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Geschichte der Astronomie
Histoire de l'astronomie

Le transit de Vénus et la quête
de la parallaxe solaire
Troisième partie - Travail de maturité

Doran Deluz

Géométrie
«Je dis souvent que si vous pouvez

mesurer ce dont vous parlez et l'exprimer

par un nombre, vous savez quelque
chose de votre sujet, mais si vous ne
pouvez pas le mesurer, si vous ne pouvez

pas l'exprimerpar un nombre, vos
connaissances sont d'une bien pauvre
espèce et bien peu satisfaisantes: ce

peut être le commencement de la
connaissance, mais si vous êtes à peine,
dans vos pensées, avancez vers la
science, quel qu'en puisse être l'objet.»

Lord Kelvin (1824-1907)

Notions de parallaxe
Si le tenue «parallaxe» n'est pas un

mot que nous utilisons tous les jours, le
phénomène qu'il décrit n'en a pas moins
été expérimenté par tout le monde.

Pour se rendre compte de ce qu'est
cette notion, il suffit par exemple de tendre

le bras pouce levé et de regarder
successivement par l'œil gauche puis
par l'œil droit. On constate instantanément

que le doigt se déplace sur l'arriè-
re-plan en fonction de l'œil avec lequel
on regarde. Cela est dû au fait qu'un
environnement est perçu de différentes
façons selon l'endroit d'où il est observé.
Or, l'écartement de nos yeux suffit à
percevoir ces différences lorsque les objets
sont proches de nous.

Considérons maintenant que l'écart
entre nos deux yeux, qui est mesurable,
est la base d'un triangle imaginaire, et
que le sommet de ce dernier se trouve
sur l'objet observé (par exemple le pouce).

On dit alors que la parallaxe est le
demi-angle situé au sommet de ce triangle.

Or, cet angle peut être déduit en
fonction du déplacement du pouce sur
l'arrière-plan. Si l'on connaît ce dernier
et la base du triangle, il est donc aussi
possible de connaître les dimensions
des deux côtés du triangle et surtout,
toujours par trigonométrie, la distance
entre l'observateur et son pouce.

Bien sûr, plus l'objet observé est
loin, plus l'écart entre les deux points
d'observation doit être grand. Ainsi,
pour mesurer les distances des planètes,

on peut utiliser la méthode de «pa¬

rallaxe diurne», qui consiste à observer
l'astre depuis deux postes d'observation

éloignés sur Terre. Pour des
distances encore plus grandes, celles
d'étoiles par exemple, on utilisera la
méthode de la «parallaxe annuelle», en
observant d'abord l'objet à un moment
donné de l'année, puis en l'observant à

nouveau 6 mois plus tard, lorsque la
Terre aura parcouru la moitié de son
orbite et sera par conséquent de l'autre
côté du Soleil.

Fig. 1

Il a été dit dans l'introduction que la
quête de l'Unité Astronomique, c'est-à-
dire la distance du Soleil à la Terre, était
dépendante d'un autre paramètre: la
parallaxe solaire. Sachant maintenant ce
qu'est une parallaxe, il est facile de
comprendre la notion de parallaxe solaire.
Comme l'illustre la figure 1, la parallaxe
solaire (a sur le dessin) est donc l'angle
sous lequel un observateur placé au centre

du Soleil verrait le demi-diamètre
(ou le rayon) de notre Terre.

En d'autres termes, si l'on note ST
l'Unité Astronomique, R le rayon de la
Terre et a la parallaxe solaire, on a la
relation

ST -y-tgW
Cet angle a étant très petit (de l'ordre

de 0.0024°), on peut confondre sa
valeur en radians et sa tangente, ce qui
nous donne encore plus généralement

On voit donc que si l'on connaît la
valeur du rayon terrestre, la parallaxe
solaire nous donne d'une façon très simple

la distance Terre-Soleil. Mais si le
diamètre de notre Terre était déjà bien
connu lorsque les transits de Vénus
furent découverts, il n'en a pas toujours
été ainsi. Les méthodes de calculs décrites

ci-dessous montreront donc
comment cette valeur a été estimée pour la

première fois, avant qu'on ne s'attache à
quelques-unes des plus importantes
méthodes utilisées dans le but de calculer
la parallaxe solaire.

Méthodes de calculs

Le rayon de la Terre

Nous ne nous attarderons pas trop
sur la mesure du rayon de la Terre, mais
la méthode est intéressante à évoquer et
le résultat utile pour la suite du chapitre.

Il semble que la première détermination

de cette grandeur est à attribuer à
Eratosthène de Cyrène (276-195 av. J.-
C.). L'astronome grec avait en effet
remarqué que dans la ville de Syène, en
Haute-Égypte, le Soleil éclairait le fond
d'un puit vertical lors du jour le plus
long de l'année. Le même jour mais plus
au nord, à Alexandrie, l'ombre d'un
obélisque s'écartait de la verticale d'un angle

a d'environ 7.2°, soit 1/50 d'une
circonférence. Eratosthène en déduisit
ingénieusement que cet angle correspond

aussi à la différence de latitude entre

les deux villes, et donc que cette
distance angulaire qui les sépare est aussi
l'équivalent de 1/50 de la circonférence
terrestre.

Sachant qu'environ 5000 stades
grecs séparaient les deux cités, il en
conclut que la circonférence de la Terre
était de 5000 * 50, soit 250000 stades, ce
qui donne un rayon terrestre de 39 800
unités. On ne connaît malheureusement
pas avec exactitude les dimensions du
stade grec à l'époque d'ERATOSTHÈNE,

mais il semblerait qu'il équivaille à environ

157 mètres. Cela attribuerait au
rayon terrestre une valeur d'environ
6250 km au lieu des 6378 km admis
aujourd'hui, ce qui un résultat tout à fait
admirable!

Aristarque et Copernic
Aristarque de Samos (310-230 av. J.-

C.), autre grand astronome grec, fut
notamment le premier à émettre, 3 siècles
avant notre ère, l'hypothèse de la rotation

de la Terre sur elle-même et autour

ORION 2005 25



Geschichte der Astronomie
Histoire de l'astronomie

du Soleil. Il inventa également la méthode

décrite ci-après permettant de calculer

la distance de la Terre à la Lune et au
Soleil.

La première donnée nécessaire à
l'évaluation de la distance Terre-Soleil
avec la méthode d'ARiSTARQUE est le
diamètre de la Lune (relativement à la Terre),

qui permet de calculer la distance
Terre-Lune et finalement la valeur de
l'Unité Astronomique.

Ce diamètre a ingénieusement été
calculé grâce aux éclipses de Lune. On
sait depuis l'antiquité grecque que la
Lune se déplace d'une fois son diamètre
en une heure. Or, l'occultation totale de

la Lune pendant une éclipse dure au
maximum deux heures, ce qui signifie
que l'ombre de la Terre peut contenir
jusqu'à trois fois la Lune, et que la Terre
elle-même peut donc à priori en faire
autant (Fig. 3). Mais c'est sans compter
que le Soleil n'est pas à une distance
infinie de la Terre et donc que l'ombre de

cette dernière est légèrement conique et
non cylindrique. Ainsi, l'endroit du cône
d'ombre que va traverser la Lune est
plus étroit que le diamètre de la Terre
lui-même: le diamètre de la Lune est
donc légèrement inférieur à un tiers de
celui de la Terre. Si l'on suit ce raisonnement,

on tombe facilement sur la vraie
valeur qui est

Dl.une 0.27 DTerre

/
" cône /vJlune d'ombre/

Terre

\orbite Fig. 3.de la Lune

D'autre part, on a déjà dit que la Lune
parcourt son propre diamètre en une
heure. Son diamètre apparent est donc
égal à

6l 0.508° 30.5 minutes d'arc

Or d'après la figure 4, [a 5l/2] et
[RL DL/ 2], On a donc la relation
suivant:

Rl Dl 0.27 DtLT
(a) 2-tg(%) 8.866-103

: 30.45 DT

Aristarque avait également réussi à

estimer de façon assez correcte le diamètre

apparent de la Lune dans le ciel. Il
savait que cet astre met environ 29 jours et
demi pour faire le tour de la Terre. Il
savait donc aussi qu'en un jour, la Lime
parcourait sur son orbite un angle de

360°' ' 12.2 °/j.
29.5j

J

ST
TL 30.5 D, £ 583 DT

pas Aristarque d'avoir été très près du
but, notamment par sa façon de procéder

qui était tout à fait innovatrice pour
l'époque.

A noter que ce même principe peut
être utilisé de façon plus large en l'appliquant

à une planète inférieure (Vénus,
par exemple) en lieu et place de la Lune.
Lorsque la planète est à son élongation
maximale, l'angle qu'elle forme avec le
Soleil et la Terre est de 90° (voir figure
6). En mesurant l'écartement angulaire
apparent entre Vénus et le Soleil, on
peut mettre en évidence la relation

SV sin (0) 0.72
ST

Ce résultat est très proche de la réalité,

le vrai facteur de DT étant normalement

30.17, c'est-à-dire 384404 km et
non pas 387994 km comme l'aurait
calculé Aristarque s'il connaissait la juste

valeur du diamètre terrestre.

Grâce à tous ces paramètres, il ne
restait plus à Aristarque qu'à effectuer
un simple calcul trigonométrique afin de
connaître la distance de la Terre au
Soleil. Mais c'est là qu'il commis
malheureusement sa plus grosse erreur car l'angle

a de la figure 5 est très difficile à

calculer précisément sans instrument
perfectionné.

L'astronome grec suivit le raisonnement

suivant: lorsque la Lune est
exactement à son premier quartier, c'est-à-
dire lorsqu'on en voit un demi-croissant
parfait, elle forme avec le Soleil et la Terre

un angle de presque 90°. Le cosinus
de cet angle combiné à la distance
Terre-Lune permet de connaître la distance
Terre-Soleil. Mais le cosinus d'un angle
proche de 90° exige une précision à

laquelle l'astronome ne pouvait prétendre.

On sait aujourd'hui que cet angle
vaut 89°51' (soit 89.85°). Mais Aristarque,

par une méthode qu'on ignore
totalement, ne mesura ici qu'un angle de 87°.

Il trouve ainsi l'Unité Astronomique
comme égale à

cos (a) cos(87)

au heu de

30.17 PT g h 759 D
cos (89.853)

On voit clairement à quel point une
petite erreur fausse ici complètement le
résultat. Malgré tout, cela n'empêche

Copernic a lui-même essayé cette
méthode et trouva pour l'angle 0 une
valeur de 46° environ. Même si cela ne
peut pas aider à calculer directement
l'Unité Astronomique sans connaître au
préalable la distance Vénus-Terre, cette
démonstration géométrique fut une belle

confirmation de la 3e loi de Kepler,
avant même que celle-ci ne soit conçue.
En effet, cette loi affirme que les distances

moyennes des planètes au Soleil
sont proportionnelles aux carrés de
leurs périodes de révolution. Dans le cas
présent, nous avons donc une justification

de cette loi par les deux relations
suivantes:

SVV (224
st] 1365

et

SV-079- 224
ST 1365

Jeremiah Horrocks
Jeremiah Horrocks, né en 1619, mort

en 1641, ne vécut que 22 ans. Ces quelques

années de vie laissèrent pourtant
de nombreuses traces dans le milieu
astronomique (Cf. chapitre «Histoire»).
Dans son œuvre Venus in Sole visa,
l'astronome traite de l'observation et de

l'exploitation du tout premier transit de
Vénus observé par un homme.
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Fig. 7.

Grâce à l'observation de ce transit,
Horrocks tenta, le premier, de calculer la
parallaxe solaire. Malheureusement, en
cette première moitié du XVIIe siècle,
aucune méthode ne permettait d'accomplir

cette tâche et Horrocks dut donc
inventer sa propre méthode de calcul.
Bien qu'ingénieux, le calcul de la parallaxe

solaire par Horrocks se fondait sur
des principes qui, alors communément
admis à l'époque, se révélèrent par la
suite erronés. Le jeune astronome
considéra en effet que la taille des planètes
était proportionnelle à leur distance du
Soleil et que, par conséquent, toutes les
planètes du système solaire auraient la
même taille apparente vues depuis le
centre de l'astre du jour, (figure 7). Pour
lui et les astronomes de son époque, la
parallaxe solaire était donc en l'occurrence

la même «pour la Terre» que
«pour Vénus».

st=Rt=RT rt
: 14 733 RT 7 367 DT~ f 6.7910"

Le résultat (a 14") obtenu par
Jeremiah Horrocks un an avant sa mort et
grâce à sa méthode est encore loin de la
réalité (a 8.79"), mais au moins
s'inscrit-il dans la constante diminution de la
supposée valeur de la parallaxe solaire.
Et alors que l'utilisation du transit de
Vénus comme moyen de mesure de l'UA
vient tout juste d'être perçue par ce jeune

homme, déjà, depuis 5 ans, est né
quelque part en Angleterre celui qui
esquissera les bases de la meilleure approche

de l'aspect géométrique des passages

de Vénus, lançant avant sa mort un
appel international afin d'encourager la
poursuite de la quête de la parallaxe
solaire. Cette personne-ci est Edmond Hal-
LEY...

La planète rouge
Durant cet été 2003, Mars n'a laissé

personne indifférent: elle passait plus
près de la Terre qu'elle ne l'avait fait
depuis 73000 ans! Bien que cette situation
soit exceptionnelle, Mars nous rend
quand même visite tout les deux ans
environ, à des distances plus ou moins
grandes. Ces moments où une planète
supérieure passe sur son orbite au plus
proche de la Terre sont appelés oppositions,

de la même façon qu'on parle de
«conjonctions inférieures» pour les
planètes intérieures (Cf. chapitre «Des
Transits»).

Avant de passer à la dernière méthode

de Halley évoquée ci-dessus, voyons
encore comment en 1672 les célèbres
astronomes Richer (1630-1696), Picard
(1620-1682) et Cassini Ier (1625-1712)
réussirent à calculer la parallaxe de notre

étoile grâce à Mars.

A l'instar d'un transit de Vénus, une
opposition de Mars exige que trois corps
soient alignés. Par contre, l'ordre est
cette fois différent: Mars - Terre - Soleil.
Nous savons donc qu'à ce moment l'égalité

suivante est vraie

Soieii Mars STerrc + TM

Ce qui nous fait une première équation

à trois inconnues.

Fort de ce principe, Horrocks se
basa sur une figure du type de celle ci-
dessus, désignant par Dv le diamètre
intrinsèque de Vénus, y son diamètre
apparent vu de la Terre et 8 son diamètre
apparent vu du Soleil. Comme nous
avons à faire à deux triangles isocèles et
possédant la même base, on peut affirmer

que

DV 7VT=£SV
D'où les relations:

5 YI ST-SV
' sv ' sv

ST

SV
Or on sait, grâce à la 3e loi de Kepler,

que le rapport Soleil-Terre sur Soleil-Vénus

peut être calculé facilement. En ce
qui concerne le diamètre y apparent de
Vénus vu depuis la Terre, Horrocks le
calcule simplement à l'aide d'un carton
percé d'un trou qu'il tient devant ses
yeux. Ayant estimé y l'16", il en déduit
que 8 28".

Si toutes les planètes, observées
depuis le Soleil, avaient bien le même angle

(ce que semblait encore confirmer
Gassendi par de récentes observations),
alors la parallaxe solaire aurait été égale

à 8/2 et l'Unité Astronomique calculée
comme sur la figure 1:

Les Twin Peaks de Mars vue par Mars Pathfinder (1997).

i
t

^Terre-Mars
i
i

>

i

a
Mars

\ t

a\.XP^Paris)\
/ / \ ' \

bÎ? >-•••
\C (Cayenne) /

Fig. 8.
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La distance Terre-Mars a pu être
calculée par Cassini et Richer grâce à la
méthode géométrique de la figure 8. Les
deux astronomes, respectivement à Paris

et à Cayenne, calculèrent les angles
a et b par rapport à Mars au même
moment. De cette mesure, on déduit facilement

l'angle a:

a 180°-a-b

Ils pouvaient également connaître la
distance P-C grâce aux informations la-
titudinales et longitudinales des deux
villes. Ainsi d peut être calculée par une
seule opération trigonométrique:

tg al PC
.2) 2d

Qui peut être simplifié de la façon
suivante, sachant que, comme avec la
figure 1, la tangente d'à peut être confondue

avec sa valeur en radians:

d PC
a

De plus, considérant la taille du

rayon de la Terre devant la distance P-C,

on peut considérer que dTerre-Mars vaut

TM d + RT

Reprenons notre première équation
dont on connaît maintenant le dernier
termeet combinons-la avec la 3e loi de
Kepler:

(1) SM ST + TM
rp 2 rx-i 2

(2)^=^4
ST SM

Ainsi, et à nouveau grâce à Kepler,
on se retrouve dans une situation simple
de 2 équations à 2 inconnues, où Tt et TM

sont bien sûr les périodes orbitales de la
Terre et de Mars, déjà très bien connues
au XVIIe siècle.

On notera que les trois astronomes
trouvèrent une parallaxe solaire de a
9.5", ce qui est déjà bien mieux que
Jeremiah Horrocks mais encore et toujours
trop grand par rapport à la valeur admise

de nos jours. C'est donc finalement
bien sur le transit de Vénus que tous les

espoirs reposent.

Soleil

L'appel de Halley
Edmond Halley est surtout connu

pour sa grande étude du mouvement des

comètes, donnant d'ailleurs son nom à
la plus célèbre d'entre elles. Mais cet
astronome anglais joua aussi un grand rôle
dans la publication des écrits de Newton,

qui allaient révolutionner la science,

et bien sûr dans son étude sur les
transits de Vénus et sur le calcul de la
parallaxe solaire.

La méthode de Halley, notamment
parce qu'elle fait intervenir plus d'un
observateur et donc des comparaisons de

mesures est, dans son intégrité, beaucoup

trop complexe à présenter ici. On

peut cependant se pencher sur une des
nombreuses méthodes très simplifiées
qui mettent néanmoins bien en évidence

le principe imaginé par l'astronome
tout en donnant de bons résultats. Pour
des calculs plus sophistiqués, voir le
complément informatique de ce travail,
(voir fig. 9)

De la même façon que précédemment,

on peut affirmer que la distance
Terre-Soleil vaut ici environ

x
aD

D D D

4
a Y! et a=ßYL

SV SV

D
ß VT

SV
Concernant x, il n'est pas très difficile

de connaître la distance en ligne droi-

I Transitvu selon Aou B

28 i

b/\ " \
o Fig. 10.

te entre deux villes. Quant au rapport VT
sur SV, nous l'avons facilement grâce à

Kepler. Concrètement, cela donne

SV ST

et

224.7 D
365.3

0.723

VT 1-SV 0.277

VT
SV

: 0.383

On a de plus les relations suivantes
(les angles étant en radians):

x VT4 et A'B' SW

x VTÛ

Il ne reste donc plus que le calcul de ß.

On sait que le diamètre du Soleil est
de 32' d'arc. De plus, compte tenu de sa
position dans le ciel et de la vitesse
angulaire apparente de Vénus, on sait que
cette dernière parcourt l'équivalant du
diamètre du Soleil en un temps maximum.

Si les deux observateurs mesurent

correctement les temps d'entrées et
sorties de la planète dans le disque solaire,

il est alors possible de convertir les
durées de passage perçues par chaque
observateur en distances angulaires.

En admettant que le premier
observateur chronomètre une durée ti et que
l'autre obtienne une durée t2, alors les
distances angulaires parcourues par
Vénus sur le disque solaire seront données

par

aa' 32' ^- et bb' 32'^-
max max

En injectant la dernière équation
dans la toute première, on obtient
finalement:

x

A la lumière de ces informations, il
est possible de calculer la distance
angulaire entre A' et B', soit l'angle ß. Pour
ce faire, il faut soustraire OB' à OA',
distances que l'on connaît grâce à l'application

de la règle de Pythagore aux triangles

aA'OetbB'O:

OA'=a /aO - et OB'

4-

bcr

ß A'B' OA' — OB'= a/ aO If]
D'une façon générale, on peut donc

utiliser la formule suivante, qui permet
d'éviter tout calcul intermédiaire:

^ 2

T„D

ST -
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Démontrons cette méthode par un
petit exemple. Le 3 juin 1769, le transit
de Vénus fut observé entre autres en
deux points terrestres: à Varda, en
Finlande, et à Tahiti, en Afrique du sud (il ne
s'agit pas de l'île homonyme). La
longueur d'un tunnel qui irait en ligne droite

d'un ville à l'autre serait d'environ
13 400 km. Notre première équation
devient donc

D= 13400
ß 0.383

L'observateur se trouvant à Varda
mesura une durée de 5h 53min 14s alors
que depuis Tahiti, le passage devant le
disque solaire ne dura que 5h 30min 4s.

Le diamètre angulaire du Soleil (32')
aurait été parcouru par Vénus en 8h. On
peut avec ces informations calculer les
distances angulaires aa' et bb':

32,5i01_h E 22QQ t bb,_32,i887h ^ 23 J5
8h 8h

Ce qui permet de calculer l'angle ß:

ß </(16j2 - (XIT - Vt1®')2 - (11-78j2 0'.79, soit 2.27 KTrad

Ce qui au final nous donne une Unité
Astronomique équivalente à

D=_ 13 400 154127512km
2.27 • 10" • 0.383

Ce qui a le mérite d'être assez proche
de la réalité malgré les approximations.
En effet, la Terre orbite autour du Soleil
à une distance moyenne de 149 600 000
km, allant jusqu'à 152100 000 km à son
aphélie. Notre calcul correspond donc à

une parallaxe solaire de a 8.53", ce qui
représente une erreur moyenne de 3%!

Récapitulatif
Voici un petit tableau récapitulatif

des différentes valeurs de la parallaxe

solaire, calculées depuis l'Antiquité
jusqu'à nos jours. L'évolution de la valeur
de l'UA, qui ne cessa de baisser, est
flagrante. On notera que c'est bien un
passage de Vénus qui fournit la meilleure
estimation de l'Unité Astronomique à la
fin du XIXe siècle.

(à suivre)

Doran Deluz

Route de Frontenex 100
CH-1208 Genève

Auteur [année] Valeur de l'UA / Méthode Valeur de la parallaxe

Anaximandre ~ 54 rayons terrestres ~ 1.06°

Aristarque de Samos ~ 300 rayons terrestres -11.4'
Hipparque 2490 rayons terrestres - 1.4'
Ptolémée 1210 rayons terrestres -2.8'
Copernic 1500 rayons terrestres -2.4'
Kepler < 1'
Horrocks Transit de 1639 14"
Cassini Ier Parallaxe de Mars 9.5"

Transits de 1761 et 1769 de 8.50" à 8.88"
[1835] Transits de 1761 et 1769 8.571" ± 0.037"
Gill [1881] Parallaxe de Mars 8.78"
Newcomb [1890] Transits de 1874 et 1882 8.79"
[1941] Parallaxe de l'astéroïde Eros 8.790"
NASA [1990] Mesure Radar 8.79415"
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