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Grundlagen
Notions fondamentales

The equilibrium points
of Lagrange
Gaston Fischer, Jeremy Tatum, Christian Nussbaum

Résumé: Grâce à Lagrange on sait depuis 1770 que lorsqu'une planète est en
orbite circulaire autour du Soleil, il y a cinq points liés à ce système où, sous
certaines conditions, des objets de très petite masse peuvent se trouver piégés. On
parle aujourd'hui de points d'équilibre de Lagrange. En réalité seul les points L4

et L5, qui sont 60° en avance et 60° en retard sur l'orbite de la planète, ont
vraiment cette propriété. Ce qui d'abord surprend, est que ces points sont des maxima

du potentiel généralisé calculé dans le système de coordonnées en rotation
avec la planète. Si un objet de petite masse se trouve à l'un de ces points, il
cherchera naturellement à s'en éloigner pour aller vers des régions de plus faible
potentiel; mais il sera maintenu dans le voisinage du point par la force de Coriolis,
cette force que l'on perçoit, en plus de la force centrifuge, lorsqu'on essaye de se
déplacer radialement sur un carrousel qui tourne. Les autres points, Li à L3, sont
tous sur l'axe reliant les deux corps majeurs, soit Soleil et planète ou planète et
satellite. Ces points sont des points selles du potentiel et de petits objets, tels
que des astéroïdes, ne peuvent pas y être piégés; mais pour les sondes spatiales
il suffit de petites fusées d'appoint pour les y maintenir pendant de nombreuses
années.

Zusammenfassung: Seit etwa 1770 weiss man dank Lagrange, dass, wenn ein
Planet um die Sonne kreist, es fünf an diesem System gebundene Punkte gibt,
wo unter gewissen Bedingungen Objekte sehr kleiner Masse eingefangen werden

können. Man spricht heute von Lagrange- Gleichgewichtspunkten. In
Wirklichkeit haben nur die Punkte L4 und L5, die auf der Bahn 60° vor und 60° hinter
dem Planeten laufen, diese Eigenschaft. Was zuerst erstaunen mag, ist die Tatsache,

dass an diesen Punkten das im rotierenden Planetensystem berechnete
verallgemeinerte Potential maximal ist. Weilt nun ein kleines Objekt an einem
solchen Punkt, dann will es sich natürlich in Richtung kleinerer Potentialwerte
bewegen, wird dann aber durch die Corioliskraft (die Kraft, die man zusätzlich
zur Zentrifugalkraft fühlt, wenn man sich auf einer rotierenden Drehscheibe
radial bewegen will) in der Umgebung des Punktes gehalten. Die drei ersten Punkte,

Li bis L3, sind alle auf der Achse, zwischen den zwei Hauptkörpern, also auf
der Geraden zwischen Sonne und Planet, oder entsprechend zwischen einem
Planeten und einen seiner Satelliten. Diese Punkte sind Sattelpunkte des Potentials,

und kleine Objekte wie Asteroide können sie nicht einfangen. Bei
Raumsonden genügen jedoch kleine Bordraketen, um diese in der Umgebung von L,
bis L3 über mehrere Jahre zu halten.

1. Introduction
In a recent paper of this review [1]

some of the numerous gravitational
resonances that occur in the solar system
have been described. Among these
some of the most remarkable are the
resonances among the Trojan satellites
that revolve around the Sun near the
orbit of Jupiter, as they librate around the
L4 and L5 Lagrange equilibrium points of
that planet's path.

As is well known, the three-body
problem can probably not be resolved
analytically. But the somewhat simpler
case of two heavy objects moving on
circular orbits, while the third has negligible

mass, has been studied by numerous
approximate methods. The analysis of
this problem appears in some modern
textbooks on classical mechanics, a
good example being that of Fowler and
Cassiday [2]. Lagrange showed in 1770
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equilateral triangles with a common
base and are therefore often called
equilateral points. As will be discussed
later, stable libration in the vicinity of L4

or L5 is possible only if the mass ratio of
the two large bodies exceeds 24. 96.

Assume now that the larger body, for
example a planet, has mass Mh while a
secondary body at a distance a, for
example a satellite, has the smaller
mass M2. We introduce the mass ratio q

M\ / M2 > 1 and place ourselves in the
co-ordinate frame where the two main
bodies are at rest, as shown in Fig. 2.

The potential at point P(xa, ya) involves
the gravitational potentials of M\ and
M2, but we must also take care of the
fact that in the rotating reference frame
chosen the small mass at P will
experience a centrifugal force. This effective
potential therefore comprises three
terms:

V -
GM,

(x +

GM,

q + 1
y + r

(X - Y+ r' +1

G (Mj + M2) • (x2 + v 2)

(1)

2 • a

The first two terms represent the
gravitational potentials of the main
bodies, whereas the third describes the
centrifugal force experienced by the
small mass at P as it is rotating around
the barycentre. This takes the form

[3] that under these circumstances there

are five singular points, labelled L4 to
L5, where the gradient of the potential
function locally vanishes. L4 to L3 are
saddle points of the potential, whereas
L4 and L5 are maxima. The surprising
thing is that under special conditions,
very small bodies can be trapped in the
vicinity of L4 and L5, and these two
points then become libration centres.
Graph (a) of Fig. 1 refers to the situation
where the two bodies have a mass ratio
of 5 to 1, and in graph (b) that ratio is
100, close to 81, the value for the Earth-
Moon system. The first three points are
all located on the straight line passing
through the two main objects and are
often referred to as co-linaer points. L4

and L5 on the other hand, are leading
and trailing the lighter of the main
bodies by 60° on its orbit around the heavier

one. These last two points and the
two main bodies thus form a pair of

~^co2r2 where r |x2«2 +y2a2J'^2

and with Kepler's law,

G (M, + M2)
CO

W

aJ

Now let

a V

G(M! + M2)

With a little algebra we then get

1

(2)

(3)

(4)

W=~-

[(i+*(?+i))~ + OTî+i))'
l'A

(q-x(q+l))2 + (y(? +
l))2l/'2 2-j-RV (5)

W is the dimensionless ratio of the
potential V to

G{MX + Mj
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Fig. 1. Contours of constant potential for the simplified three-body problem of Lagrange.
There are five points, to L5, where the tangential plane to the potential is horizontal. These

points are called equilibrium points. Here they are numbered according to increasing

potential values (cf. Table 1). The first three are saddle points whereas L4 and Ls are maxima.

Under special conditions bodies of negligible mass can orbit L4 and Ls and these points then

become libration centres. Graph (a) refers to the situation where the two heavy bodies have a

mass ratio of 5, whereas (b) refers to a ratio of 100. The first three points are all located on the

straight line passing through the two main objects and are often referred to as co-linear

points. L4 and Ls are leading and trailing the lighter of the main bodies by 60°. With Mj and

M2 they form equilateral triangles and are therefore often called equilateral points. In graph
(a) the potential values at Li and L2 are very similar and this leads to pairs of very close

contours. Stable librations around L4 and Ls are possible only if the mass ratio of the two large
bodies exceeds 24.96. (see also Fig. 3)

2. Position
of the equilibrium points
The locations of the five equilibrium

points are obtained from the
zeros of the first derivatives of W given
by Eq. (5) above. We shall not give
details of this calculation which can, in
fact, be done in several different ways,
but restrict ourselves to writing the
results. The equilateral points have
coordinates given exactly by the
corresponding formulae of Table 1. The
co-linear points, on the other hand,
cannot be given in a closed analytical
form, but must be derived numerically
from equations of a higher degree. To
lowest order in the mass ratio q of the
two major bodies, the co-linear
co-ordinates can be approximated with the
formulae also given in Table 1. It is
seen that these approximations are
almost perfect for L3 when q > 5. They
are not as good for L2 and quite poor
for Li, especially at low values of the
mass ratio.

Fig. 2 illustrates the co-ordinate system

used for the case of a mass ratio q
5. It gives the positions of the major
masses My and M2 and of the five
equilibrium points. The separation a
between the two major bodies is the unit
of distance and the five equilibrium
points have the co-ordinates given In
Table 1. This Table also gives the potential

values W expressed in the dimen-
sionless units of Eq. (5). We note that
the lowest equilibrium point potential
occurs at Li and increases progressively

through L2 and L3, to become highest
at L4 and L5. This progression can also
be seen in Fig. 1 and 3, which both give
a representation of the potential in the
orbital plane.

3. The co-linear equilibrium
points L1f l_2i and L3

As said above, the location of the
equilibrium points corresponds to the
zeros of the first derivatives of the
potential W. With the second derivatives
we can then distinguish between saddle
points and extrema. Li to L3 turn out to
be saddle points and are all located on
the x-axis. Since this is an axis of
symmetry the first derivative with respect to
co-ordinate y vanishes everywhere on
this axis. Any profile parallel to the y-
axis is therefore extremal when it crosses

the x-axis, and as seen in Fig. 1 and
3, all these extrema are in fact minima.
The saddle points therefore exhibit
maxima of the potential W when one
moves along the co-linear x-axis, as

seen in Fig. 4 for q 100.

4. The equilateral libration
points L4 and L5

As was already noted, L4 and L5 are
locations where the potential is at a

maximum, as shown in Fig. 4 and 5. At
first it may seem surprising that it is
precisely around the potential maxima that
small bodies can librate. This is a
consequence of the Coriolis force.

Let us imagine a small asteroid of
mass to, initially located at L4 or L5. This
mass will begin sliding down from the
potential maximum. As it does so, the
Coriolis force starts to act on the asteroid.

This force is given by

Fc= + 2m[vx(o) (6)

where v is the velocity with respect
to the co-rotating co-ordinate system
ando") is the angular velocity of this rotating

system with respect to an inertial
reference frame. The Coriolis force
increases with the distance and leads the
asteroid into a complicated tadpole
orbit [4] around the libration point. Cornish

[5] suggests a picturesque analogy
with the forces acting on air masses that
rush into a low pressure system and begin

to rotate because of the Coriolis
forces, thus forming a stable vortex [6].
The rotation of the Earth clearly plays a

major role in the tornado formation and
the vortices always curl in the same
direction in a given hemisphere, anti-clockwise

when seen from above in the
northern hemisphere, clockwise in the
south. But the analogy is restricted to
this action of the Coriolis force: the air
masses that rush into the tornado begin
at the ground with a large kinetic energy

and then move upwards against
gravity, exchanging kinetic for potential
energy. The asteroid that slides off an L4

or L5 libration point starts its journey
with a kinetic energy that increases
from zero, being traded for potential
energy

It is, of course, quite unlikely that an
asteroid should, by chance, find itself at
rest at an L4 or L5 libration centre to begin

moving into a tadpole orbit. What
will generally happen is that an asteroid
may come shooting near a libration
point. If it has an angular velocity of the
appropriate size and direction, it will get
trapped into a tadpole orbit. This
explains why all the asteroids orbiting
around L4 and L5 Lagrange libration
points have tadpole orbits with angular
velocities of the same sign. These angular

velocities are all retrograde with
respect to the orbit of the secondary body
around the major one [4].

14 ORION ^2002
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Fig. 2. Co-ordinate system chosen to derive the potential function. This system is fixed with
respect to the barycentre, with which it is co-rotating. A mass ratio q M1/M2 5 was chosen
for this particular graph.

The potential can easily be extended
to the three dimensions of space with an
appropriate co-ordinate z, Vfx.yj becoming

V(x,y,z). It can then be shown that
for motions perpendicular to the (x,y) -

plane, an asteroid oscillates up and
down with the same period as the
secondary body's orbit, as one would in
fact expect.

5. The «halo orbits» around
the Li, L2, and L3 co-linear
points
It can also be shown that even with

the Coriolis force the Lj to L3 co-linear
points of Lagrange cannot become true
libration centres. This is not always
clearly stated. As an example, the
interplanetary NASA probe USEE 3, launched

on 12 August 1978 was sent on
what has been named a halo orbit
around Lb to observe the Sun; but it
could stay in orbit around that point for
four and a half years only with the help
of on-board rocket motors. At the end of
1982ISEE 3 underwent a series of
complicated manoeuvres and was diverted
toward the exploration of several
comets, among these comet Halley1'.
Quite recently, in August 2001, NASA
sent the probe GENESIS on a similar
halo orbit around Li where it should

11 More information on ISEE 3 is available on
WEB site
http://map.gsfc. nasa. gov/m_m m/
ob_techorbit1 .html

potential surface includes the effect of
the gravitational attraction of the two
bodies M\ and M2, as well as the centrifugal

force that always exists in a rotating

reference frame. A third body of
negligible mass m at another point will
experience an acceleration that is equal
to the negative of the gradient of the
potential surface at that other point.

However, whenever a body moves,
with velocity v relative to a rotating
reference frame, it experiences, as well as
the centrifugal force, the Coriolis force,
which is described by Eq. (6) and is at
right angles to the velocity v. Thus, bearing

in mind that the variables x and y
are dimensionless quantities, and that
real distances are xa, ya, etc. (cf. Sec.
1), the equations of motion in the x-y
plane are:

y:

\ ^ V + 2 CO ya2 dx

W--2 COX
dy

(7)

(8)

stay for some five years, collecting
particles from the solar wind and return
these to Earth for analysis.

6. Stability of the L4 and L5

libration points
We mentioned in Sec. 1 that orbits

around the equilateral Lagrangian
points are stable only if the mass ratio q

MfM-2 is greater than 24.96. To
demonstrate this, we shall have to consider

the equation of motion of the asteroid

in the co-rotating co-ordinate
system.

The surface given by Eq. (1) or Eq.
(5), and illustrated in Fig. 1 and 3, represents

the potential function in which the
asteroid moves with respect to a
co-rotating co-ordinate system in which the
line joining Mi and M2 is stationary. The

We have to calculate the derivatives
of V in the vicinity of the Lagrangian
equilateral points. At these points the
derivatives are of course zero, but near
these points they can be approximated
by Taylor's theorem

If - (1_X(

§f=M

d2V
dx2

d2V
dy2

(9)

(10)

where the second derivatives are to
be evaluated at the equilateral points
and are not zero. Clearly some algebra is
required in order to evaluate the derivatives

from Eq. (1), but when this has
been duly carried out the equations of
motion in the vicinity of the Lagrangian
points become

Ç-2cor] co:

ij + 2coi; co2

Vvfci)
4 4(4 + 1)

^27(4-1)
4(4+1) 4

(11)

(12)

Fig. 3. Photograph of a model of the
Lagrange potential function fora mass ratio
q 5. Note the infinitely deep troughs at the
locations of the two major bodies and the
decrease as the inverse squared distance far
away from the barycentre. In this
photograph the major mass M, is at the right
of the secondary one, contrary to Fig. I and
2, where it is at the left. (Image courtesy of
David D. Balam)

ORION ^2002 15
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Here q x-xq and r| y-ya] in other
words we have shifted the origin of
coordinates from the barycentre to an
equilateral Lagrangian point.

In order now to find the condition
for stable orbits, we have to look for
periodic solutions around the equilateral
points; this means that we seek simple
harmonic solutions of the form l=-n-• £

and fj -n2 y. The first time integrals of
these are (;=in£, and v < « V where i is
the imaginary unit. When these are
substituted into Eq. (11) and (12), we obtain

n2+|ffl2k+
4 0+1

7/ 0

2ani- JjLitl
4 U+l

h2 + T
ffl2 m

(13)

(14)

Non-trivial solutions are possible
only if the determinant of the coefficients
of ç and T) is zero, which results in

l- co2 n2 +
27 q ûT

-1.6

-1.7

-1.8

W -L9

-2

-2.1

-2.2

-2.3

-2.4

.3

L1 12

\\
\

\

\
\

Fig. 4. Plot of the potential function W along the x-axis fora mass ratio q M1/M2= 100.

Because of the fairly high mass ratio Mj is located close tox 0and M2 close tox= 1. At these

positions the potential tends to - °°. Note that 1/1/(1;) < W(L2) < W(L2). (cf. Table 1)

0 (15)
4(4 + 1)z

This is a quadratic equation in n2,

where n is the angular frequency of the
orbit around the equilateral point. For
real solutions, according to the theory
of quadratic equations, b2 > 4 a c, which
results in the inequality
q2 -25 q + 1 > 0 (16)

and the solutions to this are q > 24.96 or
q < 1/24.96, which is what we set out to
prove.

This is easily satisfied for the Sun
Jupiter system (q 1047.5) and for the
Earth-Moon system (q 81). It has been
suggested from time to time that emission

lines seen in the spectrum of binary

stars with mass ratios in the range of
one to five might originate from gas
accumulating at the Lagrangian points of
these systems; but this cannot be so, for
in that case orbits around the Lagrangian

points are unstable.
If the potential had the circular

symmetry implied by the developments
leading to Eq. (15), we would be led toward
two independent solutions, with a short
and a long orbital period, both in the shape

of circular orbits. However, the potential

in the vicinity of the equilateral points
has the shape of narrow curved ridges
and the actual solutions therefore take
the much more complex form of tadpole
orbits [4] mentioned before.

Fig. 5. (a) Plot of the potential function W

across the line from L4 to Ls fora mass ratio

q= 100. (b) Similar plot along lines through L4

orLs parallel to the x - axis. Note that the

potential is the highest ofall at L4 and Ls. (cf.

Table I)
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X y q 5 q 24.96 q =100

L, x — 1 —
1

_3 (<7 +1) _

y 0
x 0.491889
(x 0.618429)

>- 0
W=- 1.874495

x 0.744935
(x= 0.765834)

y=0
W=- 1.682581

x 0.848624
(x 0.851115)

y 0
W=- 1.583321

+2 X 1 +
1

3-(<7 + l)

X
y 0

x 1.271410
(x 1.381571)

><=0
W=- 1.768170

x 1.214439
(:x 1.234167)

>< 0

W=- 1.657078

x= 1.146320
(x= 1.148886)

+ 0
W=- 1.576726

+3
X 1

5

12-(<7 + 1) y 0

x -1.069165
(x - 1.069144)

><=0
W=- 1.582524

x -1.016047
(x -1.016050)

>< 0
W=- 1.519239

x= 1.004125
(x =-1.004125)

y 0
W=- 1.504949

u x-1 (<7_1)
2 (<7 + 1) + +

x 0.333333

y 0.866025
1+=- 1.430556

x 0.461479

y 0.866025
W=- 1.481482

x 0.490099
>< 0.866025
W=~ 1.495099

L5
x-1 (<?_1)

2 (<7 + 1)

VJ
>,=-_

x 0.333333

y - 0.866025
W=- 1.430556

x 0.461479
y - 0.866025
W=- 1.481482

x 0.490099
>< -0.866025
W=- 1.495099

Table 1: Co-ordinates of the Lagrange equilibrium points and potential values expressed in
terms of Was defined in the text, for mass ratios q of 5, 24.96and lOOforthe two main
bodies. The formulae for co-ordinate x of the co-linear points L /, L2 and L3 are only first order
approximations, with the corresponding figures given in brackets. The unbracketted figures,
on the other hand, are the true co-ordinates of these points.
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