>

Download PDF: 31.08.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

H α - und HeI-6678-Emission am Doppelsternsystem δ Scorpii

Spektroskopische Beobachtungen

Von Ernst Pollmann

 δ Sco ist einer der hellsten Sterne des Himmels und zudem ein exzentrisches Doppelsternsystem mit einer Bahnexzentrizität von 0,94 (±0,1) und einem Neigungswinkel seiner orbitalen Rotationsachse in Bezug auf die Sichtlinie des Beobachters von 38° (±5°) bei einer Periode von ca. 10,6 Jahren.

Kurz vor dem Periastron im Jahr 2001 konnte von Otero et al. (2001) eine stufenweise Zunahme der Helligkeit im sichtbaren Spektralbereich im Juni 2000 beobachtet werden wobei etwa zeitgleich begonnene spektralanalytische Beobachtungen zur Entdeckung erster Linienemissionen führten. δ Scorpii stieg von seiner Normalhelligkeit von ca. 2,3 mag auf knapp 1,6^{mag} an und gehört nunmehr zur Familie der scheinbar hellsten Sternen überhaupt (vgl. Abb. 1).

Die Emissionslinienprofile von δ Sco sind sehr ähnlich denen der klassischen Be-Sterne und werden vermutlich in einer zirkumstellaren, abgeflachten Gasscheibe gebildet. Nur sehr wenige B-Sterne haben sich bis heute dahingehend entwickelt, dass nahezu zeitgleich mit Beginn eines ersten Helligkeitsausbruchs auch die Entwicklung und das Wachstum einer zirkumstellaren Gasscheibe beobachterisch so gut dokumentiert werden konnte. Dies ist auch einer der Hauptgründe dafür, dass die Übergangsstadien von fehlender Scheibe (B-Stern-Status) zu voll ausgeprägter Scheibe (Be-Stern-Status) und zurück, bisher nicht zufrieden stellend dokumentiert sind. Lediglich von Rivinius et al. (1998) ist eine ausführliche spektralanalytische Studie einer Scheibenentwicklung um den Be-Stern µ Cen vorgestellt worden, die bis jetzt dahingehend die einzige Studie ihrer Art war. Solche Beobachtungen, wie sie gegenwärtig δ Sco ermöglicht, sind sehr wichtig,

Abb. 1: Visuelle Lichtkurve von δ Scorpii nach Angaben von Otero et al. (2001)

um die Mechanismen der Scheibenbildung bzw. der Scheibenentwicklung zu erforschen. δ Sco liefert eine einzigartige Gelegenheit, einen fortwährenden Scheibenbildungsprozess im Detail zu studieren. Der Stern ist hell, er erlaubt hochauflösende Spektroskopie mit verhältnismässig kleinen Teleskopen sowie Helligkeitsmessungen mit blossem Auge, und kann fast 9 Monate im Jahr beobachtet werden.

Eigenschaften und analytische Aussagekraft der H α -Emissionslinie

Die zur Beobachtung der Gasscheibenentwicklung um den Zentralstern repräsentativste und zugleich dominanteste Linie im Spektrum von Be-Sternen – und somit auch STARK-Effekt und Expansionsbewegungen geprägt wird.

So formulierte DACHS et al. (1981) eine Gleichung, mit der die Breite der Emissionslinie in halber Peakhöhe, ausgedrückt als Wellenlängendifferenz in Å (in Englisch: full width half maximum, FWHM) in die orbitale Rotationsgeschwindigkeit der Scheibe/Hülle in der Sichtlinie des Beobachters umgerechnet werden kann. Diese orbitale Geschwindigkeit des Gases um den Zentralstern nimmt ab mit zunehmendem Scheibenabstand vom Stern entsprechend dem 3. Keplerschen Gesetz.

Während die Breite stellarer Absorptionslinien Informationen über die projizierte stellare Rotationsgeschwindigkeit (V sin i) liefert, ist die Breite zirkumstellarer Emissionsli-

bei δ Sco – ist die Emissionslinie H α der Balmerserie des Wasserstoffs. Die Äquivalentbreite (EW) dieser Emissionslinie spiegelt in ihrem Zeitverhalten unmittelbar den jeweiligen Entwicklungszustand, d.h. den Durchmesser, die Masse und die Dichte der Be-Sternscheibe wider. Aber nicht nur die EW, d.h. die Emissionsstärke, sondern auch ihre Linienprofileigenschaften geben Auskunft über gewisse dynamische Prozesse der rotierenden Scheibe um den Zentralstern.

So weiss man heute, dass das Ha-Emissionslinienprofil aus einer Rotationsbewegung der Gasscheibe resultiert, welches meist einer Gauss-Verteilungsfunktion, einem Gauss-Profil, entspricht und darüber hinaus noch von weiteren Linienverbreiterungseffekten, wie dem

Spektroskopie

nien im Spektrum von Be-Sternen ein Kombinationseffekt aus kinematischer und nichtkinematischer Verbreiterung (Strahlungstransfer, Thomson-Streuung) und liefert potentielle Informationen über den kinematischen Status der Scheibe. Ihre Halbwertsbreite FWHM in Å gibt dabei die typische Geschwindigkeit ΔV_{emi} (Rotations- und/oder Radialgeschwindigkeit) des zirkumstellaren Materials an.

Die Breite einer Emissionslinie ist ausserdem abhängig vom Signal/ Rausch-Verhältnis, weil in verrauschten Spektren sich die ausgedehnten Flügel kaum deutlich vom stellaren Kontinuum abheben. Weiterhin ist sie beeinträchtigt von der Definition des Linienflügelprofils und durch dem darunter liegenden photosphärischen Profil. Die FWHM hängt ab von der Linearität des ermittelten Linienflusses, von der Auflösung, und im Fall einer gut ausgeprägten Emissionslinie, auch von der korrekten Bestimmung der darunter liegenden photosphärischen Absorption.

Obwohl die FWHM der am leichtesten zugängliche Parameter ist und am meisten in den Studien über Emissionslinienprofile von Be-Sternen verwendet wurde, ist bereits eine ziemlich hohe Auflösung und ein linear arbeitender Detektor erforderlich, um frei von instrumentellem Rauschen signifikante Ergebnisse zu erhalten.

Das Monitoring der Geschwindigkeit ΔV_{emi} ist nun in Abb. 2 dem Zeitverhalten der Hα-EW gegenübergestellt worden. Die offensichtliche Anti-Korrelation von ΔV_{emi} mit der Ha-EW ist ein komplizierter Prozess von Scheibenwachstum und Materialumverteilung innerhalb der Scheibe. Die Zunahme der EW in 2004-2005 bei gleichzeitiger Abnahme der FWHM kann als schleichender Massenverlust interpretiert werden, der aus einer Abnahme der Menge des Materials in den inneren Regionen der Scheibe resultiert. Der spätere Massenverlust wird stärker bei zunehmender FWHM-Geschwindigkeit ΔV_{emi} . Die H α -EW steigt an zu wegen zunehmender Helligkeit des Scheibenkontinuums.

Da nach Untersuchungen von MIROSHNICHENKO et al. (2003) der Zentralstern nicht mit einer Geschwindigkeit an der Grenze seiner Stabilität rotiert, sondern mit $V_{rot} \sin i =$ 148 km/s bei einem Neigungswinkel

Abb. 2: Vergleich der H α -Äquivalentbreite mit der FWHM. Die Anti-Korrelation zwischen beiden Parametern verdeutlicht den Zusammenhang von wachsendem Scheibendurchmesser bei abnehmender Rotationsgeschwindigkeit ΔV_{emi} .

i seiner Rotationsachse von ca. 38° (± 5°) entsprechend nur mit Vrot von 217-272 km/s, liegen die eigenen gemessenen FWHM-Geschwindigkeiten ΔV_{emi} in Abb. 2 zur Zeit des ersten Ausbruchs im Juli 2000 in weitgehender Übereinstimmung bei dieser Grössenordnung. Vor dem Hintergrund dieser Beobachtungen macht es Sinn, nach Merkmalen im Spektrum von δ Sco zu suchen, welche weiterführende Auskünfte zum Geschehen der Scheibenentwicklung mehr in der Oberflächennähe des Zentralsterns liefern.

Informationen zum photosphärischen Verhalten des Zentralsterns

HeI-6678-Emissionslinien sind ein ausgezeichneter Indikator für Scheibenmaterie, die sich sehr dicht in der Nähe der Photosphärenregionen des Zentralsterns befindet, eines Bereichs, in dem die Temperatur und die Dichte am höchsten und in dem die Ionisation am stärksten ist. Interferometrische Messungen an γ Cas von Stee et al. (1998, A&A, 332, 268) haben gezeigt, dass die HeI-6678-emittierenden Regionen bei ca. 2,3 R* anzutreffen sind, weshalb auch die Bildung von HeI-6678 im Stern & Sco in sehr grosser Nähe zur Oberfläche des Zentralsterns zu erwarten ist. Die HeI-6678-Emissionen von δ Sco haben in hochaufgelösten Spektren sog. PCyg-Profile was bedeutet, dass der Beobachter darin einen optisch dicken Massenabfluss vom Zentralstern erkennt. Mit anderen Worten: In der Sichtlinie des Beobachters befinden sich sehr grosse Mengen expandierenden Gases. Dies ist deshalb interessant, weil der Inklinationswinkel zur Beobachtersichtlinie ca. 38° (± 5°) beträgt.

Spektroskopie

Um diesen Materieabfluss in der Sichtlinie sehen zu können, muss er innerhalb eines grösseren Bereichs stellarer Photosphärenbreite stattfinden. Außerdem bedeutet dies, dass durch den Massenabfluss zusätzlich Materie in die Scheibe transportiert wird, wodurch diese nach aussen hin graduell anwächst. Bisher konnten detaillierte, spektroskopische Beobachtungen einer wachsenden Be-Sternscheibe lediglich an μ Cen und nun hier an δ Sco durchgeführt werden.

Die HeI-6678-Emissionslinien zeigen beachtliche Veränderungen in ihrem V/R-Verhältnis (= Peakhöhenverhältnis der Violetten Komponente zur Roten Komponente) von V<R nach V>R sowie in der Radialgeschwindigkeit beider Peaks. Diese Effekte können darin begründet sein, dass HeI-6678 in einem Scheibenbereich gebildet wird, in dem kein Material mehr vom Zentralstern verbraucht wird und der aus einem elliptischen Ring besteht, in dem der Zentralstern nicht zentriert ist. Diese Situation könnte aber auch komplexer sein, weil der Begleitstern von δ Sco, über dessen Natur kaum gesicherte Erkenntnisse vorliegen, die Scheibenbildung und/oder die Scheibenzerstörung durch Gezeiteneffekte "triggert".

Andererseits ist die augenblickliche Periastrondistanz zu gross, als dass ein wirklicher Gezeiteneffekt eine Rolle spielen könnte. Die beobachteten Ausbrüche seit 2000, die durch visuelle Helligkeitsmessungen durch Otero et al. (2001) dokumentiert sind, deuten auf einen unabhängig von Gezeitenstörungen, und ausserhalb des Periastrons wirkenden Prozess hin. Die Überlegungen würden insgesamt bedeuten, dass photosphärische Ausbrüche als wahrscheinlichste Ursache angesehen werden können und die in der Folge einen emittierenden, elliptisch rotierenden Ring mit einem nichtzentrierten Zentralstern ausbilden, der sich langsam ausdehnt und dabei vom Zentralstern entfernt.

Wenn photosphärisches Material von der Oberfläche des Zentralsterns ausgestoßen wird, dann muss die Ausstossgeschwindigkeit nahe der projizierten Orbitalgeschwindigkeit sein. Wenn nun der Stern nahe seiner kritischen Rotationsgeschwindigkeit rotiert, wird die projizierte Orbitalgeschwindigkeit nahe der projizierten Äquatorialgeschwindigkeit liegen.

Für den Fall, dass der Stern subkritisch rotiert, ist $V_{orb} \sin i > V_{eq} \sin i$. Liegt seine Rotationsgeschwindigkeit dicht bei der kritischen Geschwindigkeit, sollte die Doppelpeaktrennung 2Vsin i etwa 330-350 km/s betragen.

Im Fall einer nach Kepler rotierenden Scheibe, würde dies zu einer HeI-6678-Emission im Bereich zwischen 2-3,5 R* führen, also definitiv sehr dicht in der Nähe der Oberfläche des Zentralsterns. Doppelpeakprofile (Abb. 2) entstehen entweder durch zentrale Depression, verursacht durch grosse Beträge von Material hoher Opazität und Null-Radialgeschwindigkeit (Selbstabsorption), oder durch eine Teilbedeckung des hinteren Teils der Scheibe, oder durch Dichte- und Geschwindigkeitseigenschaften, die eine maximale Emission bei Null-Radialgeschwindigkeit in nichtsphärischen Geometrien ergeben. Zurzeit sind jedoch keine ausreichend präzisen orbitalen Parameter bekannt um ableiten zu können, wie gross V_{eq} wirklich ist. Eigene Messungen der Doppelpeaktrennung im Februar, April und Juli 2008 führten zu Werten von etwa 190-230 km/s. Inwieweit Dichtevariationen mit Bezug auf das V/R-Verhalten eine

Rolle spielen, ist für den Amateur nur schwer herauszufinden. Dennoch ist der Versuch gemacht worden, hierfür etwaige Anhaltspunkte zu finden.

In diesem Sinne zeigt Abb. 4 in einer Gegenüberstellung die EW von H α über die EW von HeI-6678 aufgetragen. Die Güte dieser Korrelation, die sich bereits in dem Korrelationskoeffizienten von 0,79 ausdrückt, ist zusätzlich noch mit einem Signifikanztest (Fisher-Test) geprüft worden.

Dieser Test ergab, dass auch noch mit 99% iger Sicherheit eine Korrelation zwischen der EW von H α und der des HeI-6678 besteht. Die Streuung der Messwerte zur Regressionsgeraden kann sowohl auf die Messunsicherheit selbst und/oder auf eine physikalisch bedingte Ursache zurückgeführt werden. So kann man mit ziemlicher Sicherheit annehmen, dass die Scheibe oder der Ring um den Zentralstern mit aus dessen Photosphärenregionen ausgestossenem Material direkt gefüttert wird.

Da einerseits die Hα-Emission die äussersten Scheibenbereiche repräsentiert, HeI-6678 hingegen die dem Zentralstern nahen Regionen, und andererseits nach einem vorausgegangenen photosphärischen Ausbruch entsprechende Laufzeitunter-

Abb.3: Hel-6678-Emissionen im Spektrum von delta Sco. Die Wellenlängendifferenz zwischen den beiden Hauptpeaks (V = violett verschobene Komponente, R = rot verschobene Komponete) dienen der Doppelpeaktrennung 2Vsin i.

Spektroskopie

schiede bis zu ihrem Erscheinen im Spektrum zugrunde gelegt werden können, ist möglicherweise die Streuung der Messwerte um die Regressionsgerade Ausdruck solcher Dichtevariationen.

Um diesen Einfluss zu erhärten, wären gute Zeitserien erforderlich, in denen erst die HeI-6678-Emission, aber keine oder wenig von H α zu sehen ist, und dann nach einer gewissen Zeit (ideal einige Orbitalperioden, also Tage) Ha anwächst, möglicherweise sogar mit der "richtigen" 2x vsini-Breite und mit Abschwächung von HeI-6678. Der Schlüssel scheint die richtige zeitliche Folge zu sein. Eine Korrelation ist immer schwächer, da sie keine Zeitinformation mehr aufweist und somit nicht zu unterscheiden ist von Messunsicherheiten.

Es scheint, als gäbe es zwei physikalische Effekte in δ Sco: der eine Effekt ist der Ausstoss von Materie aus der Photosphäre des Primärsterns, der andere Effekt ist möglicherweise die Bildung von sog. "Dichte-blobs" des Gases in einer Scheibe oder eines Ringes, die/der mehr oder weniger dem 3. Kepler-Gesetz folgend, um den Zentralstern rotiert, und dabei eventuell sogar wieder in die Photosphäre zurückfällt. Die orbitale Bahnneigung ist ebenfalls noch sehr unsicher, wobei derzeit Werte von 20 bis 48° in der Literatur zu finden sind, was bedeutet, dass es noch sehr viele Unsicherheiten hinsichtlich der orbitalen Exzentrizität gibt. Vor dem Hintergrund dieser z.T. spekulativen Dichtevariationen in einem elliptischen Ring oder einer elliptischen Scheibe mit nichtzentriertem Zentralstern scheint die unlängst gefundene Periodizität des V/R-Verhältnisses der HeI-6678-Emissionen anzudeuten, dass tatsächlich Bereiche unterschiedlicher Dichte innerhalb des Ringes oder der Scheibe auf einem guasi-Kepler-Orbit existieren. Eine Periodenanalyse an ei-

Der Stern δ Scorpii trägt den arabischen Namen Dschubba, was "Stirn" bedeutet. Er ist rund 400 Lichtjahre von uns entfernt und hat eine scheinbare Helligkeit von +2,5^{mag}. Neben Antares ist δ Scorpii einer jener ekliptiknahen Sterne, die durch den Mond gelegentlich bedeckt werden können; ihn trifft es wieder ab September 2011.

Abb.4: Gegenüberstellung der Äquivalentbreiten von Hel6678 und H α . Die Korrelationsgüte von 0,79 deutet auf den Zusammenhang der Scheibenfütterung bzw. des Scheibenwachstums (Indikator = H α -EW) durch photosphärische Ausbrüche (Indikator = EW-Hel6678) hin.

genen Spektren aus dem Beobachtungszeitraum 2005/04/01 bis 2009/04/14 des V/R-Verhältnisses der HeI-6678-Doppelpeakemission mit dem Periodenanalyseprogramm AVE (Abb. 5) führte zu einer Periode von 544 Tagen, wogegen mit den gleichen Daten Thomas Rivinius (ESO, Chile) eine Periode von 536 Tagen ermittelte.

Ernst Pollmann

Emil-Nolde-Strasse 12 D-51375 Leverkusen

