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Planeten-, Kometen- und
Satellitenbahnen

GERHARD BEUTLER

Der Artikel gibt eine Ubersicht tiber Fragestellungen der modernen Himmelsme-
chanik des Planetensystems und des erdnahen Raumes. Drei Themenkreise wer-
den entwickelt und durch Computer-Simulationen illustriert:

1.

Unser Planetensystem ist etwa 4.5 Milliarden Jahre alt, was auf eine bemer-
kenswerte Stabilitat deutet (jedenfalls verglichen mit der Stabilitat politischer
Systeme auf der Erde). Ob das System als Ganzes tatsachlich stabil ist, kann
heute nicht abschliessend beurteilt werden. Numerische Experimente zeigen,
dass es im Planetensystem Instabilitdten und chaotisches Verhalten gibt.

. Das Dreikorperproblem ist nach dem Zweikdérperproblem scheinbar die

«zweit-leichteste» Aufgabe der Himmelsmechanik — und trotzdem ist sie in
geschlossener Form schon dann nicht 16sbar, wenn alle Himmelsk&rper als
Punktmassen genahert werden. Hier wird eine Einfiihrung in das Dreikérper-
problem Erde-Mond-Sonne gegeben, bei dem Erde und Mond als Kérper
endlicher Grésse angenommen werden. Die Losung der Aufgabe erfordert
damit nicht nur eine Bahncharakterisierung, sondern auch die Beschreibung
der Rotation von Erde und Mond. Kenndaten und moderne Erkenntnisse der
Erd- und Mondrotation werden anhand numerischer Experimente erldutert.

. Die Raumfahrt hat fur die Himmelsmechanik, aber auch fur die astronomi-

sche Positionsbestimmung und Navigation, eine neue Ara eingeldutet. Heute
wird nicht mehr mit Sextanten und Chronometern navigiert, sondern mit Sa-
tellitensystemen. Etwas Uberspitzt kann man sagen, dass kinstliche Erdsatel-
liten die Sterne als «Leuchtfeuer» abgel6st haben. Allerdings muss man dazu
die Bahnen dieser kinstlichen Erdsatelliten sehr genau bestimmen und vor-
aussagen koénnen. Die wichtigsten Bahn-Charakteristiken ktnstlicher Erdsa-
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telliten werden anhand von numerischen Simulationen illustriert.

Praambel: Klassische
und moderne Hilfsmittel
der Himmelsmechanik

Die klassischen Bahnelemente: Es
ist ein zentrales Anliegen der Funda-
mentalastronomie, die Bahnen von Pla-
neten, Kometen, und Satelliten unseres
Sonnensystems mit moglichst wenigen
Kenngrossen zu beschreiben und zu pra-
dizieren. Es war eine epochale Leistung
von JoHaNNES KEPLER (1571-1630) zu zei-
gen, dass jede Planetenbahn mit nur
sechs Bahnelementen beschrieben wer-
den kann. Figur 1 illustriert einen von
mehreren Sitzen von Bahnelementen,
namlich
— die Halbachse a,

— die numerische Exzentrizitit e,

— die Neigung 7 der Bahnebene,

— die ekliptikale Liange 2 des aufstei-
genden Knotens,

— der Abstand o des Perihels vom Kno-
ten sowie

— die Periheldurchgangszeit T).

Die Bewegungsgleichungen des Pla-
netensystems: Es war eine ebenso fun-
damentale Einsicht von Isaac NEwToN
(1643-1727), dass die Bahnen der Him-
melskorper durch differentielle mathe-
matische Beziehungen beschrieben
werden konnen und dass die Massenan-
ziehung zwischen zwei beliebigen Mas-
senelementen dem Gesetz der univer-
sellen Gravitation geniigt.

Fig. 1: Keplersche Bahnelemente.

Das zweite Newtonsche Axiom be-
sagt, dass die Anderung der Bewegung
(in heutiger Sprechweise die erste Ab-
leitung des Impulses nach der Zeit) der
vektoriellen Summe der wirkenden
Krdfte gleichzusetzen ist. Dieses zweite
Gesetz kann interpretiert werden als
Bewegungsgleichung — nicht algebra-
isch, sondern in Worten ausgedriickt.

Das Newtonsche Gesetz der univer-
salen Gravitation besagt bekanntlich,
dass die Anziehungskraft zwischen zwei
Korpern lings ihrer Verbindungslinie
wirkt, den beiden Massen direkt, und
dem Quadrat ihres Abstandes indirekt
proportional ist.

Beim klassischen planetaren N-Kor-
perproblem werden nur Punktmassen
betrachtet. In einem Inertialsystem (z.B.
im Schwerpunktssystem des Sonnen-
systems) wird unser (jedes) Planeten-
system mathematisch durch ein ge-
wohnliches Differentialgleichungssys-
tem zweiter Ordnung in der Zeit ¢ be-
schreiben:

N

F=—k® X m- :
T A

=ty

=f.i=12...N (1)

Dabei ist das Quadrat der sog.
Gaussschen Konstanten
k=0.01720209 895
gleich der Gravitationskonstanten, wo-
bei man als Zeiteinheit den Tag, als Mas-
seneinheit die Sonnenmasse und als
Léangeneinheit (im Wesentlichen) die as-
tronomische Einheit verwendet.

Eine partikuldre Losung des Sys-
tems ist definiert, wenn die Orts- und
Geschwindigkeitsvektoren samtlicher
beteiligter Himmelskoérper zu einem
Zeitpunkt ¢y vorgegeben sind. Die Bewe-
gungsgleichungen wurden erstmals von
LeonHARD EuLER (1707-1783) in der noch
heute verwendeten Form (allerdings in
Komponentenschreibweise) niederge-
schrieben.

Ist die Zahl der Himmelskorper N=2,
bewegen sich die beiden Punktmassen
auf Kegelschnitt-Bahnen um den gemein-
samen Schwerpunkt und umeinander
(d.h., dass sowohl ri(t), ro(t) als auch
r(t): = ry(t) — ri(t) Kegelschnitte darstel-
len). Aus jedem Satz von Orts- und Ge-
schwindigkeitsvektoren r(t) und v(?)
konnen dann die Keplerschen Bahnele-
mente mit Formeln, die im Wesentlichen
schon auf KepLEr zuriickgehen, berech-
net werden.

Numerische Integration als univer-
sale Losungsmethode: Ist die Zahl der
Himmelskorper N>2, resultieren (mog-
licherweise) sehr komplizierte Bahnen.
Jedenfalls gelingt die Losung des Sys-
tems (1) im Allgemeinen nicht mehr in
geschlossener Form. Bei gegebenen An-
fangsbedingungen kann dieses aber mit
den Methoden der numerischen Integra-
tion «mit beliebiger Genauigkeit» gelost
werden.

Die «Urversion aller Methoden zur
numerischen Integration» ist die Euler-
sche Methode, welche ein Integrations-
intervall [y,t,] durch die Teilpunkte #; in
Teilintervalle (z. B. gleicher Linge) un-
terteilt und innerhalb eines Teilinter-
valls [t,t;] die Losung durch das fol-
gende Polynom zweiten Grades (ent-
sprechend einer Taylorreihe der Ord-
nung 2) approximiert:
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r()=r () +{-1)-v; ()

+%~(t—tk)2-f,-(tk), fiir £ €[ty 1y )

EuLer verwendete die Formel (2)
insbesondere, um an der Stelle ¢, ; neue
Anfangsbedingungen, d.h., die Vektoren
ri(te.1) und v;(t;. ;) zu bestimmen. Den
Geschwindigkeitsvektor erhilt man na-
tlrlich durch Ableiten der Formel (1)
nach der Zeit:

v.(O=v )+ (t=1)-Fi () 3)

Damit aber ist die universale Euler-
sche Losungsmethode gegeben: Begin-
nend mit den Anfangsbedingungen kann
man mit Hilfe der Differentialgleichun-
gen (1) die Losung stiickweise durch ein
Polynom zweiten Grades darstellen. Die
Eulersche Losungsmethode hat zwei be-
merkenswerte Eigenschaften:

— Entgegen einer weitverbreiteten
Meinung liefert die Eulersche Me-
thode eine approximierende Funkti-
on als Losung: die Formeln (2) und
(3) erlauben es, Funktionswerte und
deren Ableitungen an jeder beliebi-
gen Stelle (und nicht nur an den Teil-
punkten ¢;) zu berechnen.

— Durch eine feinere Unterteilung er-
zielt man eine genauere Losung.
Moderne Integrationsmethoden, die

diesen Namen verdienen, teilen diese

Eigenschaften mit der Eulerschen Me-

thode. Sie unterscheiden sich lediglich

darin von der Eulerschen Methode, dass
die Losungen lokal durch Polynome

(Taylorreihen) hoheren als zweiten Gra-

des (Ordnung) approximiert werden

(typischerweise werden Polynome vom

Grad ¢=10-14 verwendet). Der Poly-

nomgrad wird vom Benutzer festgelegt.

Die Polynomkoeffizienten werden

durch die Forderung festgelegt, dass die

approximierende Funktion das Diffe-
rentialgleichungssystem (1) lokal nicht
nur (wie bei der Eulerschen Methode)
an einer, sondern an mehreren Stellen
erfiillt. Moderne Methoden sind um vie-
le Grossenordnungen effizienter als die

Eulersche Methode. Die bekannten Viel-

schrittverfahren und die sogenannten

Kollokationsverfahren sind Vertreter

dieser Klasse von Integrationsverfah-

ren. Fiir Einzelheiten verweisen wir auf

[1].

Oskulierende und mittlere Bahnele-
mente: Die numerisch integrierten Lo-
sungen des Differentialgleichungssys-
tems (1) sind approximierende Funkti-
onen, die es uns erlauben, die Orts-und/
oder Geschwindigkeitsvektoren (sowie
bei Bedarf hoherer Ableitungen) samtli-
cher beteiligter Himmelskorper zu be-
liebigen Zeitpunkten innerhalb des
durch die Integration iiberdeckten Inter-
valls zu berechnen.

Selbstverstindlich ist es auch mog-
lich, Funktionen dieser Vektoren zu be-
rechnen. Instruktiv ist es insbesondere,
eine Tabelle sogenannter oskulierender
Bahnelemente zu bestimmten Zeit-
punkten ty, k=1,2,... zu berechnen. Os-
kulierende Bahnelemente zur Zeit ¢ er-
halt man, indem man mit den Formeln
des Zweikdrperproblems die Orts- und
Geschwindigkeitsvektoren umrechnet
in die Bahnelemente:

r(0); v(t) = a(t), e(0), i(1), Qt), o), T,()  (4)

Die oskulierenden Bahnelemente
sind einfach zu interpretieren: Der be-
trachtete Himmelskorper wiirde sich
auf der durch die auf der rechten Seite
von (4) stehenden Bahnelemente defi-
nierten Kepler-Bahn bewegen, wenn
vom Zeitpunkt ¢ an die gravitative Wir-
kung sdmtlicher Himmelskorper (mit
Ausnahme von zweien) ausgeschaltet
wiirde.

Hat man eine Tabelle von oskulie-
renden Bahnelementen erstellt, kann
man die zeitliche Entwicklung der Bah-
nen studieren. Die tatsdchliche Bahn ist
die Enveloppe der durch die Elemente
(4) gegebenen Zweikorperbahnen. Dies
ist sehr viel instruktiver und einleuch-
tender, als direkt die Orts- und Ge-
schwindigkeitsvektoren zu analysieren
— es kime keinem Himmelsmechaniker
in den Sinn, direkt die Zustandsvekto-
ren zu interpretieren.

Die oskulierenden Bahnelemente
zeigen periodische Stérungen verschie-
denster Perioden. Die kiirzesten sind ge-
geben durch die (ungestorten) Umlaufs-
zeiten der Himmelskorper selber. Will
man die Entwicklung eines Systems
iiber sehr lange Zeit studieren (iiber
Tausende von Umldufen), ist man im all-
gemeinen gut beraten, mittlere Bahn-
elemente als Mittelwerte der oskulieren-
den Elemente iiber lingere Zeitinterval-
le zu bilden. Man erhilt dann ein sehr
viel besseres Bild der Entwicklung einer
Bahn iiber lange Zeitraume. Als Mitte-
lungsperioden verwendet man mit Vor-
teil die Umlaufszeiten der betrachteten
Himmelskorper oder ganzzahlige Vielfa-
che davon.

Das Programmsystem Celestial Me-
chanics: In diesem Artikel mochten wir
einige wichtige Aspekte der Himmels-
mechanik mit Hilfe numerischer Experi-
mente behandeln, resp. illustrieren.
Dazu verwenden wir das vom Autor ent-
wickelte Programmsystem Celestial
Mechanics, das dem Buch [1] beigege-
ben ist. Das Programmsystem umfasst
acht Programme, zwei Testprogramme
fiir numerische Integration, ein Pro-
gramm zur Fourieranalyse, eines fiir
Bahnbestimmung (fiir Erdsatelliten und
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Kleinplaneten, Kometen, etc.), eines zur
kinematischen Bestimmung der Bahn
eines Satelliten mit Hilfe von GPS-Mes-
sungen (GPS=Global Positioning Sys-
tem), das Programm PLASYS zur Inte-
gration des Planetensystems, das
Programm ERDROT zur Beschreibung
der Rotation von Erde und Mond, sowie
das Programm SATORB, mit welchem
unter anderem Bahnen kiinstlicher Erd-
satelliten simuliert werden konnen. Mit
den drei letztgenannten Programmen
wurden die meisten Figuren in diesem
Artikel erzeugt.

Das Programmsystem ist konzipiert
fiir Personal Computer (PC) mit Win-
dows-Betriebssystemen. Um das Pro-
grammsystem effizient einzusetzen, ist
ein leistungsfdhiger PC mit einer Takt-
frequenz von 500 MHz (oder mehr) und
einer Speicherkapazitit in der Grossen-
ordnung einiger Gbytes sinnvoll.

Numerische Experimente im
Planetensystem

Das Programm PLASYS: Samtliche
Simulationen in diesem Abschnitt wur-
den mit dem Programm PLASYS (siehe
[1]) durchgefiihrt, das es erlaubt, unser
Planetensystem zu konfigurieren (eine
beliebige Auswahl der neun grossen Pla-
neten sowie ein Kleinplanet mit wihlba-
ren Bahnelementen koénnen einge-
schlossen werden) und, ausgehend von
der Gegenwart (auch der genaue Aus-
gangszeitpunkt kann gewahlt werden),
vorwarts oder riickwérts iiber «beliebi-
ge Zeitintervalle» zu integrieren.

PLASYS erzeugt eine Datei mit Pla-
netenpositionen sowie eine Datei mit
Integrationskonstanten (zu Kontroll-
zwecken), die entweder mit dem mitge-
lieferten Grafik-System oder mit irgend-
einem Graphik-Programm dargestellt
werden kénnen. Durch Darstellung der
Planetenpositionen erhilt man einen
Eindruck vom Verlauf der Planeten- und
Planetoidenbahnen. Figur 2 zeigt die
Positionen der Planeten Jupiter (inner-
ster Ring), Saturn (zweiter Ring von
innen), Uranus (dritter Ring), Neptun
(vierter Ring), sowie Pluto (dusserster
«Ring») bei einer Integration des dusse-
ren Planetensystems iiber die nichste
Million Jahre. Die Integration erfolgte
mit einem Vielschrittverfahren der Ord-
nung q=14 fiir Differentialgleichungen
zweiter Ordnung. Die Schrittweite be-
trug 30 Tage.

Fiir jeden Himmelskorper werden
zusitzlich entweder die sechs oskulie-
renden oder die sechs mittleren Bahn-
elemente als Funktion der Zeit in je eine
Datei abgespeichert. Werden mittlere
Elemente gespeichert, muss die Mitte-
lungsperiode (in Einheiten der unge-
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storten Umlaufszeiten) angegeben wer-
den. Die gespeicherten Elemente kon-
nen dann mit einem eigens entwickelten
oder einem beliebigen anderen Graphik-
Programm dargestellt werden. Samtli-
che Darstellungen in diesem Artikel
sind mit dem sogenannten «gnu-plot»
System erzeugt worden.

Fig. 2: Das dussere Planetensystem (ber eine
Million Jahre.

«Sinnvolle» numerische Experi-
mente: Das Programm PLASYS erlaubt
es, eine ganze Palette von numerischen
Experimenten zum Thema Entwicklung
des Planetensystems anzustellen. Wir
erwihnen nur deren drei, die im folgen-
den kurz gestreift werden sollen:

— Entwicklung des dusseren Planeten-
systems iiber einige Millionen Jahre.

— Entwicklung des inneren Planeten-
systems iiber einige 100000 Jahre.

—  Entwicklung spezieller Planetoiden-
bahnen

Das Attribut «sinnvoll» ist vielleicht
etwas provokativ. Man kann natiirlich
aus jeder Simulation etwas lernen. Man
sollte aber vor der Simulation prézise
Fragen stellen und diese dann mit ge-
zielten numerischen Experimenten be-
antworten. Hier wollen wir zeigen, dass
die mechanische Entwicklung des dus-
seren Systems im Wesentlichen durch
die Planeten Jupiter und Saturn gepragt
ist. Zudem werden wir die Frage nach
der Stabilitit des Planetensystems kurz
anschneiden. Das innere Planetensys-
tem ist gepragt durch das Wechselspiel
zwischen den Planeten Venus und Erde.
Wir gehen auf einige Klima-relevante
Aspekte bei der Erde ein. Mit unserer
Analyse von Kleinplanetenbahnen wol-
len wir illustrieren, wie man sich heute
den Transfer von Materie vom dusseren
ins innere Planetensystem vorstellt.
Diese neuen Vorstellungen sind in den
1980er Jahren wesentlich von numeri-
schen Experimenten gepriagt worden.

Die Entwicklung des dusseren Pla-
netensystems: Figur 2 deutet an, weshalb
sich die AU (Internationale Astronomi-
sche Union) schwer tut, den Planeten

~ GRUNDLAGEN

NOTIONS FONDAMENTALES

Pluto als Hauptplaneten zu akzeptieren.
Seine Neigung gegeniiber der (momenta-
nen) Ekliptikebene ist mit etwa 17° deut-
lich grosser als die der iibrigen Planeten
(die nachst kleinere Neigung ist die von
Merkur mit 7°). Zudem ist Pluto’s Exzen-
trizitat mit e=0.25 so gross, dass ein Teil
seiner Bahn innerhalb der fast kreisf6rmi-
gen Bahn von Neptun verlduft. Dass sich
Pluto bisher trotzdem in seiner Bahn be-
haupten konnte, hingt damit zusammen,
dass seine Umlaufszeit sich zu derjenigen
von Neptun wie 3:2 verhalt. Damit finden
die nahen Begegnungen (von der Sonne
aus gesehen die Konjunktionen) der bei-
den Planeten gendhert immer im gleichen
Gebiet statt. Pluto hat es so eingerichtet,
dass die Konjunktionen immer in der
Néhe seines Aphels stattfinden. Samtli-
che numerischen Experimente (Zhnli-
cher Art wie unseres) deuten darauf hin,
dass sich Pluto auf einer stabilen Bahn
befindet. Mit einer Integration tiber eine
Million Jahre kann natiirlich abschlies-
send nur festgestellt werden, ob sich ein
Planet wihrend dieses Zeitintervalls in ei-
ner stabilen Bahn befand. Anhand der er-
zielten Resultate lassen sich iiber ein
zehn mal lingeres Zeitintervall allenfalls
Prognosen (wie beim Wetter) abgeben.
Damit ist aber auch angedeutet, warum
man versucht, das Planetensystem iiber
immer lingere Zeitintervalle zu integrie-
ren. Heute darf man mit einiger Sicher-
heit behaupten, dass unser System
mindestens iiber Zeitriume von etwa ei-
ner Milliarde Jahre keine offensichtliche
Instabilitit zeigt.

Weitaus der grosste Teil der Masse,
der Energie und des Drehimpulses des
Planetensystems ist im Dreikorperpro-
blem Sonne Jupiter (mit einer Tausend-
stel Sonnenmasse) Saturn (mit einer
Dreitausendstel Sonnenmasse) enthal-
ten. Man darf also davon ausgehen, dass
die mechanische Entwicklung des Plane-
tensystems durch dieses Dreikorperpro-
blem gepragt ist. Experimente der hier
vorgestellten Art bestitigen dies ein-
driicklich. So zeigt beispielsweise Figur 3
(ein Ausschnitt, der die Entwicklung der
mittleren Halbachsen iiber die ndchsten
zehntausend Jahre zeigt), dass die Bahn-
halbachsen von Jupiter und Saturn fast
zu 100% antikorreliert sind (wenn die
Halbachse von Jupiter maximal ist, ist
diejenige von Saturn minimal und umge-
kehrt). Die Periode der Anderungen be-
tragt im Mittel etwa 940 Jahre. Da die
Halbachse einer Planetenbahn die mittle-
re Bewegung festlegt, werden durch die-
se Storungen in der Halbachse sehr gros-
se Storungen in der ekliptikalen Linge
der Planeten induziert. Der Effekt ist un-
ter der Bezeichnung grosse Ungleichheit
in der Himmelsmechanik wohlbekannt.
Er wurde von PIERRE SIMON DE LAPLACE

(1749-1827) als langperiodische Storung,
verursacht durch die 5:2-Kommensurabi-
litdt der Umlaufszeiten von Jupiter und
Saturn, erklart. Es ist iibrigens bis heute
nicht geklart, ob diese Kommensurabili-
tat zufalliger Natur ist, oder ob es dafiir
einen Grund gibt. Figur 3 illustriert aber
auch sehr schon den Energieerhaltungs-
satz: In guter Naherung kann die Gesamt-
energie des Planetensystems berechnet
werden als Summe der Zweikorperener-
gien der Planeten. Diese Zweikorperen-
ergie ist aber ihrerseits indirekt proporti-
onal der Halbachse a. Vernachléssigt
man die Massen aller iibrigen Planeten
(ausser denjenigen von Jupiter und Sa-
turn), ist die Gesamenergie E des Sys-

tems zu ndhern durch
m. m
E=m——_ . 5
2a; 2a

Durch die Forderung E=const. ergibt
sich
da = — e iy

]
s

2
s

Q

‘v.

. 5aj =-11.2. 5aj

3
QN

J

Diese Beziehung wird durch Figur 3
sehr schon bestitigt. Die Amplitudenva-
riationen in Figur 3 sind iibrigens nicht
etwa Integrationsfehlern zuzuschreiben.
Diese sind durch die Stérungen der {ibri-
gen Planeten verursacht. Mit dhnlichen
Naherungen gelingt es, die Storungen in
der Exzentrizitat zu erkldren durch die
Erhaltung des Betrages des Drehimpul-
ses. Auch die Storungen in den Exzentri-
zitdten von Jupiter und Saturn sind anti-
korreliert. Man kann mit demselben Ex-
periment «beweisen», dass die Bahnebe-
nen von Jupiter und Saturn um ein und
dieselbe Achse mit der gleichen Winkel-
geschwindigkeit prazedieren (rotieren).
Der Beobachter erhilt also den Ein-
druck, dass die Bahnebenen von Jupiter
und Saturn (fast) als starres Gebilde um
ein und dieselbe Achse (die Achse des to-
talen Drehimpulses) rotieren — auch die-
se Eigenschaft eine Folge eines Erhal-
tungssatzes (fiir den Drehimpuls). Die
numerischen Experimente zeigen, dass
das #dussere Planetensystem, wie ein-
gangs erwihnt, tatsichlich durch das
Dreikorperproblem Sonne-Jupiter-Sa-
turn gepréagt ist. Fiir weitere Informatio-
nen sei auf [1] verwiesen.

Entwicklung des inneren Planeten-
systems: Das innere Planetensystem
mit den erddhnlichen Planeten besteht
aus Merkur, Venus, Erde und Mars. Von
der Masse, der Energie und vom Dreh-
impuls her ist das Paar Venus — Erde
ebenso dominant wie das Paar Jupiter —
Saturn im dusseren System. Wiahrend
die Eigenschaften des dusseren Systems
sehr gut ohne das innere System stu-
diert werden konnen, gilt sinngeméss
dasselbe nicht fiir das innere System.
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Fig. 3: Halbachsen von Jupiter (rot) und
Saturn (griin) wéhrend der nachsten
zehntausend Jahre.

Wiirden wir das innere System ohne das
dussere integrieren, kénnten wir we-
sentliche Eigenschaften nicht verste-
hen. Die Integration des inneren Sys-
tems ist aufwendiger, da wir die
Schrittweite der Integration dem
schnellsten Planeten anpassen miissen.
Selbst wenn wir den «Winzling» Merkur
bei der Integration weglassen, miissen
wir die Schrittweite der Integration auf
fiinf Tage reduzieren. Um zu sinnvollen
Aussagen zu kommen, wurden bei der
Integration sémtliche Planeten von Ve-
nus bis Neptun eingeschlossen. Wir be-
schrinken uns hier auf die Diskussion
eines Resultates, namlich der Entwick-
lung der Bahn-Exzentrizitdten von Ve-
nus, Erde und Mars iiber die letzten und
die ndchsten 250000 Jahre. Das Ergeb-
nis findet man in Figur 4. Zunichst sieht
man, dass die Halbachse von Mars we-
sentlich stédrker durch die dusseren Pla-
neten (insbesondere durch Jupiter) ge-
stort wird als die Exzentrizitdten von
Venus und Erde. Ahnlich wie beim Paar
Jupiter-Saturn sieht man eine deutliche
Antikorrelation der Exzentrizititen,
was zu interpretieren ist als Austausch
von Drehimpuls zwischen den beiden
inneren Planeten. Dem iiberlagert ist
eine langperiodische Anderung, die den
Exzentrizititen beider Planeten gemein
ist. Diese ist (wie man durch ein kleines
Experiment sehr leicht nachweisen
kann) durch die Stérungen des dusseren
Planetensystems verursacht. Man be-
achte, dass die momentane Exzentrizi-
tat der Erdbahn etwa e=0.016 betragt
und dass diese wiahrend der nichsten
etwa 30000 Jahren fast bis auf e=0 ab-
nehmen wird. Vor etwas mehr als
200 000 Jahren hingegen betrug die Ex-
zentrizitidt der Erdbahn mehr als e=0.04!
Solche Unterschiede kénnen klimatisch
durchaus von Bedeutung sein: Wahrend
bei einer fast kreisformigen Bahn prak-
tisch keine Winter-Sommer Asymmetri-
en auf den beiden Hemisphiren auftre-
ten konnen, sind bei grosseren
Exzentrizititen deutliche Unterschiede
(je nach Lage des Perihels der Erdbahn)
zu erwarten: Zum einen ist bei grosserer
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Exzentrizitit die von der Sonne erhalte-
ne Strahlung im Perihel deutlich grosser
als im Aphel (der relative Unterschied
betragt 4e), zum anderen werden die
sonnen-niheren Teile der Bahn schnel-
ler durchlaufen als die sonnen-ferneren.
MiLutiN MiLankoviTcH (1879-1958) hat mit
massigem Erfolg versucht, die klimati-
schen Veranderungen auf der Erde him-
melsmechanisch zu deuten. Figur 4
weist darauf hin, dass gewisse langperi-
odische Anderungen der Bahnelemente
durchaus bedeutend sein konnen.

Fig. 4: Die Exzentrizitaten von Venus, Erde
und Mars wéahrend der letzten und nachsten
250000 Jahre.
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Die Bahnen von Kleinplaneten: In
der Neujahrsnacht des Jahres 1801 ent-
deckte GiuseppE Piazzi (1746-1826) den
ersten Kleinplaneten zwischen Mars
und Jupiter. Der deutsche Mathemati-
ker CArL FriEDRICH GAUSS (1777-1855) be-
griindete zum mindesten einen Teil sei-
nes Ruhmes auf der erfolgreichen
Bestimmung der Bahn von Ceres aus ei-
ner kurzen Reihe von Beobachtungen.
Heute sind weit tiber 100000 Kleinplane-
ten mit Umlaufszeiten zwischen denen
von Mars und Jupiter gesichert. Zudem
kennt man heute schon einige hundert
Objekte im Kuiper-Giirtel im dusseren
Planetensystem. Figur 5 gibt die Positi-
onen samtlicher gesicherter Kleinplane-
ten am 1. Juli 2001 sowie der Planeten-
positionen wieder. Sehr deutlich ist der

AE
=

Ring zwischen Mars und Jupiter zu se-
hen. Ebenso sieht man je eine Wolke
von Kleinplaneten etwa 60° von Jupiter
entfernt auf der Jupiterumlaufbahn. Es
ist dies die Gruppe der Trojaner und der
Griechen. Die Kleinplaneten haben sich
um eine stabile Losung des Dreikorper-
problems herum «ansiedeln» konnen.
Figur 6 gibt einen besseren Eindruck
von der Verteilung der Kleinplaneten
zwischen Mars und Jupiter. Sie stellt die
Anzahl der Kleinplaneten mit grossen
Halbachsen in Intervallen der Breite von
Aa=0.002 AE dar. Diese Zahlen werden
als Funktion der (aus der Halbachse be-
rechneten) Umlaufszeit, in Einheiten
der Umlaufszeit von Jupiter, dargestellt.
Deutlich sieht man im Giirtel Haufun-
gen, aber auch Liicken. Das Bild wider-
spricht intuitiven Erwartung: Ein unvor-
eingenommener, nicht einschléigig
vorbelasteter Wissenschaftler wiirde
wohl eine Art Gaussvereilung mit einem
Maximum irgendwo zwischen Mars und
Jupiter erwarten. Ganz abwegig ist die
Vorstellung nicht: Immerhin entspricht
die Enveloppe des Histogramms grob
diesen Vorstellungen. Man merkt natiir-
lich sofort, dass (zum mindesten einige
der) Haufungen und Liicken nicht zufal-
lig verteilt sind, sondern dass sie an Stel-
len auftreten, wo das Verhéaltnis der Um-
laufszeiten von Jupiter und Kleinplanet
durch einen Quotienten kleiner ganzer
Zahlen ausgedriickt werden kann. Man
sagt in diesem Falle auch, dass die Um-
laufszeiten kommensurabel sind. Deut-
lich sehen wir die Gruppe der Trojaner,
deren Umlaufszeit mit der von Jupiter
iibereinstimmt (bei der Abszisse = 1) so-
wie die Hilda-Gruppe, deren Umlaufs-
zeit 2/3 derjenigen von Jupiter betragt.
Die heutige Verteilung der Kleinpla-
neten hat sich aus einer urspriinglich
ganz anderen (die wohl eher den oben
gedusserten Vorstellungen entsprach)
entwickelt. Damit stellt sich naturge-
miss die Frage, wie sich die Gruppen
und Liicken entwickelt haben. Relativ
einfach kann man die Gruppen erkliren:
Die Kleinplaneten der Trojaner und der
Hilda-Gruppe haben «Nischen» stabiler
Losungen des Dreikorperproblems Son-
ne-Jupiter-Kleinplanet (einer Koexis-
tenz mit Jupiter) ausgebildet, die iiber
Jahrmilliarden nicht aufgelost werden.
Man darf iibrigens ja nicht meinen, dass
jeder Kleinplanet mit einer Umlaufszeit
von 2/3 Ujsich in einer stabilen Bahn be-
finden wiirde: Weitaus die meisten
Kleinplaneten mit einer solchen Um-
laufszeit stiirzen entweder auf Jupiter
ab oder sie werden durch ihn in ganz an-

Fig. 5: Positionen der Planeten und
Planetoiden am 1. Juli 2001.
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dere Bahnen geschleudert. Man konnte
iibrigens hier durch gezielte Experimen-
te (Monte-Carlo-artige Simulationen)
Aufschluss iiber die urspriingliche Ver-
teilung erhalten.

Nachdem wir die Existenz der Grup-
pen sozusagen «rein gravitativ» erklart
haben, stellt sich die Frage, wie die Lii-
cken zu erkliren sind. Die Frage ist na-
tiirlich nicht neu. Sie wurde erstmals
vom amerikanischen Astronomen DanI-
EL Kirkwoop (1814-1895) gestellt, der ge-
gen Ende des 19ten Jahrhunderts aus
der damals bekannten Population von
etwa 100 Kleinplaneten glaubte, Liicken
in der Verteilung von Kleinplaneten bei
Kommensurabilititen zu sehen — eine
iiberaus spekulative Aussage (man divi-
diere die Zahlen in Figur 6 durch 1000
und iiberzeuge sich davon, dass man
kaum mehr von einer «reichen» statisti-
schen Basis sprechen kann!).

Fig. 6: Anzahl der Kleinplaneten pro 0.002 AE
in der Halbachse, als Funktion der Umlaufszeit
in Einheiten der Jupiter-Umlaufszetit.
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Man ist intuitiv geneigt, die Liicken
durch resonante Stérungen zu erkliren.
Bewegt sich namlich ein Kleinplanet in
der prominenten 3:1-Liicke, erfihrt er
nach jeweils drei siderischen Umlédufen
wieder praktisch dieselben Stérungen
durch Jupiter. Eine Aufschaukelung der
Storungen scheint durchaus plausibel.
Ein Nachweis war — vor der Computer-
Ara - aber extrem schwierig, ganz ein-
fach weil analytische Methoden iiber
mehr als einige hundert Umléufe
schlicht nicht mehr zuverlidssig sind.
Aus patriotischen Griinden sei ein sta-
tistischer Erklarungsversuch von Prof.
Max ScHURER erwahnt: Er wollte die Lii-
cken als ein statistisches Artefakt «weg-
diskutiert» haben: Setzt man einen
Kleinplaneten in einer Liicke aus, wird
er vergleichsweise starke periodische
Storungen (auch) in der Halbachse er-
leiden und so (genau wie ein Pendel im
tiefsten Punkt) sich nur wihrend
vergleichsweise kurzer Zeit in der Lii-
cke (entsprechend dem tiefsten Pendel-
punkt) aufhalten. Diese statistische Hy-
pothese wurde von FrRANCOIS SCHWEIZER
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in seiner Diplomarbeit [2] mit damals
(in den 1960er Jahren) sehr aufwendi-
gen numerischen Experimenten wider-
legt.

Das Ritsel konnte, jedenfalls fiir die
3:1-Resonanz, erst gelost werden durch
die Arbeiten von Jack Wispoum [3], der
eine grosse Zahl von Simulationen tiber
Zeitraume von Hunderttausenden von
Jahren mit den damals schnellsten
Rechnern durchfiihren konnte. Interes-
santerweise lag der Schliissel zur Erkli-
rung der Liicken nicht in den Stérungen
der Halbachsen selbst verborgen, son-
dern in den Stérungen der Bahnexzent-
rizitdten. Zwar beobachtet man durch-
aus resonante Storungen in den Halb-
achsen in der Nihe der 3:1- Resonanz.
Diese sind aber immer noch deutlich zu
klein, um die Liicken in Figur 6 statis-
tisch zu erkldren (die Amplituden betra-
gen in tiefster Resonanz einige Hun-
dertstel AE an Stelle von einigen Tau-
sendsteln AE ausserhalb der Reso-
nanz). Spektakuldr sind hingegen die
Storungen in der Exzentrizitit e. Dies
wird durch Abbildung 7 veranschau-
licht, die die Exzentrizititen von fiinf si-
mulierten Kleinplanetenbahnen in der
Nahe der 3:1-Resonanz darstellt (mit
Umlaufszeiten von 0.32633, 0.32833,
0.33033, 0.33133, 0.33233 Jupiterum-
laufszeiten). Zum Ausgangszeitpunkt
war die Exzentrizitit in allen Fillen auf
e=0.1 gesetzt. Man beachte, dass in den
beiden Beispielen mit der tiefsten Reso-
nanz (0.33133, 0.33233) Exkursionen in
der Exzentrizitat bis e=0.3 an der Tages-
ordnung sind und dass Exzentrizititen
bis zu e=0.6-0.7 durchaus tiber lingere
Zeitintervalle vorkommen kénnen! Er-
klaren diese grossen Storungen in den
Exzentrizititen die Liicke in Figur 6 bei
der 3:1-Kommensurabilitdt? Nach Wis-
poM kann die Frage wie folgt bejaht wer-
den: Ein Kleinplanet in der 3:1-Kom-
mensurabilitit hat eine Halbachse von
a=2.5 AE. Das Perihel liegt in einer he-
liozentrischen Distanz von ry=a(I-e).
Bei einer Exzentrizitit von e=0.4 liegt
das Perihel eines Kleinplaneten bei ei-
ner heliozentrischen Distanz von
rp=1.5, also im Bereich der Marsbahn,
bei einer Exzentrizitit von e=0.6 sogar
im Bereich der Erdbahn! Wispom be-
hauptet nun schlicht, dass alle Kleinpla-
neten, die wihrend ldngerer Zeit grosse
Bahnexzentrizititen aufweisen, auf die
genannten inneren Planeten abstiirzen
resp. abgestiirzt sind — womit die 3:1-
Liicke rein mechanisch erklért ist. Die
Erklarung ist ebenso plausibel wie geni-
al!

Nicht nur die Exzentrizitit, auch die
Lage des Perihels einer Kleinplaneten-
bahn erleidet Storungen. Es ist instruk-
tiv, den zum Perihel weisenden Vektor
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Fig. 7: Exzentrizitaten von funf Kleinplaneten
in 3:1-Resonanz mit Jupiter Uber eine Million
Jahre.

mit der Lange e (auch Laplacescher Vek-
tor genannt) im Inertialsystem als Funk-
tion der Zeit aufzutragen. Die Figuren §,
9 und 10 zeigen die Wanderung dieses
Vektors fiir drei der Félle von Figur 7.
Figur 8 zeigt (schon fast) die normale
Prizession des Laplaceschen Vektors ei-
nes «normalen» Kleinplaneten. Die Fi-
guren 9 und 10 zeigen die chaotische Be-
wegung dieses Vektors im Falle tiefer
Resonanz. Das Perihel scheint in beiden
Fillen zu torkeln. Ahnliche Bilder erhlt
man beim Aufzeichnen des Bahnnorma-
lenvektors. Storungen in der Neigung
von mehr als zehn Grad sind durchaus
keine Seltenheit. Aus Platzgriinden wird
auf diese Darstellungen verzichtet. Die
Leserschaft sei auf die vertiefte Behand-
lung in [1] verwiesen.

Erd- und Mondrotation

Die Bewegungsgleichungen (1) cha-
rakterisieren ein N-Korperproblem, bei
dem simtliche beteiligten Himmelskor-
per als punktférmig angenommen wer-
den. Bei vielen Problemstellungen der
Himmelsmechanik geniigt diese Néhe-
rung, bei anderen aber nicht. Das Drei-
korperproblem Sonne-Erde-Mond, wie
es in Figur 11 dargestellt ist, verlangt,
dass Erde und Mond als ausgedehnte
Himmelskorper behandelt werden. Wie
passt man die Bewegungsgleichungen
den verallgemeinerten Bedingungen an?
Die Antwort, zuerst von EULER gegeben,
lautet: 9m Prinzip ist keine Anpassung
notig, man hat aber Gleichungen vom
Typ (1) fiir jedes Massenelement eines
jJeden Himmelskdrpers aufzustellen.
Durch geeignete Kombination aller Glei-
chungen vom Typ (1) pro Himmelskor-
per erhélt man anschliessend
— je einen Satz von Differentialglei-

chungen fiir die Bewegung der

Schwerpunkte der drei Himmelskor-

per sowie
— je einen Satz von Differentialglei-

chungen fiir die zeitliche Entwick-
lung der Drehimpulse der drei Him-
melskorper (Drehimpulse bezogen
auf die jeweiligen Schwerpunkte).
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Fig. 8: Der Laplace-Vfektor eines Klein-
planeten in seichter 3:1-Resonanz mit Jupiter.

Figur 11 dient nicht nur als Hilfsmit-
tel zur Herleitung der verallgemeinerten
Bewegungsgleichungen des Systems,
sie zeigt auch, wie die Aufgabe zu para-
metrisieren ist. Dazu wollen wir
zunichst annehmen, dass Erde und
Mond starre Koérper sind. Das Dreikor-
perproblem ist offensichtlich gelost,
wenn wir zu jedem Zeitpunkt die
Schwerpunkte der drei Himmelskorper
und die Lage je eines mit der Erde und
mit dem Mond starr verbundenen Koor-
dinatensystems kennen. Figur 12 zeigt,
wie man das korperfeste Koordinaten-
system der Erde wihlen kann. Zudem
zeigt sie eine Moglichkeit fiir die Wahl
eines raumfesten Koordinatensystems.

Um unsere Aufgabe zu losen, miis-
sen wir uns jetzt lediglich noch fragen,
wie denn die Lage eines Koordinaten-
systems im inertialen Raum zu beschrei-
ben ist. Figur 12 zeigt, dass dazu drei
Winkel, auch Eulersche Winkel genannt,
bendtigt werden. In Figur 12 haben wir
im inertialen Raum ein ekliptikales Ko-
ordinatensystem eingefiihrt. Ein eklipti-
kales Koordinatensystem hat die Ebene
der Bahn des Systems Erde-Mond um
die Sonne als Fundamentalebene (d.h.,
als erste Koordinatenebene). Da diese
Bahnebene - infolge der Planetensto-
rungen — selber im Raum nicht fix sein
kann, miissen wir genauer von einem
Ekliptiksystem zu einer bestimmten
Epoche sprechen. Normalerweise ver-
wendet man zu diesem Zweck heute das
auf den 1. Januar 2000 bezogene System
und bezeichnet es als System J2000.0.
Als erdfestes System verwendet man
iiblicherweise ein geozentrisches, dqua-
toriales System — also ein konventionel-
les geographisches System.

Figur 12 zeigt also, dass die Lage des
erdfesten, dquatorialen Systems im iner-
tialen Raum zu einem bestimmten Zeit-
punkt durch die drei Eulerschen Winkel
Y, €, © beschrieben werden kann. Sie
sind «im Prinzip» zu identifizieren mit

Fig. 9: Der Laplace-Vektor eines Klein-
planeten in tiefer 3:1-Resonanz mit Jupiter.

der Summe ¥ aus Prizession und Nutati-
onin Linge, der Nutation in Schiefe e und
der Sternzeit ©. Allerdings ist zu beach-
ten, dass wir diese Winkel hier einfach
als Transformationsparameter zwischen
dem raumfesten, ekliptikalen und dem
erdfesten, dquatorialen Koordinatensys-
tem eingefiihrt haben. Vom Standpunkt
der Himmelsmechanik aus gesehen ist
dies das einzig Richtige und Verniinftige.

Fig. 10: Der Laplace-Vektor eines Klein-
planeten in tiefer 3:1-Resonanz mit Jupiter.

Unterscheidungen zwischen wahren und
mittleren Systemen sowie eine kiinstli-
che Aufspaltung in Prizession und Nuta-
tion, wie sie in Astronomie-Grundvorle-
sungen gebriauchlich sind, sind durch
nichts zu rechtfertigen. Immerhin sei an-
gemerkt, dass die Winkel ¥ und ¢ sich
nur vergleichsweise langsam #ndern,
wéhrend O pro (Stern)Tag um 360° an-
wichst. Es sei nochmals vermerkt, dass

Fig. 11: Das Dreikérperproblem Sonne-Erde-Mond.
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man im Prinzip auch ganz andere Koordi-
natensysteme hitte einfithren kénnen.
Wichtig ist lediglich, dass eines raumfest
(inertial), und das andere erdfest ist.

Die Bewegungsgleichungen der Er-
de setzen sich also zusammen aus drei
Differentialgleichungen zweiter Ord-
nung in der Zeit, welche die Bewegung
des Schwerpunktes der Erde im inerti-
alen Raum beschreiben, sowie drei
(gekoppelten) Differentialgleichungen
zweiter Ordnung in den drei Winkeln ¥,
¢, ©, welche die Lage des erdfesten Sys-
tems beschreiben. Anzumerken bleibt,
dass aus den ersten zeitlichen Ableitun-
gen der drei Eulerschen Winkel die mo-
mentane Lage der Rotationsachse und
die Winkelgeschwindigkeit (aus der
wiederum die Linge des siderischen
Tages folgt) berechnet werden kann.

Sinngemiiss gelten dieselben Uberle-
gungen fiir die Bahn- und Rotationsbe-
wegung des Mondes. Das Resultat kann
verallgemeinert werden: In einem N-Kor-
perproblem miissen fiir jeden Korper
endlicher Ausdehnung drei Differential-
gleichungen zweiter Ordnung fiir die drei
Eulerschen Winkel den Bewegungsglei-
chungen fiir die Schwerpunkte beigesellt
werden. Die Differentialgleichungen fiir
die Bewegung der Schwerpunkte und fiir
die Rotation der Himmelskorper sind alle
miteinander gekoppelt. Man kann also
im Prinzip die Entwicklung der Euler-
schen Winkel (fiir Erde und Mond) nur
im Rahmen der Losung des verallgemei-
nerten Dreikorperproblems Erde-Sonne-
Mond studieren.

Ekliptik

* Aquator

Fig. 12: Die drei Eulerschen Winkel.

Die Koppelung zwischen Bahn- und
Rotationsbewegung ist allerdings nicht
sehr stark. Man kann daher einen gené-
herten Eindruck von der Erdrotation er-
halten, indem man die Schwerpunktsbe-
wegung durch das System (1) be-
schreibt und diese in den Differential-
gleichungen fiir die Eulerschen Winkel
als bekannt annimmt. Das Programm
ERDROT, das fiir die folgenden Simula-
tionen verwendet wurde, erlaubt es,
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— die Erdrotation bei als bekannt ange-
nommener Schwerpunktsbewegung
von Erde, Sonne und Mond oder

— die Mondrotation bei als bekannt an-
genommener Schwerpunktsbewe-
gung von Erde, Sonne und Mond
oder aber

— das Dreikorperproblem Erde, Sonne
und Mond vollstindig korrekt im
oben erlauterten Sinn
zu studieren.

Die folgenden Illustrationen wurden
alle mit der korrekten (dritten) Losung
der Aufgabe erzeugt.

Die Rotation der Erde: Bei der nu-
merischen Integration miissen die An-
fangsbedingungen spezifiziert werden.
Im Programm ERDROT werden die Po-
sitionen und Geschwindigkeiten der
Schwerpunkte der beteiligten Himmels-
korper aus einer sehr genauen Epheme-
ride (im wesentlichen einer «elektroni-
schen» Version der Jahrbiicher) iiber-
nommen, die Winkel ¥, €, und ©® werden
aus den Formelsammlungen der IAU
(Internationalen Astronomischen Uni-
on) iibernommen. Die ersten Ableitun-
gen dieser Grossen werden aus dem vor-
gegebenen Winkelgeschwindigkeitsvek-
tor @ berechnet. Dieses Vorgehen er-
laubt es, die Lage der Rotationsachse
der Erde zum Ausgangszeitpunkt realis-
tisch zu wihlen. Bei der nachfolgenden
Simulation wurde die Lage der Rotati-
onsachse etwa 0.2" vom geographischen
Nordpol entfernt gewahlt.

Figur 13 zeigt die Projektion der Ro-
tationsachse auf die Erdoberfliche (von
oberhalb des Nordpols aus gesehen).
Wir sehen, dass sich diese in guter Nihe-
rung auf einem Kreis mit Radius 0.2"
(dies entspricht auf der Erdoberfliche
etwa 6 m) um den geographischen Pol
herum bewegt hat. Die Periode dieser
Kreisbewegung betragt bei einer starren
Erde etwa 300 Tage. Sie wird Eulersche
Periode genannt und kann allein aus der
Tageslinge und aus den Haupttrigheits-
momenten der Erde berechnet werden.
In Wirklichkeit betragt die Hauptperio-
de der Polschwankung nicht 300, son-
dern etwa 430 Tage. Der Unterschied er-
klart sich aus der Tatsache, dass die
Erde nicht vollkommen starr ist. Die re-
ale 430-tagige Periode wird nach ihrem
Entdecker SETH CARLO CHANDLER (1846-
1913) Chandler-Periode genannt. Die
Chandler-Periode kann aus der Tages-
lange, den Haupttriagheitsmomenten
der Erde und aus der Elastizitdt der
Erde berechnet werden. Der «grossen»
Kreisbewegung von 0.2" sind kleine
Kreise mit variierendem Radius iiberla-
gert. Dieser Anteil der Polschwankung
wird Oppolzer-Bewegung genannt
(nach Freiherr RiTTER vON OPPOLZER
[1841-1886]). Die Periode betrigt (fast)

einen Tag. Die Oppolzer-Bewegung wird
durch die von Mond und Sonne auf die
Erde ausgetibten Drehmomente verur-
sacht. Befinden sich die Himmelskorper
in der Aquatorebene, verschwinden die
betreffenden Drehmomente und damit
die zugehorigen Radien der Oppolzer-
«Kringel». Da der Mond zweimal pro
Monat die Aquatorebene kreuzt, sind
die Radien der Kringel zweimal im Mo-
ment minimal. Da die Sonne zweimal
pro Jahr (zu den Zeitpunkten des Friih-
jahres- und des Herbstbeginns) die
Aquatorebene kreuzt, ist der durch die
Sonne bedingte Radius der Oppolzer-
Kringel zweimal pro Jahr minimal. Man
konnte also der Oppolzer-Bewegung in
Figur 13 die Zeitpunkte der Aquinoktien
zuordnen.
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Fig. 13: Die Polschwankung wéhrend eines
Jahres.

Wie bewegt sich der Rotationspol im
Raum? Die Figuren 14-16 geben die
(wohlbekannte) Antwort. Figur 14 zeigt,
dass der Winkel ¥ in der Ekliptikebene
pro Jahr im Mittel um etwa 50.4" ab-
nimmt. Dies entspricht der Prizessions-
bewegung des Rotationspols um den
Ekliptikpol herum. Die zugehorige Peri-
ode betragt folglich etwa 26000 Jahre.
Man entnimmt der Figur 14 aber auch,
dass der linearen Abnahme von ¥ deut-
lich eine periodische Komponente iiber-
lagert ist. Diese kann man genauer stu-
dieren, wenn man rein rechnerisch den
linearen Anteil in Figur 14 eliminiert.

Das Resultat ist in Figur 15 enthal-
ten. Wir erkennen eine grosse 18.6-jih-
rige periodische Bewegung mit einer
Amplitude von etwa 17" sowie halbjahr-
liche Terme mit Amplituden von etwa
1.3". Der erste Term, der Hauptterm der
Nutation in Lénge, wird durch die perio-
dische Anderung der Neigung der Mond-
bahnebene gegeniiber der Aquatorebe-
ne «verschuldet»: Die Neigung der
Mondbahnebene gegeniiber der Eklip-
tikebene ist in etwa konstant mit ¢=5°.
Nun liuft aber der Mondknoten (die
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Schnittgerade der Mondbahnebene mit
der Ekliptikebene) einmal pro 18.6 Jah-
ren in der Ekliptikebene (im Uhrzeiger)
herum. Daraus folgt, dass der Schnitt-
winkel der Mondbahnebene mit der
Aquatorebene sich innerhalb der Gren-
zen e-5° und €+5°, also grob zwischen
den Grenzen 18.5° und 28.5°, dndert. Un-
notig zu sagen, dass die Préazession den
maximalen (negativen) Wert annimmt,
wenn die Neigung der Mondbahnebene
gegen die Aquatorebene maximal ist. Fi-
gur 16 zeigt, dass der Winkel € nur perio-
dischen Anderungen unterworfen ist.
Die Hauptperiode betriagt wiederum
18.6 Jahre, die Amplitude etwa 9.2". Die
Figuren 14 und 16 zusammengenommen
sagen, dass sich der Rotationspol der
Erde in etwa auf einem geraden Kreiske-
gel mit 23.5° Neigung um den EKkliptik-
pol herum bewegt. Zum Abschluss sei
festgehalten, dass wir zwar in den Figu-
ren 15 und 16 bloss zwei Terme (die
18.6-jdhrigen und die halbjihrlichen Ter-
me) identifizieren konnten. Eine Spek-
tralanalyse der Zeitreihen zeigt jedoch,
dass es Dutzende von Termen mit Amp-
lituden grosser als eine Millibogense-
kunde gibt. Setzt man die Grenze noch
tiefer an, kommt man «problemlos» auf
Hunderte von Termen.

Mondrotation: Im Prinzip sollten
wir nun eine dhnliche Diskussion zum
Thema Mondrotation fithren, wie wir sie
oben zum Thema Erdrotation gefiihrt
haben. Platzgriinde verbieten dies. Wir
beschrianken uns daher auf eine summa-
rische Zusammenfassung der Resultate.
Genau wie die Erde rotiert auch der
Mond im inertialen Raum. Aus der Tat-
sache, dass wir (im Wesentlichen)
immer dieselbe Seite des Mondes sehen,
wissen wir, dass seine Rotationsperiode
und seine Umlaufszeit heute identisch
sind, also einen (siderischen) Monat be-
tragen. Genau wie die Erde weist auch
der Mond eine Polschwankung auf. Die
der Eulerschen Periode entsprechende
Periode ergibt sich wiederum aus den
Haupttragheitsmomenten des Mondes
und aus der Rotationsperiode des Mon-
des. Die Periode betréigt etwas mehr als
140 Jahre. Beobachtet wurde sie

Fig. 14: Prézession plus Nutation in Lange.
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allerdings noch nie! Figur 17 deutet an,
weshalb dem so ist. Sie zeigt, dass das
Aquivalent zur Oppolzer-Bewegung
vergleichsweise riesig ist: Anstelle von
einigen Millibogensekunden wie im Fal-
le der Erde (siehe Figur 13) beobachten
wir Amplituden von mehreren hundert
Bogensekunden! Die Bewegung er-
scheint im Ubrigen sehr chaotisch. Die
Grosse der Amplituden ist naturgeméss
durch das vergleichsweise sehr grosse
Drehmoment bedingt, das durch die
Erde auf den Mond ausgeiibt wird. Man
hat im Ubrigen auch diese Bewegung
auf dem Mond noch nie beobachtet.
(100" auf dem Mond entsprechen etwa
0.5"von der Erde aus gesehen).

Omega2(arcsec)
=

400 . . . L . . . .
250 <200 150 100 50 0 50 100 150 200 250
Omegal(arcsec)

Fig. 17: Die Polschwankung des Mondes
Uber 140 Jahre.

Wie bewegt sich der Rotationspol
des Mondes im Raum? Nun, genau wie
bei der Erde fithrt auch der Rotations-
pol des Mondes eine Prizessionsbewe-
gung um die EkKliptikebene aus.
Allerdings betrigt die Periode nur 18.6
Jahre an Stelle der etwa 26 000 Jahre bei
der Prizession der Erdachse - sie ist ge-
koppelt mit der Prizession der Mond-
bahnebene. Die Neigung der Rotations-
achse des Mondes gegeniiber der
Ekliptikebene betrigt iibrigens nur
etwa 1.5° (und nicht 23.5° wie im Falle
der Erde). Die grundlegenden Fakten
der Mondrotation sind ldangst bekannt.
Sie wurden von Giovannt DomENICO CAs-

Fig. 15: Nutation in Lénge.

SINI (1625-1712) rein empirisch aus lan-

gen Beobachtungsreihen gefunden und

in Form von drei «Gesetzten» festgehal-
ten:

1. Vom Nordpol aus gesehen rotiert der
Mond gleichférmig im Gegenuhrzei-
gersinn um eine feste Achse. Sideri-
sche Rotationsperiode und Bahnum-
laufszeit sind identisch.

2. Die Neigung der Mondbahnebene
gegen die Ekliptik ist konstant.

3. Die Rotationsachse des Mondes, der
Pol der Ekliptik und der Pol der
Mondbahnebene liegen (in dieser
Reihenfolge) in ein und derselben
Ebene.

Cum grano salis ist die Rotation des
Mondes durch die drei Cassinischen Ge-
setze recht gut erfasst. Man muss natiir-
lich in Betracht ziehen, dass die sehr
wohl existierenden (und heute, nicht
zuletzt dank den Laser-Distanzmessun-
gen zum Mond eindeutig nachgewiese-
nen) Nutationsbewegungen des Mondes
im 17ten Jahrhundert nicht beobachtbar
waren. Mehr Aufschluss zum Thema
Mondrotation wird man durch Mond-
missionen, wie sie beispielsweise von
der japanischen Weltraumagentur ge-
plant sind, erhalten.

Kiinstliche Erdsatelliten

Geschichtliches: Mit dem Start des
ersten kiinstlichen Erdsatelliten Sput-
nik-I am 4. Oktober des internationalen
geophysikalischen Jahres 1957 brach
eine neue Ara in der Himmelsmechanik
an. Kiinstliche Erdsatelliten konnen mit
sehr hoher Genauigkeit iiber sehr lange
Zeitrdume beobachtet werden. Wichtig
ist insbesondere, dass man eine Bahn
iber Hunderte von Umldufen genau be-
obachten kann. Die Raumflugira brach-
te in der Himmelsmechanik in mehrerlei
Hinsicht eine Neuorientierung:

— Waéhrend bislang ausschliesslich
Richtungen zu Himmelskorpern be-
obachtet wurden, kamen jetzt auch
andere Beobachtungsarten zum
Zuge. Zu nennen sind insbesondere
— Distanzbeobachtungen zu Satel-
liten, die mit Reflektoren ausgeriis-
tet sind,

Fig. 16: Nutation in Schiefe .
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— Beobachtung des Dopplereffek-
tes von Frequenzen, die von aktiven
Satelliten ausgesandt werden,

— Messung der Laufzeit von Signa-

len, die von aktiven Satelliten ausge-

sandt werden.

—  Wahrend man in der klassischen Him-
melsmechanik des Planetensystems
die auf einen Probekorper wirkenden
Krafte im Normalfall als bekannt an-
nehmen durfte, war dies bei kiinstli-
chen Erdsatelliten zum Mindesten zu
Beginn der Raumflugira nicht der Fall.
Man musste das Gravitationsfeld der
Erde aus den beobachteten Bahnen
selbst ableiten. Schon Ende der 1960er
Jahre wurden Dutzende von Termen
des Gravitationsfeldes bestimmt. Bis
Ende des zwanzigsten Jahrhunderts
wurden in der Grossenordnung einige
tausend Terme bestimmt, Ende des
ersten Jahrzehnts des dritten Jahrtau-
sends wird man gegen Hunderttau-
send solcher Terme mit grosser Ge-
nauigkeit bestimmt haben.

— In der klassischen Himmelsmecha-
nik mussten im Allgemeinen nur
Gravitationskréfte beachtet werden.
Bei kiinstlichen Erdsatelliten muss-
ten von Anbeginn weg auch andere
Krifte beachtet werden:

— Der Luftwiderstand ist in Umlauf-
bahnen bis 1000 km Hohe von
zentraler Bedeutung.

— Unabhéngig von der Hohe des Sa-
telliten ist der sogenannte Strah-
lungsdruck zu beachten. Er ist
dem Umstand zuzuschreiben,
dass elektromagnetische Strah-
lung einen Impuls mit sich tragt:
Jedes Photon, das auf eine Satel-
litenoberflache auftrifft und ab-
sorbiert wird,iibertragt auf diese
den Impuls der Grosse hv/c (hist
die Plancksche Wirkungskonstan-
te, v die Frequenz der Strahlung, ¢
die Lichtgeschwindigkeit) in
Richtung Sonne-Satellit. Wird das
Photon reflektiert, wird im Maxi-
mum der doppelte Impuls normal
zum Fliachenelement, auf den das
Photon auftraf, ibertragen.

—  Wird ein Satellit von der Erde aus be-
obachtet (Richtung, Distanz, Dopp-
ler, Laufzeit), enthalt diese Beobach-
tung nicht nur Information zur geo-
zentrischen Bahn des Satelliten, son-
dern auch zur Position und allenfalls
zur Geschwindigkeit des Beobach-
ters. Damit wurden die geozentri-
schen Koordinaten der Beobachter,
aber auch subtilere Effekte wie die
oben erwihnte Polschwankung der
Beobachtung zuginglich. Das Zeital-
ter der Satellitengeodisie, der Ver-
messung der Erde mit Hilfe von Sa-
telliten, war angebrochen.

Die Bewegungsgleichungen: Man
hatte also in der Himmelsmechanik mit
einem Schlag sehr viel kompliziertere
Aufgaben zu 16sen. Himmelsmechanik
wurde auch, vielleicht sogar vor allem,
eine wichtige Anwendung der Theorie
der Parameterbestimmung. Dies wird
unter anderem dokumentiert durch die
im Vergleich mit den Grundgleichungen
(1) sehr viel komplexeren Grundglei-
chungen der Satellitenbewegung:

r=Ty

;: - G mp(dv) ' ! dV+ aMund i aS{an’ s Zang (5)

N

Dabei ist G die Gravitationskonstan-
te, p(dV) die Dichte der Materie in ei-
nem Volumenelement dV der Erde; r ist
der geozentrische Radiusvektor des Sa-
telliten, ryy derjenige des Volumenele-
mentes. dyoqq ist die auf den Satelliten
ausgeiibte Gravitationskraft des Mon-
des (im geozentrischen System), @sune
diejenige des Mondes. a,, ist die Be-
schleunigung des Satelliten infolge ei-
ner nicht-gravitativen Kraft. Der erste
Term in (5) kann noch als Gradient eines
Potentials geschrieben werden:

f:G-grad{Hj L,

Pr=ry

: dv} + aMond it aSanne +Eang (6)

Die Gleichungen (5) und (6) sind
vom mathematischen Standpunkt aus
gesehen gleichwertig. Der Vorteil der
Gleichung (6) besteht darin, dass das In-
tegral nun nicht mehr eine vektorielle,
sondern nur noch eine skalare Grosse
darstellt.

Der erste Term in Gleichung (6)
muss noch etwas eingehender disku-
tiert werden: Die Gleichungen (6) sind
bezogen auf ein pseudo-inertiales, geo-
zentrisches Koordinatensystem. Das
System kann, weil geozentrisch, nicht
echt inertial sein (es ist ja der beschleu-
nigten Bewegung der Erde um den ge-
meinsamen Schwerpunkt Erde-Mond
sowie der Bewegung dieses Schwer-
punktes um die Sonne unterworfen).
Wegen der Rotation der Erde in diesem
System miisste man das Integral fiir je-
den Zeitpunkt stets neu auswerten. Es
empfiehlt sich daher, vor einer Auswer-
tung in ein erdfestes System zu transfor-
mieren, das Integral dort auszuwerten,
den Gradienten im erdfesten System zu
bilden und dann das Resultat ins inerti-
ale System zuriickzutransformieren.
Dies scheint aufwendig, lohnt sich aber
in Anbetracht der Komplexitit des Inte-
grals in Gleichung (6). Damit sehen wir,
dass auch die Transformationsparame-
ter zwischen erdfestem und inertialem
System in den Bewegungsgleichungen
des Satelliten auftreten. Es bleibt die
Aufgabe, das Integral in (6) in einem
erdfesten System auszuwerten. Die
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Schwierigkeit scheint darin zu beste-
hen, dass man die Dichte p(dV) gar
nicht kennt. Man kann aber einstweilen
«s0 tun als ob» und erhilt formal die fol-
gende einfache Darstellung fiir das Po-
tential am Ort des Satelliten im erdfes-
ten System:

pdv) _ _GM ¥ |[a.)
ijjj|r_rdv| AV=U(rA9)= = Zo(r)

2 P! (sing) {c,.k -cos (kA) + S, - sin (k,l)}

k=0

(M

7, Aund ¢ sind die sphérischen Koor-
dinaten (geozentrische Distanz, Linge
und Breite) des Satelliten im erdfesten
System, M ist die Erdmasse, a, ist der
Aquatorradius, die (...) sind die zuge-
ordneten Legendreschen Funktionen,
deren Definition jeder mathematischen
Formelsammlung entnommen werden
kann. 7 ist der Grad, k die Ordnung der
Entwicklung. Die Terme Cj;, und Sy, sind
komplizierte Funktionen der Dichte.
Dies stort fiir die Potentialbestimmung
aber wenig: Man fiihrt diese einfach als
Unbekannte ein und bestimmt sie! Man
beachte, dass samtliche Terme Sj
gleich Null gesetzt werden kénnen. Der
allererste Term betragt Cpp=1,womit
dieser erste Term der Entwicklung in (7)
mit Uyy=GM/r das Potential eines Mas-
senpunktes der Masse M darstellt. Be-
zieht sich die Entwicklung auf ein
Schwerpunktsystem, werden alle Terme
vom Grad i=1 zu Null. Nach dem Haupt-
term ist der Term Cs dominierend. Er
charakterisiert die Abplattung der Erde.
Sein Einfluss auf einen tieffliegenden
Satelliten ist etwa 1000 mal grosser als
derjenige der nachfolgenden Terme.

Charakteristische Storungen einer
Satellitenbahn: In Anbetracht dieser Do-
minanz lohnt es sich, die Stérungen einer
Satellitenbahn infolge der Abplattung
kurz zu charakterisieren. Wir beschrin-
ken uns darauf, die Storungen in der
Halbachse, in der Rektaszension des auf-
steigenden Knotens und im Argument
des Perigiums (Winkelabstand des erd-
niachsten Punktes vom Knoten) darzu-
stellen. Die Definition dieser Elemente
kann in Figur 1 nachgesehen werden.
Allerdings hat man zu beachten, dass die
Bezugsebene fiir die geometrischen Ele-
mente nun sinnvollerweise nicht mehr
die Ekliptikebene, sondern die Aquator-
ebene ist. Bei den Abbildungen 18, 19
und 20 wurde ein Testsatellit mit einer
oskulierenden Halbachse zum Zeitpunkt
to=1. Januar 2001 von a=8000 km, einer
Exzentrizitdt von e=0.07, einer Neigung
von 1=35° sowie einem Perihelabstand
von ®=0° im Gravitationsfeld der abge-
platteten Erde integriert. Der oskulieren-
de Knoten wurde bei 2=0° angenommen
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Fig. 18: Stérungen der Halbachse durch die
Abplattung.

und die Integration wurde im Knoten
(und somit auch im Perigdum) gestartet.
Abbildung 18 zeigt die oskulierende
Halbachse (minus 8000 km) iiber eine
Zeitdauer von sechs Stunden. Man sieht
nur periodische Storungen mit Perioden
einer halben und einer vollen Umlaufs-
zeit. Dieses Resultat war zu erwarten:
Die Halbachse ist ja ein anderes Mass fiir
die Energie eines Satelliten. Durch eine
konservative Kraft kann aber die Energie
nicht gedndert werden. Ein dhnliches
Bild wiirde man erhalten, wenn man die
Exzentrizitit als Funktion der Zeit auf-
tragen wiirde.

Figur 19 zeigt die Entwicklung der
oskulierenden Rektaszension des Kno-
tens iiber denselben Zeitraum von sechs
Stunden. Deutlich ist eine lineare Ab-
nahme zu beobachten. Diese ist in der
Tat bedeutend: Umgerechnet auf einen
Tag betragt die Regression des Knotens
etwa 3.6°, was bedeutet, dass der Kno-
ten einmal pro hundert Tage umlauft. Da
andererseits die Neigung ¢ gegen die
Aquatorebene nur periodische Stérun-
gen kleiner Amplitude aufweist, bedeu-
tet dies, dass der Bahnnormalenvektor
auf einem geraden Kreiskegel der hal-
ben Offnung i um die Polarachse prize-
diert (im Uhrzeigersinn). Figur 20 doku-
mentiert, dass auch das Perigdum
relativ zum Knoten nicht an Ort bleibt.
Dieses dreht sich vorwéirts mit einer
Winkelgeschwindigkeit von etwa 4.2°.
Die Figuren 18, 19 und 20 demonstrieren
eindriicklich, dass die Stérung der Satel-
litenbahnen infolge der Erdabplattung
bedeutend ist.

Esstellt sich natiirlich die Frage, wie
reprasentativ die Resultate in den Figu-
ren 18-20 sind. Dazu ist zum einen zu sa-
gen, dass die Storungen mit der Hohe
(Halbachse) der Satelliten rasch kleiner
werden — im Falle des Knotens und des
Perigdumsabstandes nehmen z.B. die
Storbetrige mit der 3.5-ten Potenz der
Halbachse ab. Zum andern gilt es, die
Abhéngigkeit der Storungen (bei sonst
gleichbleibenden Elementen) von der
Neigung der Satellitenbahn zu beach-
ten. Figur 21 zeigt diese Abhingigkeit

Fig. 19: Stérungen der Rektaszension des
aufsteigenden Knotens durch die Abplattung.

fiir die Regression des Knotens. Um den
Effekt klarer herauszuschilen, wurden
in dieser Abbildung die mittleren Sto-
rungen (gemittelt iiber einen Umlauf
des Satelliten) aufgetragen. Abgesehen
von der Neigung wurden in Figur 21
(tibrigens auch in Figur 22) die gleichen
Elemente wie in den vorausgegangenen
Simulationen verwendet. Die Neigungs-
abhingigkeit der Storungen im Knoten
ist in der Tat dramatisch: Bei 1=35° er-
halten wir die Winkelgeschwindigkeit
von -3.6°/Tag bestitigt, bei einer Nei-
gung von 1=63.4° ist die Drehung etwa
halb so gross, bei 1=90° kommt die Kno-
tendrehung zum  Stillstand (was
iibrigens aus Symmetriegriinden ein-
leuchtend ist). Bei Satelliten mit einer
Neigung 7>90° dreht sich der Knoten
vorwirts. Letztere Eigenschaft wird
iibrigens von Raumfahrtagenturen zum
Erzielen sogenannter sonnensynchro-
ner Bahnen ausgenutzt: Die Neigung
wird so gewihlt, dass die Bahnebene in
Bezug auf die Sonne immer den gleichen
Winkel einnimmt.

Figur 22 zeigt, dass auch die Periga-
umsdrehung neigungsabhingig ist. At-
traktiv ist insbesondere der Umstand,
dass diese Drehung bei i=63.4° zum
Stillstand kommt. Diese Aussage
stimmt fiir alle Halbachsen und Exzent-
rizitdten. Die Neigung wird deshalb (vol-
lig unzutreffend) kritische Neigung ge-
nannt. Immerhin hat diese Eigenschaft
eine wichtige praktische Bedeutung.
Bringt man z.B. einen Satelliten mit

Fig. 21: Stérungen im Knoten durch die
Abplattung bei verschiedenen Neigungen.

Fig. 20: Stérungen des Perigdumsabstandes
durch die Abplattung .

grosser Exzentrizit e in eine Umlauf-
bahn mit dieser Neigung und setzt das
Perigdum auf w=-90° (also in 63.4° stid-
liche Breite), hélt sich dieser Satellit die
meiste Zeit iiber der Nordhalbkugel auf.
Russische Kommunikationssatelliten
nutzen diese Eigenschaft aus. Australi-
en konnte durch eine sinngemésse An-
wendung auch von der kritischen Nei-
gung Gebrauch machen.

Es ist interessant, dass die Abplat-
tung nur sehr kleine langperiodische
Storungen verursacht. Langperiodische
Sorungen existieren und werden
insbesondere von lingenabhingigen
Termen verursacht. Figur 23 zeigt sol-
che Storungen in der Exzentrizitit bei
Beriicksichtigung aller Terme bis und
mit Grad und Ordnung 4. Dargestellt
werden die mittleren Storungen in der
Exzentrizitit {iber einen Zeitraum von
zwei Jahren. Das realistische Beispiel
ist in roter Farbe wiedergegeben, das
hypothetische, bei dem der Abplat-
tungsterm kiinstlich auf Null gesetzt
wurde, in griiner Farbe. Die rote Kurve
zeigt, dass die Storungen im Allgemei-
nen kleine Amplituden aufweisen.
Ausnahmsweise konnen diese gross
werden, wenn Umlaufszeit und Rotati-
onsperiode der Erde durch ein Verhélt-
nis kleiner ganzer Zahlen ausgedriickt
werden konnen (was im vorliegenden
Beispiel nicht der Fall ist).

Mit Simulationen kann man auch
Fragen der Art «was wire, wenn ...»
stellen. Die griine Kurve beantwortet

Fig. 22: Stérungen im Perigdum durch die
Abplattung bei verschiedenen Neigungen .
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die Frage «was wire, wenn die Abplat-
tung der Erde gleich Null wére, die tibri-
gen Terme des Potentials jedoch unver-
andert blieben?» Merkwiirdigerweise
stellt man fest, dass in diesem hypothe-
tischen Fall die Storungen in der Exzen-
trizitdt vergleichsweise riesig wiirden.
Das Beispiel zeigt eindriicklich, dass die
Abplattung der Erde eine stabilisieren-
de Wirkung hat: Ganz offensichtlich be-
wirkt die «schnelle» Rotation der Bahn-
ebene eine ebenso schnelle Anderung
der Storgeometrie, was zu einer ganz
wesentlichen Abschwichung der Stor-
einfliisse der hoheren Terme des Erd-
gravitationsfeldes beitragt.

Fig. 23: Stérungen in der Exzentrizitdt (ber
zwei Jahre infolge der Terme héherer
Ordnung (mit und ohne Cyq).
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Nicht-gravitative Storungen sind bei
der Satellitenbewegung von grosser Be-
deutung. Figur 24 gibt ein Beispiel. Dar-
gestellt werden die Storungen des Peri-
gaums und Apogidums einer Satelliten-
bahn in einer mittleren Hohe von ca. 700
km mit einer Exzentrizitdt von e=0.05.
(Man kann die Storungen in diesen Gros-
sen berechnen aus den Stérungen in den
Bahnelementen a und e.) Wéahrend die
Perigiumshohe nur leicht abnimmt,
kommt das Apogdum vergleichsweise
«rasant» (mit einer Geschwindigkeit von
etwa 21 m/Tag) herunter. Ganz offen-
sichtlich wird die Bahn immer kreisfor-
miger. Dieser Effekt wird tatsichlich be-
obachtet —und er ist einfach zu erkléiren:
Bei einer Halbachse von a=7100 km und
einer Exzentrizitit von e=0.05 liegt das
Apogédum um 2ae= 710 km hoher als das
Perigium. Nun &dussert sich der Luftwi-
derstand durch eine Bremsung in Bewe-
gungsrichtung. Die Bremsung ist propor-
tional der Dichte der Restatmosphire in
der Hohe des Satelliten. Diese Dichte ist
hohenabhingig — sie nimmt exponentiell
mit der Hohe ab. Das heisst aber, dass wir
bei einem Satelliten méssiger Exzentrizi-
tat annehmen diirfen, dass nur in der
Nihe des Perigiums eine wesentliche
Bremsung stattfindet. Da im Perigaum
der Bremseffekt senkrecht zum Radius-
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Fig. 24: Stérungen im Perigdum und
Apogédum infolge des Luftwiderstandes.

vektor (also normal zum Ortsvektor des
Perihels) steht, kann dessen Hohe durch
den Luftwiderstand kaum geindert wer-
den. Hingegen bewirkt die Abnahme der
Geschwindigkeit im Perigdum, dass der
Satellit weniger weit nach aussen ge-
schleudert werden kann: Die Apogdums-
hohe nimmt ab. Es ist also quasi ein Na-
turgesetz, dass die Bahnen von Satelliten
in tiefen Umlaufbahnen immer kreisfor-
miger werden. Ist die Bahn schliesslich
fast kreisférmig, ist de facto «jeder Punkt
ein Perihel» und es kann nur noch die
Halbachse abnehmen, was schliesslich
zum Absturz des Satelliten fiihrt.

Riickblick und
Zusammenfassung

Wir haben gezeigt, dass aus Planeten-
und Kleinplanetenbahnen sehr viel ausge-
sagt werden kann iiber die Entwicklung
unseres Planetensystems. Wir haben ge-
sehen, dass unser Planetensystem mecha-
nisch von den Planeten Jupiter und Saturn
(und natiirlich von der Sonne) gepragt ist.
Das Studium ihrer Bahnelemente zeigt,
dass ein immerwéhrender Austausch von
Energie und Drehimpuls zwischen ihnen
stattfindet. Im inneren Planetensystem
spielen Venus und Erde eine dhnlich do-
minierende Rolle. Die Entwicklung ihrer
Bahnelemente kann allerdings sinnvoller-
weise nur unter Einbezug des gesamten
Planetensystems studiert werden. Auch
zwischen Venus und Erde findet ein Aus-
tausch von Energie und Drehimpuls statt.
Die «gemeinsam erlittenen» Stérungen
durch die Planeten des dusseren Systems
bewirken zudem grosse Storungen sehr
langer Perioden in Exzentrizitit (und
Bahnebene) der inneren Planeten. Heute
betragt die Exzentrizitit der Erdbahn
etwa e=0.016. Werte bis etwa e=0.07 sind
moglich. Solche vergleichsweise grossen
Anderungen kénnen Klima-relevant sein.
Schliesslich haben wir einige numerische
Experimente zum Thema «Erklirung der
Liicken in der Verteilung der Halbachsen
von Kleinplaneten» durchgefiihrt. Wir ha-
ben gezeigt, dass schon iiber einen relativ
kurzen Zeitbereich von einer Million Jah-

ren massive Storungen in der Exzentrizi-
tit zum Absturz von Kleinplaneten auf die
inneren Planeten Mars und sogar Erde
fiihren konnen.

Wenn wir von Bahnen von Himmels-
korpern sprechen, stellen wir uns
normalerweise die Entwicklung der
sechs oskulierenden Bahnelemente
(siehe Figur 1) vor. Darf man in einem N-
Korperproblem einige der Himmelskor-
per nicht als Massenpunkte nidhern,
miissen wir gleichzeitig fiir jeden dieser
Korper die drei Eulerschen Winkel eines
korperfesten Koordinatensystems mit-
bestimmen. Sind in einem N-Korperpro-
blem alle Koérper von endlicher Grosse,
fiihrt dies zu einer Verdoppelung der Di-
mension des Systems der Bewegungs-
gleichungen. Wir haben einige Resulta-
te anhand des Dreikoérperproblems
Erde-Mond-Sonne vorgestellt.

Abschliessend haben wir einige Ei-
genschaften der Bahnen kiinstlicher
Erdsatelliten vorgestellt, obwohl im Be-
reich Himmelsmechanik des erdnahen
Raumes die Bahnen oft nur Mittel zum
Zweck in sehr komplexen Parameterbe-
stimmungsproblemen sind. Die Néhe-
rung durch Keplersche Bahnen ist im
Allgemeinen schon iiber kurze Zeiten
(wenige Stunden) nicht mehr geniigend.
Die wichtigste Storkraft wird durch die
Abplattung der Erde verursacht, die
beispielsweise die Bahnebenen tiefer
Satelliten um mehrere Grad pro Tag pra-
zedieren ldsst. Wir haben auch darauf
hingewiesen, dass die Bewegungsglei-
chungen kiinstlicher Erdsatelliten
immer nicht-gravitative Storeinfliisse
modellmissig erfassen miissen. Bei Sa-
telliten unter einer Hohe von 1000 km ist
der Luftwiderstand, verursacht durch
die Restatmosphére in diesen Hohen,
von grosser Bedeutung. Der Luftwider-
stand hat die Eigenschaft, die Exzentri-
zitét der Bahnen zu verringern und die
Halbachsen zu verkleinern. Schliesslich
sorgt der Luftwiderstand fiir den Ab-
sturz der Satelliten. Je nach der ur-
spriinglichen Hohe kann dies jedoch ein
sehr langwieriger Prozess sein, der Jahr-
zehnte oder gar Jahrhunderte in An-
spruch nehmen kann.
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