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Grundlagen
Notions fondamentales

Planeten-, Kometen- und
Satellitenbahnen
Gerhard Beutler

Der Artikel gibt eine Übersicht über Fragestellungen der modernen Himmelsmechanik

des Planetensystems und des erdnahen Raumes. Drei Themenkreise werden

entwickelt und durch Computer-Simulationen illustriert:
1. Unser Planetensystem ist etwa 4.5 Milliarden Jahre alt, was auf eine

bemerkenswerte Stabilität deutet (jedenfalls verglichen mit der Stabilität politischer
Systeme auf der Erde). Ob das System als Ganzes tatsächlich stabil ist, kann
heute nicht abschliessend beurteilt werden. Numerische Experimente zeigen,
dass es im Planetensystem Instabilitäten und chaotisches Verhalten gibt.

2. Das Dreikörperproblem ist nach dem Zweikörperproblem scheinbar die
«zweit-leichteste» Aufgabe der Himmelsmechanik - und trotzdem ist sie in

geschlossener Form schon dann nicht lösbar, wenn alle Himmelskörper als
Punktmassen genähert werden. Hier wird eine Einführung in das Dreikörperproblem

Erde-Mond-Sonne gegeben, bei dem Erde und Mond als Körper
endlicher Grösse angenommen werden. Die Lösung der Aufgabe erfordert
damit nicht nur eine Bahncharakterisierung, sondern auch die Beschreibung
der Rotation von Erde und Mond. Kenndaten und moderne Erkenntnisse der
Erd- und Mondrotation werden anhand numerischer Experimente erläutert.

3. Die Raumfahrt hat für die Himmelsmechanik, aber auch für die astronomi¬
sche Positionsbestimmung und Navigation, eine neue Ära eingeläutet. Heute
wird nicht mehr mit Sextanten und Chronometern navigiert, sondern mit
Satellitensystemen. Etwas überspitzt kann man sagen, dass künstliche Erdsatelliten

die Sterne als «Leuchtfeuer» abgelöst haben. Allerdings muss man dazu
die Bahnen dieser künstlichen Erdsatelliten sehr genau bestimmen und
voraussagen können. Die wichtigsten Bahn-Charakteristiken künstlicher
Erdsatelliten werden anhand von numerischen Simulationen illustriert.

Präambel: Klassische
und moderne Hilfsmittel
der Himmelsmechanik
Die klassischen Bahnelemente: Es

ist ein zentrales Anliegen der
Fundamentalastronomie, die Bahnen von
Planeten, Kometen, und Satelliten unseres
Sonnensystems mit möglichst wenigen
Kenngrössen zu beschreiben und zu prä-
dizieren. Es war eine epochale Leistung
von Johannes Kepler (1571-1630) zu
zeigen, dass jede Planetenbahn mit nur
sechs Bahnelementen beschrieben werden

kann. Figur 1 illustriert einen von
mehreren Sätzen von Bahnelementen,
nämlich
- die Halbachse a,

- die numerische Exzentrizität e,

- die Neigung i der Bahnebene,

- die ekliptikale Länge ü des aufstei¬
genden Knotens,

- der Abstand cd des Perihels vom Knoten

sowie

- die Periheldurchgangszeit To.

Die Bewegungsgleichungen des

Planetensystems: Es war eine ebenso
fundamentale Einsicht von Isaac Newton
(1643-1727), dass die Bahnen der
Himmelskörper durch différentielle
mathematische Beziehungen beschrieben
werden können und dass die Massenanziehung

zwischen zwei beliebigen
Massenelementen dem Gesetz der universellen

Gravitation genügt.

Das zweite Newtonsche Axiom
besagt, dass die Änderung der Bewegung
(in heutiger Sprechweise die erste
Ableitung des Impulses nach der Zeit) der
vektoriellen Summe der wirkenden
Kräfte gleichzusetzen ist. Dieses zweite
Gesetz kann interpretiert werden als
Bewegungsgleichung - nicht algebraisch,

sondern in Worten ausgedrückt.
Das Newtonsche Gesetz der universalen

Gravitation besagt bekanntlich,
dass die Anziehungskraft zwischen zwei
Körpern längs ihrer Verbindungslinie
wirkt, den beiden Massen direkt, und
dem Quadrat ihres Abstandes indirekt
proportional ist.

Beim klassischen planetaren N-Kör-
perproblem werden nur Punktmassen
betrachtet. In einem Inertialsystem (z.B.
im Schwerpunktssystem des
Sonnensystems) wird unser (jedes) Planetensystem

mathematisch durch ein
gewöhnliches Differentialgleichungssystem

zweiter Ordnung in der Zeit t
beschreiben:

rt -k2 1 m, : fhi=l,2,...,N (1)
j=li*i \ri~rj\

Dabei ist das Quadrat der sog.
Gaussschen Konstanten
k=0.01720209 895
gleich der Gravitationskonstanten, wobei

man als Zeiteinheit den Tag, als
Masseneinheit die Sonnenmasse und als
Längeneinheit (im Wesentlichen) die
astronomische Einheit verwendet.

Eine partikuläre Lösung des
Systems ist definiert, wenn die Orts- und
Geschwindigkeitsvektoren sämtlicher
beteiligter Himmelskörper zu einem
Zeitpunkt ^vorgegeben sind. Die
Bewegungsgleichungen wurden erstmals von
Leonhard Euler (1707-1783) in der noch
heute verwendeten Form (allerdings in
Komponentenschreibweise)
niedergeschrieben.

Ist die Zahl der Himmelskörper N=2,
bewegen sich die beiden Punktmassen
auf Kegelschnitt-Bahnen um den gemeinsamen

Schwerpunkt und umeinander
(d.h., dass sowohl rft), r2(t) als auch
r(t): r2(t) - rft) Kegelschnitte darstellen).

Aus jedem Satz von Orts- und
Geschwindigkeitsvektoren r(t) und v(l)
können dann die Keplerschen Bahnelemente

mit Formeln, die im Wesentlichen
schon auf Kepler zurückgehen, berechnet

werden.

Numerische Integration als universale

Lösungsmethode: Ist die Zahl der
Himmelskörper N>2, resultieren
(möglicherweise) sehr komplizierte Bahnen.
Jedenfalls gelingt die Lösung des
Systems (1) im Allgemeinen nicht mehr in
geschlossener Form. Bei gegebenen
Anfangsbedingungen kann dieses aber mit
den Methoden der numerischen Integration

«mit beliebiger Genauigkeit» gelöst
werden.

Die «Urversion aller Methoden zur
numerischen Integration» ist die Euler-
sche Methode, welche ein Integrationsintervall

[t0, tn] durch die Teilpunkte tk in
Teilintervalle (z. B. gleicher Länge)
unterteilt und innerhalb eines Teilintervalls

[tk,tk+1] die Lösung durch das
folgende Polynom zweiten Grades
(entsprechend einer Taylorreihe der
Ordnung 2) approximiert:
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rj(0 i;(y+(f-tt)-»i(fi)

+ ^(t-tk?fi(tk),füvte[tk,tM} (2)

Euler verwendete die Formel (2)
insbesondere, um an der Stelle tk+i neue
Anfangsbedingungen, d.h., die Vektoren
fi(tk+i) und Vi(tk+1) zu bestimmen. Den
Geschwindigkeitsvektor erhält man
natürlich durch Ableiten der Formel (1)
nach der Zeit:

vi(t)=v(tk)+(t-tk)-fi(tk) (3)

Damit aber ist die universale Euler-
sche Lösungsmethode gegeben: Beginnend

mit den Anfangsbedingungen kann
man mit Hilfe der Differentialgleichungen

(1) die Lösung stückweise durch ein
Polynom zweiten Grades darstellen. Die
Eulersche Lösungsmethode hat zwei
bemerkenswerte Eigenschaften:

- Entgegen einer weitverbreiteten
Meinung liefert die Eulersche
Methode eine approximierende Funktion

als Lösung: die Formeln (2) und
(3) erlauben es, Funktionswerte und
deren Ableitungen an jeder beliebigen

Stelle (und nicht nur an den
Teilpunkten t/cj zu berechnen.

- Durch eine feinere Unterteilung er¬

zielt man eine genauere Lösung.
Moderne Integrationsmethoden, die

diesen Namen verdienen, teilen diese
Eigenschaften mit der Eulerschen
Methode. Sie unterscheiden sich lediglich
darin von der Eulerschen Methode, dass
die Lösungen lokal durch Polynome
(Taylorreihen) höheren als zweiten Grades

(Ordnung) approximiert werden
(typischerweise werden Polynome vom
Grad q=10-14 verwendet). Der
Polynomgrad wird vom Benutzer festgelegt.
Die Polynomkoeffizienten werden
durch die Forderung festgelegt, dass die
approximierende Funktion das
Differentialgleichungssystem (1) lokal nicht
nur (wie bei der Eulerschen Methode)
an einer, sondern an mehreren Stellen
erfüllt. Moderne Methoden sind um viele

Grössenordnungen effizienter als die
Eulersche Methode. Die bekannten Viel-
schrittverfahren und die sogenannten
Kollokationsverfahren sind Vertreter
dieser Klasse von Integrationsverfahren.

Für Einzelheiten verweisen wir auf
[1].

Oskulierende und mittlere Bahnelemente:

Die numerisch integrierten
Lösungen des Differentialgleichungssystems

(1) sind approximierende Funktionen,

die es uns erlauben, die Orts-und/
oder Geschwindigkeitsvektoren (sowie
bei Bedarf höherer Ableitungen) sämtlicher

beteiligter Himmelskörper zu
beliebigen Zeitpunkten innerhalb des
durch die Integration überdeckten Intervalls

zu berechnen.

Selbstverständlich ist es auch möglich,

Funktionen dieser Vektoren zu
berechnen. Instruktiv ist es insbesondere,
eine Tabelle sogenannter oskulierender
Bahnelemente zu bestimmten
Zeitpunkten tk, k=l,2,... zu berechnen.
Oskulierende Bahnelemente zur Zeit t
erhält man, indem man mit den Formeln
des Zweikörperproblems die Orts- und
Geschwindigkeitsvektoren umrechnet
in die Bahnelemente:

r(t); v(0 -> a(t), e(t), i(t), ü(t), co(?), T0(t) (4)

Die oskulierenden Bahnelemente
sind einfach zu interpretieren: Der
betrachtete Himmelskörper würde sich
auf der durch die auf der rechten Seite
von (4) stehenden Bahnelemente
definierten Kepler-Bahn bewegen, wenn
vom Zeitpunkt t an die gravitative
Wirkung sämtlicher Himmelskörper (mit
Ausnahme von zweien) ausgeschaltet
würde.

Hat man eine Tabelle von oskulierenden

Bahnelementen erstellt, kann
man die zeitliche Entwicklung der Bahnen

studieren. Die tatsächliche Bahn ist
die Enveloppe der durch die Elemente
(4) gegebenen Zweikörperbahnen. Dies
ist sehr viel instruktiver und einleuchtender,

als direkt die Orts- und
Geschwindigkeitsvektoren zu analysieren
- es käme keinem Himmelsmechaniker
in den Sinn, direkt die Zustandsvekto-
ren zu interpretieren.

Die oskulierenden Bahnelemente
zeigen periodische Störungen verschiedenster

Perioden. Die kürzesten sind
gegeben durch die (ungestörten) Umlaufszeiten

der Himmelskörper selber. Will
man die Entwicklung eines Systems
über sehr lange Zeit studieren (über
Tausende von LTmläufen), ist man im
allgemeinen gut beraten, mittlere
Bahnelemente als Mittelwerte der oskulierenden

Elemente über längere Zeitintervalle
zu bilden. Man erhält dann ein sehr

viel besseres Bild der Entwicklung einer
Bahn über lange Zeiträume. Als
Mittelungsperioden verwendet man mit Vorteil

die Umlaufszeiten der betrachteten
Himmelskörper oder ganzzahlige Vielfache

davon.

Das Programmsystem Celestial
Mechanics: In diesem Artikel möchten wir
einige wichtige Aspekte der
Himmelsmechanik mit Hilfe numerischer Experimente

behandeln, resp. illustrieren.
Dazu verwenden wir das vom Autor
entwickelte Programmsystem Celestial
Mechanics, das dem Buch [1] beigegeben

ist. Das Programmsystem umfasst
acht Programme, zwei Testprogramme
für numerische Integration, ein
Programm zur Fourieranalyse, eines für
Bahnbestimmung (für Erdsatelliten und

Kleinplaneten, Kometen, etc.), eines zur
kinematischen Bestimmung der Bahn
eines Satelliten mit Hilfe von GPS-Mes-

sungen (GPS=Global Positioning
System), das Programm PLASYS zur
Integration des Planetensystems, das
Programm ERDROT zur Beschreibung
der Rotation von Erde und Mond, sowie
das Programm SATORB, mit welchem
unter anderem Bahnen künstlicher
Erdsatelliten simuliert werden können. Mit
den drei letztgenannten Programmen
wurden die meisten Figuren in diesem
Artikel erzeugt.

Das Programmsystem ist konzipiert
für Personal Computer (PC) mit
Windows-Betriebssystemen. Um das
Programmsystem effizient einzusetzen, ist
ein leistungsfähiger PC mit einer
Taktfrequenz von 500 MHz (oder mehr) und
einer Speicherkapazität in der Grössen-
ordnung einiger Gbytes sinnvoll.

Numerische Experimente im
Planetensystem
Das Programm PLASYS: Sämtliche

Simulationen in diesem Abschnitt wurden

mit dem Programm PLASYS (siehe
[1]) durchgeführt, das es erlaubt, unser
Planetensystem zu konfigurieren (eine
beliebige Auswahl der neun grossen
Planeten sowie ein Kleinplanet mit wählbaren

Bahnelementen können
eingeschlossen werden) und, ausgehend von
der Gegenwart (auch der genaue
Ausgangszeitpunkt kann gewählt werden),
vorwärts oder rückwärts über «beliebige

Zeitintervalle» zu integrieren.
PLASYS erzeugt eine Datei mit

Planetenpositionen sowie eine Datei mit
Integrationskonstanten (zu
Kontrollzwecken), die entweder mit dem
mitgelieferten Grafik-System oder mit irgendeinem

Graphik-Programm dargestellt
werden können. Durch Darstellung der
Planetenpositionen erhält man einen
Eindruck vom Verlauf der Planeten- und
Planetoidenbahnen. Figur 2 zeigt die
Positionen der Planeten Jupiter (innerster

Ring), Saturn (zweiter Ring von
innen), Uranus (dritter Ring), Neptun
(vierter Ring), sowie Pluto (äusserster
«Ring») bei einer Integration des äusseren

Planetensystems über die nächste
Million Jahre. Die Integration erfolgte
mit einem Vielschrittverfahren der
Ordnung q=14 für Differentialgleichungen
zweiter Ordnung. Die Schrittweite
betrug 30 Tage.

Für jeden Himmelskörper werden
zusätzlich entweder die sechs oskulierenden

oder die sechs mittleren
Bahnelemente als Funktion der Zeit in je eine
Datei abgespeichert. Werden mittlere
Elemente gespeichert, muss die
Mittelungsperiode (in Einheiten der unge-
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störten Umlaufszeiten) angegeben werden.

Die gespeicherten Elemente können

dann mit einem eigens entwickelten
oder einem beliebigen anderen Graphik-
Programm dargestellt werden. Sämtliche

Darstellungen in diesem Artikel
sind mit dem sogenannten «gnu-plot»
System erzeugt worden.

Fig. 2: Das äussere Planetensystem über eine
Million Jahre.

«Sinnvolle» numerische Experimente:

Das Programm PLASYS erlaubt
es, eine ganze Palette von numerischen
Experimenten zum Thema Entwicklung
des Planetensystems anzustellen. Wir
erwähnen nur deren drei, die im folgenden

kurz gestreift werden sollen:

- Entwicklung des äusseren Planeten¬

systems über einige Millionen Jahre.

- Entwicklung des inneren Planeten¬
systems über einige 100000 Jahre.

- Entwicklung spezieller Planetoiden¬
bahnen

Das Attribut «sinnvoll» ist vielleicht
etwas provokativ. Man kann natürlich
aus jeder Simulation etwas lernen. Man
sollte aber vor der Simulation präzise
Fragen stellen und diese dann mit
gezielten numerischen Experimenten
beantworten. Hier wollen wir zeigen, dass
die mechanische Entwicklung des
äusseren Systems im Wesentlichen durch
die Planeten Jupiter und Saturn geprägt
ist. Zudem werden wir die Frage nach
der Stabilität des Planetensystems kurz
anschneiden. Das innere Planetensystem

ist geprägt durch das Wechselspiel
zwischen den Planeten Venus und Erde.
Wir gehen auf einige Klima-relevante
Aspekte bei der Erde ein. Mit unserer
Analyse von Kleinplanetenbahnen wollen

wir illustrieren, wie man sich heute
den Transfer von Materie vom äusseren
ins innere Planetensystem vorstellt.
Diese neuen Vorstellungen sind in den
1980er Jahren wesentlich von numerischen

Experimenten geprägt worden.
Die Entwicklung des äusseren

Planetensystems: Figur 2 deutet an, weshalb
sich die IAU (Internationale Astronomische

Union) schwer tut, den Planeten

16

Pluto als Hauptplaneten zu akzeptieren.
Seine Neigung gegenüber der (momentanen)

Ekliptikebene ist mit etwa 17° deutlich

grösser als die der übrigen Planeten
(die nächst kleinere Neigung ist die von
Merkur mit 7°). Zudem ist Pluto's Exzentrizität

mit e=0.25 so gross, dass ein Teil
seiner Bahn innerhalb der fast kreisförmigen

Bahn von Neptun verläuft. Dass sich
Pluto bisher trotzdem in seiner Bahn
behaupten konnte, hängt damit zusammen,
dass seine Umlaufszeit sich zu derjenigen
von Neptun wie 3:2 verhält. Damit finden
die nahen Begegnungen (von der Sonne
aus gesehen die Konjunktionen) der beiden

Planeten genähert immer im gleichen
Gebiet statt. Pluto hat es so eingerichtet,
dass die Konjunktionen immer in der
Nähe seines Aphels stattfinden. Sämtliche

numerischen Experimente (ähnlicher

Art wie unseres) deuten darauf hin,
dass sich Pluto auf einer stabilen Bahn
befindet. Mit einer Integration über eine
Million Jahre kann natürlich abschliessend

nur festgestellt werden, ob sich ein
Planet während dieses Zeitintervalls in
einer stabilen Bahn befand. Anhand der
erzielten Resultate lassen sich über ein
zehn mal längeres Zeitintervall allenfalls
Prognosen (wie beim Wetter) abgeben.
Damit ist aber auch angedeutet, warum
man versucht, das Planetensystem über
immer längere Zeitintervalle zu integrieren.

Heute darf man mit einiger Sicherheit

behaupten, dass unser System
mindestens über Zeiträume von etwa
einer Milliarde Jahre keine offensichtliche
Instabilität zeigt.

Weitaus der grösste Teil der Masse,
der Energie und des Drehimpulses des

Planetensystems ist im Dreikörperproblem

Sonne Jupiter (mit einer Tausendstel

Sonnenmasse) Saturn (mit einer
Dreitausendstel Sonnenmasse) enthalten.

Man darf also davon ausgehen, dass
die mechanische Entwicklung des
Planetensystems durch dieses Dreikörperproblem

geprägt ist. Experimente der hier
vorgestellten Art bestätigen dies
eindrücklich. So zeigt beispielsweise Figur 3

(ein Ausschnitt, der die Entwicklung der
mittleren Halbachsen über die nächsten
zehntausend Jahre zeigt), dass die
Bahnhalbachsen von Jupiter und Saturn fast
zu 100% antikorreliert sind (wenn die
Halbachse von Jupiter maximal ist, ist
diejenige von Saturn minimal und
umgekehrt). Die Periode der Änderungen
beträgt im Mittel etwa 940 Jahre. Da die
Halbachse einer Planetenbahn die mittlere

Bewegung festlegt, werden durch diese

Störungen in der Halbachse sehr grosse

Störungen in der ekliptikalen Länge
der Planeten induziert. Der Effekt ist unter

der Bezeichnung grosse Ungleichheit
in der Himmelsmechanik wohlbekannt.
Er wurde von Pierre Simon de Laplace

ORION 2003

(1749-1827) als langperiodische Störung,
verursacht durch die 5:2-Kommensurabi-
lität der Umlaufszeiten von Jupiter und
Saturn, erklärt. Es ist übrigens bis heute
nicht geklärt, ob diese Kommensurabili-
tät zufälliger Natur ist, oder ob es dafür
einen Grund gibt. Figur 3 illustriert aber
auch sehr schön den Energieerhaltungssatz:

In guter Näherung kann die Gesamtenergie

des Planetensystems berechnet
werden als Summe der Zweikörperenergien

der Planeten. Diese Zweikörperenergie

ist aber ihrerseits indirekt proportional

der Halbachse a. Vernachlässigt
man die Massen aller übrigen Planeten
(ausser denjenigen von Jupiter und
Saturn), ist die Gesamenergie E des
Systems zu nähern durch

W; msE~
2ay 2as

Durch die Forderung E=const. ergibt
sich

mi a2
Sa, - m

• SÜJ -11.2 • öcij
r"s a

Diese Beziehung wird durch Figur 3

sehr schön bestätigt. Die Amplitudenvariationen

in Figur 3 sind übrigens nicht
etwa Integrationsfehlern zuzuschreiben.
Diese sind durch die Störungen der übrigen

Planeten verursacht. Mit ähnlichen
Näherungen gelingt es, die Störungen in
der Exzentrizität zu erklären durch die
Erhaltung des Betrages des Drehimpulses.

Auch die Störungen in den Exzentrizitäten

von Jupiter und Saturn sind
antikorreliert. Man kann mit demselben
Experiment «beweisen», dass die Bahnebenen

von Jupiter und Saturn um ein und
dieselbe Achse mit der gleichen
Winkelgeschwindigkeit präzedieren (rotieren).
Der Beobachter erhält also den
Eindruck, dass die Bahnebenen von Jupiter
und Saturn (fast) als starres Gebilde um
ein und dieselbe Achse (die Achse des
totalen Drehimpulses) rotieren - auch diese

Eigenschaft eine Folge eines
Erhaltungssatzes (für den Drehimpuls). Die
numerischen Experimente zeigen, dass
das äussere Planetensystem, wie
eingangs erwähnt, tatsächlich durch das

Dreikörperproblem Sonne-Jupiter-Sa-
turn geprägt ist. Für weitere Informationen

sei auf [1] verwiesen.
Entwicklung des inneren Planetensystems:

Das innere Planetensystem
mit den erdähnlichen Planeten besteht
aus Merkur, Venus, Erde und Mars. Von
der Masse, der Energie und vom
Drehimpuls her ist das Paar Venus - Erde
ebenso dominant wie das Paar Jupiter -
Saturn im äusseren System. Während
die Eigenschaften des äusseren Systems
sehr gut ohne das innere System
studiert werden können, gilt sinngemäss
dasselbe nicht für das innere System.

1]©
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Fig. 3: Flalbachsen von Jupiter (rot) und
Saturn (grün) während der nächsten
zehntausend Jahre.

Würden wir das innere System ohne das
äussere integrieren, könnten wir
wesentliche Eigenschaften nicht verstehen.

Die Integration des inneren
Systems ist aufwendiger, da wir die
Schrittweite der Integration dem
schnellsten Planeten anpassen müssen.
Selbst wenn wir den «Winzling» Merkur
bei der Integration weglassen, müssen
wir die Schrittweite der Integration auf
fünf Tage reduzieren. Um zu sinnvollen
Aussagen zu kommen, wurden bei der
Integration sämtliche Planeten von
Venus bis Neptun eingeschlossen. Wir
beschränken uns hier auf die Diskussion
eines Resultates, nämlich der Entwicklung

der Bahn-Exzentrizitäten von
Venus, Erde und Mars über die letzten und
die nächsten 250000 Jahre. Das Ergebnis

findet man in Figur 4. Zunächst sieht
man, dass die Halbachse von Mars
wesentlich stärker durch die äusseren
Planeten (insbesondere durch Jupiter)
gestört wird als die Exzentrizitäten von
Venus und Erde. Ähnlich wie beim Paar
Jupiter-Saturn sieht man eine deutliche
Antikorrelation der Exzentrizitäten,
was zu interpretieren ist als Austausch
von Drehimpuls zwischen den beiden
inneren Planeten. Dem überlagert ist
eine langperiodische Änderung, die den
Exzentrizitäten beider Planeten gemein
ist. Diese ist (wie man durch ein kleines
Experiment sehr leicht nachweisen
kann) durch die Störungen des äusseren
Planetensystems verursacht. Man
beachte, dass die momentane Exzentrizität

der Erdbahn etwa e=0.016 beträgt
und dass diese während der nächsten
etwa 30 000 Jahren fast bis auf e=0
abnehmen wird. Vor etwas mehr als
200 000 Jahren hingegen betrug die
Exzentrizität der Erdbahn mehr als e=0.04!
Solche Unterschiede können klimatisch
durchaus von Bedeutung sein: Während
bei einer fast kreisförmigen Bahn praktisch

keine Winter-Sommer Asymmetrien
auf den beiden Hemisphären auftreten

können, sind bei grösseren
Exzentrizitäten deutliche Unterschiede
(je nach Lage des Perihels der Erdbahn)
zu erwarten: Zum einen ist bei grösserer

Exzentrizität die von der Sonne erhaltene

Strahlung im Perihel deutlich grösser
als im Aphel (der relative Unterschied
beträgt 4e), zum anderen werden die
sonnen-näheren Teile der Bahn schneller

durchlaufen als die sonnen-ferneren.
Milutin Milankovitch (1879-1958) hat mit
mässigem Erfolg versucht, die klimatischen

Veränderungen auf der Erde
himmelsmechanisch zu deuten. Figur 4
weist daraufhin, dass gewisse langperiodische

Änderungen der Bahnelemente
durchaus bedeutend sein können.

Fig. 4: Die Exzentrizitäten von Venus, Erde

und Mars während der letzten und nächsten
250000 Jahre.
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Die Bahnen von Kleinplaneten: In
der Neujahrsnacht des Jahres 1801
entdeckte Giuseppe Piazzi (1746-1826) den
ersten Kleinplaneten zwischen Mars
und Jupiter. Der deutsche Mathematiker

Carl Friedrich Gauss (1777-1855)
begründete zum mindesten einen Teil
seines Ruhmes auf der erfolgreichen
Bestimmung der Bahn von Ceres aus
einer kurzen Reihe von Beobachtungen.
Heute sind weit über 100 000 Kleinplaneten

mit Umlaufszeiten zwischen denen
von Mars und Jupiter gesichert. Zudem
kennt man heute schon einige hundert
Objekte im Kuiper-Gürtel im äusseren
Planetensystem. Figur 5 gibt die Positionen

sämtlicher gesicherter Kleinplaneten

am 1. Juli 2001 sowie der
Planetenpositionen wieder. Sehr deutlich ist der

Ring zwischen Mars und Jupiter zu
sehen. Ebenso sieht man je eine Wolke
von Kleinplaneten etwa 60° von Jupiter
entfernt auf der Jupiterumlaufbahn. Es
ist dies die Gruppe der Trojaner und der
Griechen. Die Kleinplaneten haben sich
um eine stabile Lösung des Dreikörperproblems

herum «ansiedeln» können.
Figur 6 gibt einen besseren Eindruck

von der Verteilung der Kleinplaneten
zwischen Mars und Jupiter. Sie stellt die
Anzahl der Kleinplaneten mit grossen
Halbachsen in Intervallen der Breite von
Aa=0.002 AE dar. Diese Zahlen werden
als Funktion der (aus der Halbachse
berechneten) Umlaufszeit, in Einheiten
der Umlaufszeit von Jupiter, dargestellt.
Deutlich sieht man im Gürtel Häufungen,

aber auch Lücken. Das Bild
widerspricht intuitiven Erwartung: Ein
unvoreingenommener, nicht einschlägig
vorbelasteter Wissenschaftler würde
wohl eine Art Gaussvereilung mit einem
Maximum irgendwo zwischen Mars und
Jupiter erwarten. Ganz abwegig ist die
Vorstellung nicht: Immerhin entspricht
die Enveloppe des Histogramms grob
diesen Vorstellungen. Man merkt natürlich

sofort, dass (zum mindesten einige
der) Häufungen und Lücken nicht zufällig

verteilt sind, sondern dass sie an Stellen

auftreten, wo das Verhältnis der
Umlaufszeiten von Jupiter und Kleinplanet
durch einen Quotienten kleiner ganzer
Zahlen ausgedrückt werden kann. Man
sagt in diesem Falle auch, dass die
Umlaufszeiten kommensurabel sind. Deutlich

sehen wir die Gruppe der Trojaner,
deren Umlaufszeit mit der von Jupiter
übereinstimmt (bei der Abszisse 1)
sowie die Hilda-Gruppe, deren Umlaufszeit

2/3 derjenigen von Jupiter beträgt.
Die heutige Verteilung der Kleinplaneten

hat sich aus einer ursprünglich
ganz anderen (die wohl eher den oben
geäusserten Vorstellungen entsprach)
entwickelt. Damit stellt sich naturge-
mäss die Frage, wie sich die Gruppen
und Lücken entwickelt haben. Relativ
einfach kann man die Gruppen erklären:
Die Kleinplaneten der Trojaner und der
Hilda-Gruppe haben «Nischen» stabiler
Lösungen des Dreikörperproblems
Sonne-Jupiter-Kleinplanet (einer Koexistenz

mit Jupiter) ausgebildet, die über
Jahrmilliarden nicht aufgelöst werden.
Man darf übrigens ja nicht meinen, dass
jeder Kleinplanet mit einer Umlaufszeit
von 2/3 Uj sich in einer stabilen Bahn
befinden würde: Weitaus die meisten
Kleinplaneten mit einer solchen
Umlaufszeit stürzen entweder auf Jupiter
ab oder sie werden durch ihn in ganz an-

Fig. 5: Positionen der Planeten und
Planetoiden am 1. Juli 2001.
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dere Bahnen geschleudert. Man könnte
übrigens hier durch gezielte Experimente

(Monte-Carlo-artige Simulationen)
Aufschluss über die ursprüngliche
Verteilung erhalten.

Nachdem wir die Existenz der Gruppen

sozusagen «rein gravitativ» erklärt
haben, stellt sich die Frage, wie die
Lücken zu erklären sind. Die Frage ist
natürlich nicht neu. Sie wurde erstmals
vom amerikanischen Astronomen Daniel

Kirkwood (1814-1895) gestellt, der
gegen Ende des 19ten Jahrhunderts aus
der damals bekannten Population von
etwa 100 Kleinplaneten glaubte, Lücken
in der Verteilung von Kleinplaneten bei
Kommensurabilitäten zu sehen - eine
überaus spekulative Aussage (man
dividiere die Zahlen in Figur 6 durch 1000

und überzeuge sich davon, dass man
kaum mehr von einer «reichen» statistischen

Basis sprechen kann!).

Fig. 6: Anzahl der Kleinplaneten pro 0.002 AE
in der Halbachse, als Funktion der Umlaufszeit
in Einheiten der Jupiter-Umlaufszeit.

Man ist intuitiv geneigt, die Lücken
durch résonante Störungen zu erklären.
Bewegt sich nämlich ein Kleinplanet in
der prominenten 3:1-Lücke, erfährt er
nach jeweils drei siderischen Umläufen
wieder praktisch dieselben Störungen
durch Jupiter. Eine Aufschaukelung der
Störungen scheint durchaus plausibel.
Ein Nachweis war - vor der Computer-
Ära - aber extrem schwierig, ganz
einfach weil analytische Methoden über
mehr als einige hundert Umläufe
schlicht nicht mehr zuverlässig sind.
Aus patriotischen Gründen sei ein
statistischer Erklärungsversuch von Prof.
Max Schürer erwähnt: Er wollte die
Lücken als ein statistisches Artefakt
«wegdiskutiert» haben: Setzt man einen
Kleinplaneten in einer Lücke aus, wird
er vergleichsweise starke periodische
Störungen (auch) in der Halbachse
erleiden und so (genau wie ein Pendel im
tiefsten Punkt) sich nur während
vergleichsweise kurzer Zeit in der
Lücke (entsprechend dem tiefsten Pendelpunkt)

aufhalten. Diese statistische
Hypothese wurde von Francois Schweizer

in seiner Diplomarbeit [2] mit damals
(in den 1960er Jahren) sehr aufwendigen

numerischen Experimenten widerlegt.

Das Rätsel konnte, jedenfalls für die
3:1-Resonanz, erst gelöst werden durch
die Arbeiten von Jack Wisdom [3], der
eine grosse Zahl von Simulationen über
Zeiträume von Hunderttausenden von
Jahren mit den damals schnellsten
Rechnern durchführen konnte.
Interessanterweise lag der Schlüssel zur Erklärung

der Lücken nicht in den Störungen
der Halbachsen selbst verborgen,
sondern in den Störungen der Bahnexzentrizitäten.

Zwar beobachtet man durchaus

résonante Störungen in den
Halbachsen in der Nähe der 3:1- Resonanz.
Diese sind aber immer noch deutlich zu
klein, um die Lücken in Figur 6 statistisch

zu erklären (die Amplituden betragen

in tiefster Resonanz einige
Hundertstel AE an Stelle von einigen
Tausendsteln AE ausserhalb der
Resonanz). Spektakulär sind hingegen die
Störungen in der Exzentrizität e. Dies
wird durch Abbildung 7 veranschaulicht,

die die Exzentrizitäten von fünf
simulierten Kleinplanetenbahnen in der
Nähe der 3:1-Resonanz darstellt (mit
Umlaufszeiten von 0.32633, 0.32833,
0.33033, 0.33133, 0.33233
Jupiterumlaufszeiten). Zum Ausgangszeitpunkt
war die Exzentrizität in allen Fällen auf
e=0.1 gesetzt. Man beachte, dass in den
beiden Beispielen mit der tiefsten Resonanz

(0.33133, 0.33233) Exkursionen in
der Exzentrizität bis e=0.3 an der
Tagesordnung sind und dass Exzentrizitäten
bis zu e=0.6-0.7 durchaus über längere
Zeitintervalle vorkommen können!
Erklären diese grossen Störungen in den
Exzentrizitäten die Lücke in Figur 6 bei
der 3:l-Kommensurabilität? Nach Wisdom

kann die Frage wie folgt bejaht werden:

Ein Kleinplanet in der 3:l-Kom-
mensurabilität hat eine Halbachse von
a=2.5 AE. Das Perihel liegt in einer
heliozentrischen Distanz von rp=a(l-e).
Bei einer Exzentrizität von e=0.4 liegt
das Perihel eines Kleinplaneten bei
einer heliozentrischen Distanz von
rv= 1.5, also im Bereich der Marsbahn,
bei einer Exzentrizität von e=0.6 sogar
im Bereich der Erdbahn! Wisdom
behauptet nun schlicht, dass alle Kleinplaneten,

die während längerer Zeit grosse
Bahnexzentrizitäten aufweisen, auf die
genannten inneren Planeten abstürzen
resp. abgestürzt sind - womit die 3:1-
Lücke rein mechanisch erklärt ist. Die
Erklärung ist ebenso plausibel wie genial!

Nicht nur die Exzentrizität, auch die
Lage des Perihels einer Kleinplanetenbahn

erleidet Störungen. Es ist instruktiv,

den zum Perihel weisenden Vektor
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Fig. 7: Exzentrizitäten von fünf Kleinplaneten
in 3:7 -Resonanz mit Jupiter über eine Million
Jahre.

mit der Länge e (auch Laplacescher Vektor

genannt) im Inertialsystem als Funktion

der Zeit aufzutragen. Die Figuren 8,
9 und 10 zeigen die Wanderung dieses
Vektors für drei der Fälle von Figur 7.

Figur 8 zeigt (schon fast) die normale
Präzession des Laplaceschen Vektors
eines «normalen» Kleinplaneten. Die
Figuren 9 und 10 zeigen die chaotische
Bewegung dieses Vektors im Falle tiefer
Resonanz. Das Perihel scheint in beiden
Fällen zu torkeln. Ähnliche Bilder erhält
man beim Aufzeichnen des Bahnnormalenvektors.

Störungen in der Neigung
von mehr als zehn Grad sind durchaus
keine Seltenheit. Aus Platzgründen wird
auf diese Darstellungen verzichtet. Die
Leserschaft sei auf die vertiefte Behandlung

in [1] verwiesen.

Erd- und Mondrotation
Die Bewegungsgleichungen (1)

charakterisieren ein N-Körperproblem, bei
dem sämtliche beteiligten Himmelskörper

als punktförmig angenommen werden.

Bei vielen Problemstellungen der
Himmelsmechanik genügt diese Näherung,

bei anderen aber nicht. Das
Dreikörperproblem Sonne-Erde-Mond, wie
es in Figur 11 dargestellt ist, verlangt,
dass Erde und Mond als ausgedehnte
Himmelskörper behandelt werden. Wie
passt man die Bewegungsgleichungen
den verallgemeinerten Bedingungen an?
Die Antwort, zuerst von Euler gegeben,
lautet: im Prinzip ist keine Anpassung
nötig, man hat aber Gleichungen vom
Typ (1 für jedes Massenelement eines
jeden Himmelskörpers aufzustellen.
Durch geeignete Kombination aller
Gleichungen vom Typ (1) pro Himmelskörper

erhält man anschliessend

- je einen Satz von Differentialglei¬
chungen für die Bewegung der
Schwerpunkte der drei Himmelskörper

sowie

- je einen Satz von Differentialglei¬
chungen für die zeitliche Entwicklung

der Drehimpulse der drei
Himmelskörper (Drehimpulse bezogen
auf die jeweiligen Schwerpunkte).

18 ORION 2003



Grundlagen
Notions fondamentales

0.4 -

0.6 1 1 1 1 1

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

ecosw

Fig. 8: Der Laplace-Vektor eines

Kleinplaneten in seichter 3:1 -Resonanz mitJupiter
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Fig. 10: Der Laplace-Vektor eines
Kleinplaneten in tiefer 3:1 -Resonanz mit Jupiter.

Figur 11 dient nicht nur als Hilfsmittel

zur Herleitung der verallgemeinerten
Bewegungsgleichungen des Systems,
sie zeigt auch, wie die Aufgabe zu para-
metrisieren ist. Dazu wollen wir
zunächst annehmen, dass Erde und
Mond starre Körper sind. Das
Dreikörperproblem ist offensichtlich gelöst,
wenn wir zu jedem Zeitpunkt die
Schwerpunkte der drei Himmelskörper
und die Lage je eines mit der Erde und
mit dem Mond starr verbundenen
Koordinatensystems kennen. Figur 12 zeigt,
wie man das körperfeste Koordinatensystem

der Erde wählen kann. Zudem
zeigt sie eine Möglichkeit für die Wahl
eines raumfesten Koordinatensystems.

Um unsere Aufgabe zu lösen, müssen

wir uns jetzt lediglich noch fragen,
wie denn die Lage eines Koordinatensystems

im inertialen Raum zu beschreiben

ist. Figur 12 zeigt, dass dazu drei
Winkel, auch Eulersche Winkel genannt,
benötigt werden. In Figur 12 haben wir
im inertialen Raum ein ekliptikales
Koordinatensystem eingeführt. Ein ekliptikales

Koordinatensystem hat die Ebene
der Bahn des Systems Erde-Mond um
die Sonne als Fundamentalebene (d.h.,
als erste Koordinatenebene). Da diese
Bahnebene - infolge der Planetenstörungen

- selber im Raum nicht fix sein
kann, müssen wir genauer von einem
Ekliptiksystem zu einer bestimmten
Epoche sprechen. Normalerweise
verwendet man zu diesem Zweck heute das
auf den 1. Januar 2000 bezogene System
und bezeichnet es als System J2000.0.
Als erdfestes System verwendet man
üblicherweise ein geozentrisches,
äquatoriales System - also ein konventionelles

geographisches System.
Figur 12 zeigt also, dass die Lage des

erdfesten, äquatorialen Systems im
inertialen Raum zu einem bestimmten
Zeitpunkt durch die drei Eulerschen Winkel
*P, £, 0 beschrieben werden kann. Sie
sind «im Prinzip» zu identifizieren mit

SU©

Fig. 9: Der Laplace-Vektor eines
Kleinplaneten in tiefer 3:1-Resonanz mit Jupiter.

der Summe ¥ aus Präzession und Nutation

in Länge, der Nutation in Schiefe e und
der Sternzeit 0. Allerdings ist zu beachten,

dass wir diese Winkel hier einfach
als Transformationsparameter zwischen
dem raumfesten, ekliptikalen und dem
erdfesten, äquatorialen Koordinatensystem

eingeführt haben. Vom Standpunkt
der Himmelsmechanik aus gesehen ist
dies das einzig Richtige und Vernünftige.

ORION Ue003

Unterscheidungen zwischen wahren und
mittleren Systemen sowie eine künstliche

Aufspaltung in Präzession und Nutation,

wie sie in Astronomie-Grundvorlesungen

gebräuchlich sind, sind durch
nichts zu rechtfertigen. Immerhin sei
angemerkt, dass die Winkel T und b sich
nur vergleichsweise langsam ändern,
während 0 pro (Stern)Tag um 360°
anwächst. Es sei nochmals vermerkt, dass

19

Fig. 11 : Das Dreikörperproblem Sonne-Erde-Mond.
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man im Prinzip auch ganz andere
Koordinatensysteme hätte einführen können.
Wichtig ist lediglich, dass eines raumfest
(inertial), und das andere erdfest ist.

Die Bewegungsgleichungen der Erde

setzen sich also zusammen aus drei
Differentialgleichungen zweiter
Ordnung in der Zeit, welche die Bewegung
des Schwerpunktes der Erde im inerti-
alen Raum beschreiben, sowie drei
(gekoppelten) Differentialgleichungen
zweiter Ordnung in den drei Winkeln *F,

e, 0, welche die Lage des erdfesten
Systems beschreiben. Anzumerken bleibt,
dass aus den ersten zeitlichen Ableitungen

der drei Eulerschen Winkel die
momentane Lage der Rotationsachse und
die Winkelgeschwindigkeit (aus der
wiederum die Länge des siderischen
Tages folgt) berechnet werden kann.

Sinngemäss gelten dieselben Überlegungen

für die Bahn- und Rotationsbewegung

des Mondes. Das Resultat kann
verallgemeinert werden: In einem N-Kör-
perproblem müssen für jeden Körper
endlicher Ausdehnung drei
Differentialgleichungen zweiter Ordnung für die drei
Eulerschen Winkel den Bewegungsgleichungen

für die Schwerpunkte beigesellt
werden. Die Differentialgleichungen für
die Bewegung der Schwerpunkte und für
die Rotation der Himmelskörper sind alle
miteinander gekoppelt. Man kann also
im Prinzip die Entwicklung der Eulerschen

Winkel (für Erde und Mond) nur
im Rahmen der Lösung des verallgemeinerten

Dreikörperproblems Erde-Sonne-
Mond studieren.

Äquator

Fig. 12: Die drei Eulerschen Winkel.

Die Koppelung zwischen Bahn- und
Rotationsbewegung ist allerdings nicht
sehr stark. Man kann daher einen
genäherten Eindruck von der Erdrotation
erhalten, indem man die Schwerpunktsbewegung

durch das System (1)
beschreibt und diese in den Differentialgleichungen

für die Eulerschen Winkel
als bekannt annimmt. Das Programm
ERDROT, das für die folgenden Simulationen

verwendet wurde, erlaubt es,

- die Erdrotation bei als bekannt ange¬
nommener Schwerpunktsbewegung
von Erde, Sonne und Mond oder

- die Mondrotation bei als bekannt an¬

genommener Schwerpunktsbewegung

von Erde, Sonne und Mond
oder aber

- das Dreikörperproblem Erde, Sonne
und Mond vollständig korrekt im
oben erläuterten Sinn
zu studieren.
Die folgenden Illustrationen wurden

alle mit der korrekten (dritten) Lösung
der Aufgabe erzeugt.

Die Rotation der Erde: Bei der
numerischen Integration müssen die
Anfangsbedingungen spezifiziert werden.
Im Programm ERDROT werden die
Positionen und Geschwindigkeiten der
Schwerpunkte der beteiligten Himmelskörper

aus einer sehr genauen Ephemeride

(im wesentlichen einer «elektronischen»

Version der Jahrbücher)
übernommen, die Winkel T*, e, und 0 werden
aus den Formelsammlungen der IAU
(Internationalen Astronomischen Union)

übernommen. Die ersten Ableitungen

dieser Grössen werden aus dem
vorgegebenen Winkelgeschwindigkeitsvektor

(0 berechnet. Dieses Vorgehen
erlaubt es, die Lage der Rotationsachse
der Erde zum Ausgangszeitpunkt realistisch

zu wählen. Bei der nachfolgenden
Simulation wurde die Lage der
Rotationsachse etwa 0.2" vom geographischen
Nordpol entfernt gewählt.

Figur 13 zeigt die Projektion der
Rotationsachse auf die Erdoberfläche (von
oberhalb des Nordpols aus gesehen).
Wir sehen, dass sich diese in guter Näherung

auf einem Kreis mit Radius 0.2"

(dies entspricht auf der Erdoberfläche
etwa 6 m) um den geographischen Pol
herum bewegt hat. Die Periode dieser
Kreisbewegung beträgt bei einer starren
Erde etwa 300 Tage. Sie wird Eulersche
Periode genannt und kann allein aus der
Tageslänge und aus den Hauptträgheitsmomenten

der Erde berechnet werden.
In Wirklichkeit beträgt die Hauptperiode

der Polschwankung nicht 300,
sondern etwa 430 Tage. Der Unterschied
erklärt sich aus der Tatsache, dass die
Erde nicht vollkommen starr ist. Die
reale 430-tägige Periode wird nach ihrem
Entdecker Seth Carlo Chandler (1846-
1913) Chandler-Periode genannt. Die
Chandler-Periode kann aus der Tageslänge,

den Hauptträgheitsmomenten
der Erde und aus der Elastizität der
Erde berechnet werden. Der «grossen»
Kreisbewegung von 0.2" sind kleine
Kreise mit variierendem Radius überlagert.

Dieser Anteil der Polschwankung
wird Oppolzer-Bewegung genannt
(nach Freiherr Ritter von Oppolzer
[1841-1886]). Die Periode beträgt (fast)

einen Tag. Die Oppolzer-Bewegung wird
durch die von Mond und Sonne auf die
Erde ausgeübten Drehmomente verursacht.

Befinden sich die Himmelskörper
in der Äquatorebene, verschwinden die
betreffenden Drehmomente und damit
die zugehörigen Radien der Oppolzer-
«Kringel». Da der Mond zweimal pro
Monat die Äquatorebene kreuzt, sind
die Radien der Kringel zweimal im
Moment minimal. Da die Sonne zweimal
pro Jahr (zu den Zeitpunkten des
Frühjahres- und des Herbstbeginns) die
Äquatorebene kreuzt, ist der durch die
Sonne bedingte Radius der Oppolzer-
Kringel zweimal pro Jahr minimal. Man
könnte also der Oppolzer-Bewegung in
Figur 13 die Zeitpunkte der Äquinoktien
zuordnen.

Omegal(arcsec)

Fig. 13: Die Polschwankung während eines
Jahres.

Wie bewegt sich der Rotationspol im
Raum? Die Figuren 14-16 geben die
(wohlbekannte) Antwort. Figur 14 zeigt,
dass der Winkel in der Ekliptikebene
pro Jahr im Mittel um etwa 50.4"
abnimmt. Dies entspricht der Präzessionsbewegung

des Rotationspols um den
Ekliptikpol herum. Die zugehörige Periode

beträgt folglich etwa 26000 Jahre.
Man entnimmt der Figur 14 aber auch,
dass der linearen Abnahme von VF deutlich

eine periodische Komponente
überlagert ist. Diese kann man genauer
studieren, wenn man rein rechnerisch den
linearen Anteil in Figur 14 eliminiert.

Das Resultat ist in Figur 15 enthalten.

Wir erkennen eine grosse 18.6-jäh¬

rige periodische Bewegung mit einer
Amplitude von etwa 17" sowie halbjährliche

Terme mit Amplituden von etwa
1.3". Der erste Term, der Hauptterm der
Nutation in Länge, wird durch die
periodische Änderung der Neigung der
Mondbahnebene gegenüber der Äquatorebene

«verschuldet»: Die Neigung der
Mondbahnebene gegenüber der
Ekliptikebene ist in etwa konstant mit i= 5°.

Nun läuft aber der Mondknoten (die

20 ,A
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Schnittgerade der Mondbahnebene mit
der Ekliptikebene) einmal pro 18.6 Jahren

in der Ekliptikebene (im Uhrzeiger)
herum. Daraus folgt, dass der Schnittwinkel

der Mondbahnebene mit der
Äquatorebene sich innerhalb der Grenzen

£-5° und £+5°, also grob zwischen
den Grenzen 18.5° und 28.5°, ändert.
Unnötig zu sagen, dass die Präzession den
maximalen (negativen) Wert annimmt,
wenn die Neigung der Mondbahnebene
gegen die Äquatorebene maximal ist.
Figur 16 zeigt, dass der Winkel £ nur
periodischen Änderungen unterworfen ist.
Die Hauptperiode beträgt wiederum
18.6 Jahre, die Amplitude etwa 9.2". Die
Figuren 14 und 16 zusammengenommen
sagen, dass sich der Rotationspol der
Erde in etwa auf einem geraden Kreiskegel

mit 23.5° Neigung um den Ekliptikpol
herum bewegt. Zum Abschluss sei

festgehalten, dass wir zwar in den Figuren

15 und 16 bloss zwei Terme (die
18.6-jährigen und die halbjährlichen
Terme) identifizieren konnten. Eine
Spektralanalyse der Zeitreihen zeigt jedoch,
dass es Dutzende von Terrnen mit
Amplituden grösser als eine Millibogense-
kunde gibt. Setzt man die Grenze noch
tiefer an, kommt man «problemlos» auf
Hunderte von Termen.

Mondrotation: Im Prinzip sollten
wir nun eine ähnliche Diskussion zum
Thema Mondrotation führen, wie wir sie
oben zum Thema Erdrotation geführt
haben. Platzgründe verbieten dies. Wir
beschränken uns daher auf eine summarische

Zusammenfassung der Resultate.
Genau wie die Erde rotiert auch der
Mond im inertialen Raum. Aus der
Tatsache, dass wir (im Wesentlichen)
immer dieselbe Seite des Mondes sehen,
wissen wir, dass seine Rotationsperiode
und seine Umlaufszeit heute identisch
sind, also einen (siderischen) Monat
betragen. Genau wie die Erde weist auch
der Mond eine Polschwankung auf. Die
der Eulerschen Periode entsprechende
Periode ergibt sich wiederum aus den
Hauptträgheitsmomenten des Mondes
und aus der Rotationsperiode des Mondes.

Die Periode beträgt etwas mehr als
140 Jahre. Beobachtet wurde sie

allerdings noch nie! Figur 17 deutet an,
weshalb dem so ist. Sie zeigt, dass das
Äquivalent zur Oppolzer-Bewegung
vergleichsweise riesig ist: Anstelle von
einigen Millibogensekunden wie im Falle

der Erde (siehe Figur 13) beobachten
wir Amplituden von mehreren hundert
Bogensekunden! Die Bewegung
erscheint im Übrigen sehr chaotisch. Die
Grösse der Amplituden ist naturgemäss
durch das vergleichsweise sehr grosse
Drehmoment bedingt, das durch die
Erde auf den Mond ausgeübt wird. Man
hat im Übrigen auch diese Bewegung
auf dem Mond noch nie beobachtet.
(100" auf dem Mond entsprechen etwa
0.5" von der Erde aus gesehen).
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Fig. 7 7: Die Polschwankung des Mondes
über 140 Jahre.

Wie bewegt sich der Rotationspol
des Mondes im Raum? Nun, genau wie
bei der Erde führt auch der Rotationspol

des Mondes eine Präzessionsbewegung

um die Ekliptikebene aus.
Allerdings beträgt die Periode nur 18.6
Jahre an Stelle der etwa 26 000 Jahre bei
der Präzession der Erdachse - sie ist
gekoppelt mit der Präzession der
Mondbahnebene. Die Neigung der Rotationsachse

des Mondes gegenüber der
Ekliptikebene beträgt übrigens nur
etwa 1.5° (und nicht 23.5° wie im Falle
der Erde). Die grundlegenden Fakten
der Mondrotation sind längst bekannt.
Sie wurden von Giovanni Domenico Cas¬

sini (1625-1712) rein empirisch aus langen

Beobachtungsreihen gefunden und
in Form von drei «Gesetzten» festgehalten:

1. Vom Nordpol aus gesehen rotiert der
Mond gleichförmig im Gegenuhrzeigersinn

um eine feste Achse. Sideri-
sche Rotationsperiode und Bahnumlaufszeit

sind identisch.
2. Die Neigung der Mondbahnebene

gegen die Ekliptik ist konstant.
3. Die Rotationsachse des Mondes, der

Pol der Ekliptik und der Pol der
Mondbahnebene liegen (in dieser
Reihenfolge) in ein und derselben
Ebene.
Cum grano salis ist die Rotation des

Mondes durch die drei Cassinischen
Gesetze recht gut erfasst. Man rnuss natürlich

in Betracht ziehen, dass die sehr
wohl existierenden (und heute, nicht
zuletzt dank den Laser-Distanzmessun-
gen zum Mond eindeutig nachgewiesenen)

Nutationsbewegungen des Mondes
im 17ten Jahrhundert nicht beobachtbar
waren. Mehr Aufschluss zum Thema
Mondrotation wird man durch Mond-
missionen, wie sie beispielsweise von
der japanischen Weltraumagentur
geplant sind, erhalten.

Künstliche Erdsatelliten
Geschichtliches: Mit dem Start des

ersten künstlichen Erdsatelliten Sput-
nik-I am 4. Oktober des internationalen
geophysikalischen Jahres 1957 brach
eine neue Ära in der Himmelsmechanik
an. Künstliche Erdsatelliten können mit
sehr hoher Genauigkeit über sehr lange
Zeiträume beobachtet werden. Wichtig
ist insbesondere, dass man eine Bahn
über Hunderte von Umläufen genau
beobachten kann. Die Raunrflugära brachte

in der Himmelsmechanik in mehrerlei
Hinsicht eine Neuorientierung:
- Während bislang ausschliesslich

Richtungen zu Himmelskörpern
beobachtet wurden, kamen jetzt auch
andere Beobachtungsarten zum
Zuge. Zu nennen sind insbesondere

- Distanzbeobachtungen zu Satelliten,

die mit Reflektoren ausgerüstet
sind,

Fig. 14: Präzession plus Nutation in Länge. Fig. 15: Nutation in Länge. Fig. 16: Nutation in Schiefe.
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- Beobachtung des Dopplereffektes
von Frequenzen, die von aktiven

Satelliten ausgesandt werden,
- Messung der Laufzeit von Signalen,

die von aktiven Satelliten ausgesandt

werden.
Während man in der klassischen
Himmelsmechanik des Planetensystems
die auf einen Probekörper wirkenden
Kräfte im Normalfall als bekannt
annehmen durfte, war dies bei künstlichen

Erdsatelliten zum Mindesten zu
Beginn der Raumflugära nicht der Fall.
Man musste das Gravitationsfeld der
Erde aus den beobachteten Bahnen
selbst ableiten. Schon Ende der 1960er
Jahre wurden Dutzende von Termen
des Gravitationsfeldes bestimmt. Bis
Ende des zwanzigsten Jahrhunderts
wurden in der Grössenordmmg einige
tausend Terme bestimmt, Ende des

ersten Jahrzehnts des dritten Jahrtausends

wird man gegen Hunderttausend

solcher Terme mit grosser
Genauigkeit bestimmt haben.
In der klassischen Himmelsmechanik

mussten im Allgemeinen nur
Gravitationskräfte beachtet werden.
Bei künstlichen Erdsatelliten mussten

von Anbeginn weg auch andere
Kräfte beachtet werden:

- Der Luftwiderstand ist in Umlaufbahnen

bis 1000 km Höhe von
zentraler Bedeutung.

- Unabhängig von der Höhe des
Satelliten ist der sogenannte
Strahlungsdruck zu beachten. Er ist
dem Umstand zuzuschreiben,
dass elektromagnetische Strahlung

einen Impuls mit sich trägt:
Jedes Photon, das auf eine
Satellitenoberfläche auftrifft und
absorbiert wird,überträgt auf diese
den Impuls der Grösse hv/c (h ist
die Plancksche Wirkungskonstante,

v die Frequenz der Strahlung, c
die Lichtgeschwindigkeit) in
Richtung Sonne-Satellit. Wird das
Photon reflektiert, wird im Maximum

der doppelte Impuls normal
zum Flächenelement, auf den das
Photon auftraf, übertragen.

Wird ein Satellit von der Erde aus
beobachtet (Richtung, Distanz, Doppler,

Laufzeit), enthält diese Beobachtung

nicht nur Information zur
geozentrischen Bahn des Satelliten,
sondern auch zur Position und allenfalls
zur Geschwindigkeit des Beobachters.

Damit wurden die geozentrischen

Koordinaten der Beobachter,
aber auch subtilere Effekte wie die
oben erwähnte Polschwankung der
Beobachtung zugänglich. Das Zeitalter

der Satellitengeodäsie, der
Vermessung der Erde mit Hilfe von
Satelliten, war angebrochen.

Die Bewegungsgleichungen: Man
hatte also in der Himmelsmechanik mit
einem Schlag sehr viel kompliziertere
Aufgaben zu lösen. Himmelsmechanik
wurde auch, vielleicht sogar vor allem,
eine wichtige Anwendung der Theorie
der Parameterbestimmung. Dies wird
unter anderem dokumentiert durch die
im Vergleich mit den Grundgleichungen
(1) sehr viel komplexeren Grundgleichungen

der Satellitenbewegung:

i
' dV+ aUond+aSmnt + Za„8 (5)r=-G-

Dabei ist G die Gravitationskonstante,

p(dV) die Dichte der Materie in
einem Volumenelement dV der Erde; r ist
der geozentrische Radiusvektor des
Satelliten, rdV derjenige des Volumenelementes.

aMond ist die auf den Satelliten
ausgeübte Gravitationskraft des Mondes

(im geozentrischen System), aSonne

diejenige des Mondes. ang ist die
Beschleunigung des Satelliten infolge
einer nicht-gravitativen Kraft. Der erste
Term in (5) kann noch als Gradient eines
Potentials geschrieben werden:

r G'
P(dV)

dV\ + aMollJ + aSome + Efl„s (6)

Die Gleichungen (5) und (6) sind
vom mathematischen Standpunkt aus
gesehen gleichwertig. Der Vorteil der
Gleichung (6) besteht darin, dass das

Integral nun nicht mehr eine vektorielle,
sondern nur noch eine skalare Grösse
darstellt.

Der erste Term in Gleichung (6)
muss noch etwas eingehender diskutiert

werden: Die Gleichungen (6) sind
bezogen auf ein pseudo-inertiales,
geozentrisches Koordinatensystem. Das
System kann, weil geozentrisch, nicht
echt inertial sein (es ist ja der beschleunigten

Bewegung der Erde um den
gemeinsamen Schwerpunkt Erde-Mond
sowie der Bewegung dieses
Schwerpunktes um die Sonne unterworfen).
Wegen der Rotation der Erde in diesem
System müsste man das Integral für
jeden Zeitpunkt stets neu auswerten. Es
empfiehlt sich daher, vor einer Auswertung

in ein erdfestes System zu transformieren,

das Integral dort auszuwerten,
den Gradienten im erdfesten System zu
bilden und dann das Resultat ins inerti-
ale System zurtickzutransformieren.
Dies scheint aufwendig, lohnt sich aber
in Anbetracht der Komplexität des
Integrals in Gleichung (6). Damit sehen wir,
dass auch die Transformationsparameter

zwischen erdfestem und inertialem
System in den Bewegungsgleichungen
des Satelliten auftreten. Es bleibt die
Aufgabe, das Integral in (6) in einem
erdfesten System auszuwerten. Die

Schwierigkeit scheint darin zu bestehen,

dass man die Dichte pfdVj gar
nicht kennt. Man kann aber einstweilen
«so tun als ob» und erhält formal die
folgende einfache Darstellung für das
Potential am Ort des Satelliten im erdfesten

System:

G lLP(dV\ dV=U {r, 1, n
GM y \ae '

X ff (sin f) Cjt cos (k A) + Sjk sin (kX) |
(7)

r, X und ij> sind die sphärischen
Koordinaten (geozentrische Distanz, Länge
und Breite) des Satelliten im erdfesten
System, M ist die Erdmasse, ae ist der
Äquatorradius, die sind die
zugeordneten Legendreschen Funktionen,
deren Definition jeder mathematischen
Formelsammlung entnommen werden
kann, i ist der Grad, k die Ordnung der
Entwicklung. Die Terme Cik und Sik sind
komplizierte Funktionen der Dichte.
Dies stört für die Potentialbestimmung
aber wenig: Man führt diese einfach als
Unbekannte ein und bestimmt sie! Man
beachte, dass sämtliche Terme S,q

gleich Null gesetzt werden können. Der
allererste Term beträgt Coo=l, womit
dieser erste Term der Entwicklung in (7)
mit Uoo=GM/r das Potential eines
Massenpunktes der Masse M darstellt.
Bezieht sich die Entwicklung auf ein
Schwerpunktsystem, werden alle Terme
vom Grad i=l zu Null. Nach dem Haupt-
term ist der Term C20 dominierend. Er
charakterisiert die Abplattung der Erde.
Sein Einfluss auf einen tieffliegenden
Satelliten ist etwa 1000 mal grösser als
derjenige der nachfolgenden Terme.

Charakteristische Störungen einer
Satellitenbahn: In Anbetracht dieser
Dominanz lohnt es sich, die Störungen einer
Satellitenbahn infolge der Abplattung
kurz zu charakterisieren. Wir beschränken

uns darauf, die Störungen in der
Halbachse, in der Rektaszension des
aufsteigenden Knotens und im Argument
des Perigäums (Winkelabstand des
erdnächsten Punktes vom Knoten)
darzustellen. Die Definition dieser Elemente
kann in Figur 1 nachgesehen werden.
Allerdings hat man zu beachten, dass die
Bezugsebene für die geometrischen
Elemente nun sinnvollerweise nicht mehr
die Ekliptikebene, sondern die Äquatorebene

ist. Bei den Abbildungen 18, 19

und 20 wurde ein Testsatellit mit einer
oskulierenden Halbachse zum Zeitpunkt
t0=l. Januar 2001 von a=8000 km, einer
Exzentrizität von e=0.07, einer Neigung
von i=35° sowie einem Perihelabstand
von (ü=0° im Gravitationsfeld der
abgeplatteten Erde integriert. Der oskulieren-
de Knoten wurde bei 13=0° angenommen
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Fig. 19: Störungen der Rektaszension des

aufsteigenden Knotens durch die Abplattung.
Fig. 20: Störungen des Perigäumsabstandes
durch die Abplattung.

Fig. 18: Störungen der Halbachse durch die

Abplattung.

und die Integration wurde im Knoten
(und somit auch im Perigäum) gestartet.
Abbildung 18 zeigt die oskulierende
Halbachse (minus 8000 km) über eine
Zeitdauer von sechs Stunden. Man sieht
nur periodische Störungen mit Perioden
einer halben und einer vollen Umlaufszeit.

Dieses Resultat war zu erwarten:
Die Halbachse ist ja ein anderes Mass für
die Energie eines Satelliten. Durch eine
konservative Kraft kann aber die Energie
nicht geändert werden. Ein ähnliches
Bild würde man erhalten, wenn man die
Exzentrizität als Funktion der Zeit
auftragen würde.

Figur 19 zeigt die Entwicklung der
oskulierenden Rektaszension des Knotens

über denselben Zeitraum von sechs
Stunden. Deutlich ist eine lineare
Abnahme zu beobachten. Diese ist in der
Tat bedeutend: Umgerechnet auf einen
Tag beträgt die Regression des Knotens
etwa 3.6°, was bedeutet, dass der Knoten

einmal pro hundert Tage umläuft. Da
andererseits die Neigung i gegen die
Äquatorebene nur periodische Störungen

kleiner Amplitude aufweist, bedeutet

dies, dass der Bahnnormalenvektor
auf einem geraden Kreiskegel der
halben Öffnung i um die Polarachse präze-
diert (im Uhrzeigersinn). Figur 20
dokumentiert, dass auch das Perigäum
relativ zum Knoten nicht an Ort bleibt.
Dieses dreht sich vorwärts mit einer
Winkelgeschwindigkeit von etwa 4.2°.
Die Figuren 18,19 und 20 demonstrieren
eindrücklich, dass die Störung der
Satellitenbahnen infolge der Erdabplattung
bedeutend ist.

Es stellt sich natürlich die Frage, wie
repräsentativ die Resultate in den Figuren

18-20 sind. Dazu ist zum einen zu
sagen, dass die Störungen mit der Höhe
(Halbachse) der Satelliten rasch kleiner
werden - im Falle des Knotens und des

Perigäumsabstandes nehmen z.B. die
Störbeträge mit der 3.5-ten Potenz der
Halbachse ab. Zum andern gilt es, die
Abhängigkeit der Störungen (bei sonst
gleichbleibenden Elementen) von der
Neigung der Satellitenbahn zu beachten.

Figur 21 zeigt diese Abhängigkeit

für die Regression des Knotens. Um den
Effekt klarer herauszuschälen, wurden
in dieser Abbildung die mittleren
Störungen (gemittelt über einen Umlauf
des Satelliten) aufgetragen. Abgesehen
von der Neigung wurden in Figur 21

(übrigens auch in Figur 22) die gleichen
Elemente wie in den vorausgegangenen
Simulationen verwendet. Die
Neigungsabhängigkeit der Störungen im Knoten
ist in der Tat dramatisch: Bei i=35°
erhalten wir die Winkelgeschwindigkeit
von -3.6°/Tag bestätigt, bei einer
Neigung von 1=63.4° ist die Drehung etwa
halb so gross, bei i=90° kommt die
Knotendrehung zum Stillstand (was
übrigens aus Symmetriegründen
einleuchtend ist). Bei Satelliten mit einer
Neigung £>90° dreht sich der Knoten
vorwärts. Letztere Eigenschaft wird
übrigens von Raumfahrtagenturen zum
Erzielen sogenannter sonnensynchroner

Bahnen ausgenutzt: Die Neigung
wird so gewählt, dass die Bahnebene in
Bezug auf die Sonne immer den gleichen
Winkel einnimmt.

Figur 22 zeigt, dass auch die
Perigäumsdrehung neigungsabhängig ist.
Attraktiv ist insbesondere der Umstand,
dass diese Drehung bei £=63.4° zum
Stillstand kommt. Diese Aussage
stimmt für alle Halbachsen und
Exzentrizitäten. Die Neigung wird deshalb (völlig

anzutreffend) kritische Neigung
genannt. Immerhin hat diese Eigenschaft
eine wichtige praktische Bedeutung.
Bringt man z.B. einen Satelliten mit

Fig. 21: Störungen im Knoten durch die

Abplattung bei verschiedenen Neigungen.

grosser Exzentrizät e in eine Umlaufbahn

mit dieser Neigung und setzt das
Perigäum auf co=-90° (also in 63.4°
südliche Breite), hält sich dieser Satellit die
meiste Zeit über der Nordhalbkugel auf.
Russische Kommunikationssatelliten
nutzen diese Eigenschaft aus. Australien

könnte durch eine sinngemässe
Anwendung auch von der kritischen
Neigung Gebrauch machen.

Es ist interessant, dass die Abplattung

nur sehr kleine langperiodische
Störungen verursacht. Langperiodische
Sörungen existieren und werden
insbesondere von längenabhängigen
Termen verursacht. Figur 23 zeigt solche

Störungen in der Exzentrizität bei
Berücksichtigung aller Terme bis und
mit Grad und Ordnung 4. Dargestellt
werden die mittleren Störungen in der
Exzentrizität über einen Zeitraum von
zwei Jahren. Das realistische Beispiel
ist in roter Farbe wiedergegeben, das
hypothetische, bei dem der Abplat-
tungsterm künstlich auf Null gesetzt
wurde, in grüner Farbe. Die rote Kurve
zeigt, dass die Störungen im Allgemeinen

kleine Amplituden aufweisen.
Ausnahmsweise können diese gross
werden, wenn Umlaufszeit und
Rotationsperiode der Erde durch ein Verhältnis

kleiner ganzer Zahlen ausgedrückt
werden können (was im vorliegenden
Beispiel nicht der Fall ist).

Mit Simulationen kann man auch
Fragen der Art «was wäre, wenn ...»
stellen. Die grüne Kurve beantwortet

Fig. 22: Störungen im Perigäum durch die

Abplattung bei verschiedenen Neigungen
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die Frage «was wäre, wenn die Abplattung

der Erde gleich Null wäre, die übrigen

Terme des Potentials jedoch
unverändert blieben?» Merkwürdigerweise
stellt man fest, dass in diesem hypothetischen

Fall die Störungen in der
Exzentrizität vergleichsweise riesig würden.
Das Beispiel zeigt eindrücklich, dass die
Abplattung der Erde eine stabilisierende

Wirkung hat: Ganz offensichtlich
bewirkt die «schnelle» Rotation der
Bahnebene eine ebenso schnelle Änderung
der Störgeometrie, was zu einer ganz
wesentlichen Abschwächung der
Störeinflüsse der höheren Terme des
Erdgravitationsfeldes beiträgt.

Fig. 23: Störungen in der Exzentrizität über
zwei Jahre infolge der Terme höherer
Ordnung (mit und ohne C2q).

Nicht-gravitative Störungen sind bei
der Satellitenbewegung von grosser
Bedeutung. Figur 24 gibt ein Beispiel.
Dargestellt werden die Störungen des
Perigäums und Apogäums einer Satellitenbahn

in einer mittleren Höhe von ca. 700

km mit einer Exzentrizität von e=0.05.
(Man kann die Störungen in diesen Grössen

berechnen aus den Störungen in den
Bahnelementen a und e.) Während die
Perigäumshöhe nur leicht abnimmt,
kommt das Apogäum vergleichsweise
«rasant» (mit einer Geschwindigkeit von
etwa 21 m/Tag) herunter. Ganz
offensichtlich wird die Bahn immer kreisförmiger.

Dieser Effekt wird tatsächlich
beobachtet - und er ist einfach zu erklären:
Bei einer Halbachse von a=7100 km rmd
einer Exzentrizität von e=0.05 liegt das

Apogäum um 2ae= 710 km höher als das

Perigäum. Nun äussert sich der
Luftwiderstand durch eine Bremsung in
Bewegungsrichtung. Die Bremsung ist proportional

der Dichte der Restatmosphäre in
der Höhe des Satelliten. Diese Dichte ist
höhenabhängig - sie nimmt exponentiell
mit der Höhe ab. Das heisst aber, dass wir
bei einem Satelliten mässiger Exzentrizität

annehmen dürfen, dass nur in der
Nähe des Perigäums eine wesentliche
Bremsung stattfindet. Da im Perigäum
der Bremseffekt senkrecht zum Radius-

Fig. 24: Störungen im Perigäum und
Apogäum infolge des Luftwiderstandes.

vektor (also normal zum Ortsvektor des
Perihels) steht, kann dessen Höhe durch
den Luftwiderstand kaum geändert werden.

Hingegen bewirkt die Abnahme der
Geschwindigkeit im Perigäum, dass der
Satellit weniger weit nach aussen
geschleudert werden kann: Die Apogäumshöhe

nimmt ab. Es ist also quasi ein
Naturgesetz, dass die Bahnen von Satelliten
in tiefen Umlaufbahnen immer kreisförmiger

werden. Ist die Bahn schliesslich
fast kreisförmig, ist defacto «jeder Punkt
ein Perihel» und es kann nur noch die
Halbachse abnehmen, was schliesslich
zum Absturz des Satelliten führt.

Rückblick und
Zusammenfassung
Wir haben gezeigt, dass aus Planeten-

und Kleinplanetenbahnen sehr viel ausgesagt

werden kann über die Entwicklung
unseres Planetensystems. Wir haben
gesehen, dass unser Planetensystem mechanisch

von den PlanetenJupiter und Saturn
(rmd natürlich von der Sonne) geprägt ist.
Das Studium ihrer Bahnelemente zeigt,
dass ein immerwährender Austausch von
Energie und Drehimpuls zwischen ihnen
stattfindet. Im inneren Planetensystem
spielen Venus rmd Erde eine ähnlich
dominierende Rolle. Die Entwicklung ihrer
Bahnelemente kann allerdings sinnvollerweise

nur unter Einbezug des gesamten
Planetensystems studiert werden. Auch
zwischen Venus und Erde findet ein
Austausch von Energie und Drehimpuls statt.
Die «gemeinsam erlittenen» Störungen
durch die Planeten des äusseren Systems
bewirken zudem grosse Störungen sehr
langer Perioden in Exzentrizität (und
Bahnebene) der inneren Planeten. Heute
beträgt die Exzentrizität der Erdbahn
etwa e=0.016. Werte bis etwa e=0.07 sind
möglich. Solche vergleichsweise grossen
Änderungen können Klima-relevant sein.
Schliesslich haben wir einige numerische
Experimente zum Thema «Erklärimg der
Lücken in der Verteilung der Halbachsen
von Kleinplaneten» durchgeführt. Wh
haben gezeigt, dass schon über einen relativ
kurzen Zeitbereich von einer Million Jah¬

ren massive Störungen in der Exzentrizität

zum Absturz von Kleinplaneten auf die
inneren Planeten Mars und sogar Erde
führen können.

Wenn wir von Bahnen von Himmelskörpern

sprechen, stellen wir uns
normalerweise die Entwicklung der
sechs oskulierenden Bahnelemente
(siehe Figur 1) vor. Darfman in einem N-

Körperproblem einige der Himmelskörper

nicht als Massenpunkte nähern,
müssen wir gleichzeitig für jeden dieser
Körper die drei Eulerschen Winkel eines
körperfesten Koordinatensystems
mitbestimmen. Sind in einem N-Körperpro-
blem alle Körper von endlicher Grösse,
führt dies zu einer Verdoppelung der
Dimension des Systems der
Bewegungsgleichungen. Wir haben einige Resultate

anhand des Dreikörperproblems
Erde-Mond-Sonne vorgestellt.

Abschliessend haben wir einige
Eigenschaften der Bahnen künstlicher
Erdsatelliten vorgestellt, obwohl im
Bereich Himmelsmechanik des erdnahen
Raumes die Bahnen oft nur Mittel zum
Zweck in sehr komplexen
Parameterbestimmungsproblemen sind. Die Näherung

durch Keplersche Bahnen ist im
Allgemeinen schon über kurze Zeiten
(wenige Stunden) nicht mehr genügend.
Die wichtigste Störkraft wird durch die
Abplattung der Erde verursacht, die
beispielsweise die Bahnebenen tiefer
Satelliten um mehrere Grad pro Tag prä-
zedieren lässt. Wir haben auch darauf
hingewiesen, dass die Bewegungsgleichungen

künstlicher Erdsatelliten
immer nicht-gravitative Störeinflüsse
modellmässig erfassen müssen. Bei
Satelliten unter einer Höhe von 1000 km ist
der Luftwiderstand, verursacht durch
die Restatmosphäre in diesen Höhen,
von grosser Bedeutung. Der Luftwiderstand

hat die Eigenschaft, die Exzentrizität

der Bahnen zu verringern und die
Halbachsen zu verkleinern. Schliesslich
sorgt der Luftwiderstand für den
Absturz der Satelliten. Je nach der
ursprünglichen Höhe kann dies jedoch ein
sehr langwieriger Prozess sein, der
Jahrzehnte oder gar Jahrhunderte in
Anspruch nehmen kann.
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