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NOTIONS FONDAMENTALES
The equilibrium points
of Lagrange

GasTON FiscHEr, JEREMY TaTuM, CHRIsTIAN NUSSBAUM

Résumé: Grace a Lagrange on sait depuis 1770 que lorsqu’une planéte est en
orbite circulaire autour du Soleil, il y a cing points liés a ce systéme ou, sous cer-
taines conditions, des objets de trés petite masse peuvent se trouver piégés. On
parle aujourd’hui de points d'équilibre de Lagrange. En réalité seul les points L4
et Ls, qui sont 60° en avance et 60° en retard sur |'orbite de la planéte, ont vrai-
ment cette propriété. Ce qui d'abord surprend, est que ces points sont des maxi-
ma du potentiel généralisé calculé dans le systéme de coordonnées en rotation
avec la planete. Si un objet de petite masse se trouve a I'un de ces points, il cher-
chera naturellement a s’en éloigner pour aller vers des régions de plus faible po-
tentiel; mais il sera maintenu dans le voisinage du point par la force de Coriolis,
cette force que I'on percoit, en plus de la force centrifuge, lorsqu’on essaye de se
déplacer radialement sur un carrousel qui tourne. Les autres points, L; a Ls, sont
tous sur I'axe reliant les deux corps majeurs, soit Soleil et planéte ou planéte et
satellite. Ces points sont des points selles du potentiel et de petits objets, tels
que des astéroides, ne peuvent pas y étre piégés; mais pour les sondes spatiales
il suffit de petites fusées d’appoint pour les y maintenir pendant de nombreuses
années.

Zusammenfassung: Seit etwa 1770 weiss man dank Lagrange, dass, wenn ein
Planet um die Sonne kreist, es funf an diesem System gebundene Punkte gibt,
wo unter gewissen Bedingungen Objekte sehr kleiner Masse eingefangen wer-
den kénnen. Man spricht heute von Lagrange- Gleichgewichtspunkten. In Wirk-
lichkeit haben nur die Punkte L4 und Ls, die auf der Bahn 60° vor und 60° hinter
dem Planeten laufen, diese Eigenschaft. Was zuerst erstaunen mag, ist die Tatsa-
che, dass an diesen Punkten das im rotierenden Planetensystem berechnete ver-
allgemeinerte Potential maximal ist. Weilt nun ein kleines Objekt an einem sol-
chen Punkt, dann will es sich naturlich in Richtung kleinerer Potentialwerte
bewegen, wird dann aber durch die Corioliskraft (die Kraft, die man zusatzlich
zur Zentrifugalkraft fuhlt, wenn man sich auf einer rotierenden Drehscheibe ra-
dial bewegen will) in der Umgebung des Punktes gehalten. Die drei ersten Punk-
te, Ly bis Ls, sind alle auf der Achse, zwischen den zwei Hauptkérpern, also auf
der Geraden zwischen Sonne und Planet, oder entsprechend zwischen einem
Planeten und einen seiner Satelliten. Diese Punkte sind Sattelpunkte des Poten-
tials, und kleine Objekte wie Asteroide kénnen sie nicht einfangen. Bei Raum-
sonden gentigen jedoch kleine Bordraketen, um diese in der Umgebung von L,
bis L3 Uber mehrere Jahre zu halten.

1. Introduction [3] that under these circumstances the-

In a recent paper of this review [1]
some of the numerous gravitational re-
sonances that occur in the solar system
have been described. Among these
some of the most remarkable are the re-
sonances among the Trojan satellites
that revolve around the Sun near the or-
bit of Jupiter, as they librate around the
Ly and L Lagrange equilibrium points of
that planet’s path.

As is well known, the three-body
problem can probably not be resolved
analytically. But the somewhat simpler
case of two heavy objects moving on cir-
cular orbits, while the third has negligi-
ble mass, has been studied by numerous
approximate methods. The analysis of
this problem appears in some modern
textbooks on classical mechanics, a
good example being that of Fowler and
Cassiday [2]. Lagrange showed in 1770

re are five singular points, labelled L; to
Ls, where the gradient of the potential
function locally vanishes. L; to Ls are
saddle points of the potential, whereas
Ly and Ls are maxima. The surprising
thing is that under special conditions,
very small bodies can be trapped in the
vicinity of L4 and Ls, and these two
points then become libration centres.
Graph (a) of Fig. 1 refers to the situation
where the two bodies have a mass ratio
of 5 to 1, and in graph (b) that ratio is
100, close to 81, the value for the Earth-
Moon system. The first three points are
all located on the straight line passing
through the two main objects and are
often referred to as co-linaer points. Ly
and Lz on the other hand, are leading
and trailing the lighter of the main bo-
dies by 60° on its orbit around the hea-
vier one. These last two points and the
two main bodies thus form a pair of

equilateral triangles with a common
base and are therefore often called equi-
lateral points. As will be discussed la-
ter, stable libration in the vicinity of L,
or L is possible only if the mass ratio of
the two large bodies exceeds 24. 96.

Assume now that the larger body, for
example a planet, has mass M;, while a
secondary body at a distance a, for
example a satellite, has the smaller
mass M,. We introduce the mass ratio g
= M;/ M, > 1 and place ourselves in the
co-ordinate frame where the two main
bodies are at rest, as shown in Fig. 2.
The potential at point P(xa, ya) involves
the gravitational potentials of M; and
M, but we must also take care of the
fact that in the rotating reference frame
chosen the small mass at P will expe-
rience a centrifugal force. This effective
potential therefore comprises three
terms:

GM,
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The first two terms represent the
gravitational potentials of the main bo-
dies, whereas the third describes the
centrifugal force experienced by the
small mass at P as it is rotating around
the barycentre. This takes the form

—%w2r2, where r=()c2z12 +_\'2(12)1/2 E))

and with Kepler's law,

G M, +M,)
w? = —1a3 2 (3)
Now let
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With a little algebra we then get
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W is the dimensionless ratio of the po-
tential Vto

G (M, + M,)
a
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2. Position
of the equilibrium points

The locations of the five equili-
brium points are obtained from the ze-
ros of the first derivatives of W given
by Eq. (5) above. We shall not give de-
tails of this calculation which can, in
fact, be done in several different ways,
but restrict ourselves to writing the re-
sults. The equilateral points have co-
ordinates given exactly by the corres-
ponding formulae of Table 1. The
co-linear points, on the other hand,
cannot be given in a closed analytical
form, but must be derived numerically
from equations of a higher degree. To
lowest order in the mass ratio g of the
two major bodies, the co-linear co-or-
dinates can be approximated with the
formulae also given in Table 1. It is
seen that these approximations are al-
most perfect for Ly when q > 5. They
are not as good for Ly and quite poor
for Ly, especially at low values of the
mass ratio.

Fig. 2 illustrates the co-ordinate sys-
tem used for the case of amass ratio q =
5. It gives the positions of the major
masses M and My and of the five equi-
librium points. The separation a be-
tween the two major bodies is the unit
of distance and the five equilibrium
points have the co-ordinates given In
Table 1. This Table also gives the poten-
tial values W expressed in the dimen-
sionless units of Eq. (5). We note that
the lowest equilibrium point potential
occurs at L; and increases progressive-
ly through Ly and Lg, to become highest
at Ly and Ls. This progression can also
be seen in Fig. 1 and 3, which both give
a representation of the potential in the
orbital plane.

3. The co-linear equilibrium
points L Lo, and L3

As said above, the location of the
equilibrium points corresponds to the
zeros of the first derivatives of the po-
tential W. With the second derivatives
we can then distinguish between saddle
points and extrema. L; to Lg turn out to
be saddle points and are all located on
the x-axis. Since this is an axis of sym-
metry the first derivative with respect to
co-ordinate y vanishes everywhere on
this axis. Any profile parallel to the y-
axis is therefore extremal when it cros-
ses the x-axis, and as seen in Fig. 1 and
3, all these extrema are in fact minima.
The saddle points therefore exhibit
maxima of the potential W when one
moves along the co-linear x-axis, as
seen in Fig. 4 for q = 100.

GRUNDLAGEN
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Fig. 1. Contours of constant potential for the simplified three-body problem of Lagrange.
There are five points, L; to Ls, where the tangential plane to the potential is horizontal. These
points are called equilibrium points. Here they are numbered according to increasing
potential values (cf. Table 1). The first three are saddle points whereas Ly and Ls are maxima.
Under special conditions bodies of negligible mass can orbit Ly and Ls and these points then
become libration centres. Graph (a) refers to the situation where the two heavy bodies have a
mass ratio of 5, whereas (b) refers to a ratio of 100. The first three points are all located on the
straight line passing through the two main objects and are often referred to as co-linear
points. Lyand Ls are leading and trailing the lighter of the main bodles by 60°. With M; and
M, they form equilateral triangles and are therefore often called equilateral points. In graph
(a) the potential values at L; and L, are very similar and this leads to pairs of very close
contours. Stable librations around L4 and Ls are possible only if the mass ratio of the two large

bodies exceeds 24.96. (see also Fig. 3)

4. The equilateral libration
points L, and Ls

As was already noted, Ly and L are
locations where the potential is at a
maximum, as shown in Fig. 4 and 5. At
first it may seem surprising that it is pre-
cisely around the potential maxima that
small bodies can librate. This is a conse-
quence of the Coriolis force.

Let us imagine a small asteroid of
mass m, initially located at Ly or Ls. This
mass will begin sliding down from the
potential maximum. As it does so, the
Coriolis force starts to act on the aste-
roid. This force is given by

(6)

where v is the velocity with respect
to the co-rotating co-ordinate system
and is the angular velocity of this rota-
ting system with respect to an inertial
reference frame. The Coriolis force in-
creases with the distance and leads the
asteroid into a complicated tadpole or-
bit [4] around the libration point. Cor-
nish [5] suggests a picturesque analogy
with the forces acting on air masses that
rush into a low pressure system and be-
gin to rotate because of the Coriolis for-
ces, thus forming a stable vortex [6].
The rotation of the Earth clearly plays a

é=+2m@X5),

major role in the tornado formation and
the vortices always curl in the same di-
rection in a given hemisphere, anti-cloc-
kwise when seen from above in the nor-
thern hemisphere, clockwise in the
south. But the analogy is restricted to
this action of the Coriolis force: the air
masses that rush into the tornado begin
at the ground with a large kinetic ener-
gy and then move upwards against gra-
vity, exchanging kinetic for potential
energy. The asteroid that slides off an Ly
or Ls libration point starts its journey
with a Kinetic energy that increases
from zero, being traded for potential
energy

It is, of course, quite unlikely that an
asteroid should, by chance, find itself at
rest at an L4 or L libration centre to be-
gin moving into a tadpole orbit. What
will generally happen is that an asteroid
may come shooting near a libration
point. If it has an angular velocity of the
appropriate size and direction, it will get
trapped into a tadpole orbit. This ex-
plains why all the asteroids orbiting
around Ly and L; Lagrange libration
points have tadpole orbits with angular
velocities of the same sign. These angu-
lar velocities are all retrograde with res-
pect to the orbit of the secondary body
around the major one [4].

14
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Fig. 2. Co-ordinate system chosen to derive the potential function. This system is fixed with
respect to the barycentre, with which it is co-rotating. A mass ratio g = M;/M, = 5 was chosen

for this particular graph.

The potential can easily be extended
to the three dimensions of space with an
appropriate co-ordinate z, V(x,) beco-
ming V(x,y,2). It can then be shown that
for motions perpendicular to the (x,y) -
plane, an asteroid oscillates up and
down with the same period as the se-
condary body’s orbit, as one would in
fact expect.

5. The «halo orbits» around
the L4, Ly, and L3 co-linear
points

It can also be shown that even with
the Coriolis force the L; to Ls co-linear
points of Lagrange cannot become true
libration centres. This is not always
clearly stated. As an example, the inter-
planetary NASA probe ISEE 3, laun-
ched on 12 August 1978 was sent on
what has been named a halo orbit
around Lj, to observe the Sun; but it
could stay in orbit around that point for
four and a half years only with the help
of on-board rocket motors. At the end of
1982 ISEE 3 underwent a series of com-
plicated manoeuvres and was diverted
toward the exploration of several
comets, among these comet HalleyV.
Quite recently, in August 2001, NASA
sent the probe GENESIS on a similar
halo orbit around L; where it should

' More information on ISEE 3 is available on
WEB site
http://map.gsfc.nasa.gov/m_mm/
ob_techorbit1.html

stay for some five years, collecting par-
ticles from the solar wind and return
these to Earth for analysis.

6. Stability of the L, and Ls
libration points

We mentioned in Sec. 1 that orbits
around the equilateral Lagrangian
points are stable only if the mass ratio q
= My/M, is greater than 24.96. To de-
monstrate this, we shall have to consi-
der the equation of motion of the aste-
roid in the co-rotating co-ordinate
system.

The surface given by Eq. (1) or Eq.
(5), and illustrated in Fig. 1 and 3, repre-
sents the potential function in which the
asteroid moves with respect to a co-ro-
tating co-ordinate system in which the
line joining M; and M, is stationary. The

potential surface includes the effect of
the gravitational attraction of the two
bodies M; and M, as well as the centri-
fugal force that always exists in a rota-
ting reference frame. A third body of ne-
gligible mass m at another point will
experience an acceleration that is equal
to the negative of the gradient of the po-
tential surface at that other point.

However, whenever a body moves,
with velocity v relative to a rotating re-
ference frame, it experiences, as well as
the centrifugal force, the Coriolis force,
which is described by Eq. (6) and is atri-
ght angles to the velocity v. Thus, bea-
ring in mind that the variables x and y
are dimensionless quantities, and that
real distances are xa, ya, etc. (cf. Sec.
1), the equations of motion in the x-y
plane are:

x:—a—za—x—+2a)y s (7)
ﬁ-#%’&m& , 8)

We have to calculate the derivatives
of Vin the vicinity of the Lagrangian
equilateral points. At these points the
derivatives are of course zero, but near
these points they can be approximated
by Taylor’s theorem

AV _ (x-x,) 2V

Ix el ©)
oV _ 2’V
ay 0w 5 (10)

where the second derivatives are to
be evaluated at the equilateral points
and are not zero. Clearly some algebra is
required in order to evaluate the deriva-
tives from Eq. (1), but when this has
been duly carried out the equations of
motion in the vicinity of the Lagrangian
points become

E - v27(¢-1)
{-20n=0? §§+Wn » (11)
3 : V27(g-1)

—w? 9
f+20é=m T+ D) §+4n - (12)

Fig. 3. Photograph of a model of the
Lagrange potential function for a mass ratio
q = 5. Note the infinitely deep troughs at the
locations of the two major bodies and the
decrease as the inverse squared distance far
away from the barycentre. In this
photograph the major mass M is at the right
of the secondary one, contrary to Fig. 1 and
2, where it is at the left. (Image courtesy of
David D. Balam)
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Here § = x—x¢ and m = y—yo; in other
words we have shifted the origin of co-
ordinates from the barycentre to an
equilateral Lagrangian point.

In order now to find the condition
for stable orbits, we have to look for pe-
riodic solutions around the equilateral
points; this means that we seek simple
harmonic solutions of the form &=-n?. &
and 7 =-»2- 1. The first time integrals of
these are é=in& and n=inn, where % is
the imaginary unit. When these are subs-
tituted into Eq. (11) and (12), we obtain

2,302 @q_—l 2p_
(n +4a))§+ 20ni+ q+1)(0 n=0, (13)

=

Wil

2oni V2|47
q+

2 259002
s lco f—(ﬂ +4CD)T]~0 - (14)

Non-trivial solutions are possible
only if the determinant of the coefficients
of § and 1 is zero, which results in

27q 0
4(q+1)°

This is a quadratic equation in n
where n is the angular frequency of the
orbit around the equilateral point. For
real solutions, according to the theory
of quadratic equations, b* > 4 a ¢, which
results in the inequality

g>-25q+1>0 , (16)

and the solutions to this are q > 24.96 or
q < 1/24.96, which is what we set out to
prove.

This is easily satisfied for the Sun-Ju-
piter system (g = 1047.5) and for the
Earth-Moon system (g = 81). It has been
suggested from time to time that emis-
sion lines seen in the spectrum of bina-
ry stars with mass ratios in the range of
one to five might originate from gas ac-
cumulating at the Lagrangian points of
these systems; but this cannot be so, for
in that case orbits around the Lagran-
gian points are unstable.

If the potential had the circular sym-
metry implied by the developments lea-
ding to Eq. (15), we would be led toward
two independent solutions, with a short
and a long orbital period, both in the sha-
pe of circular orbits. However, the poten-
tial in the vicinity of the equilateral points
has the shape of narrow curved ridges
and the actual solutions therefore take
the much more complex form of tadpole
orbits [4] mentioned before.

nt—o*n*+ 0 . (15)

2,

Fig. 5. (a) Plot of the potential function W
across the line from L4 to Ls for a mass ratio
q=100. (b) Similar plot along lines through L4
or Ls parallel to the x — axis. Note that the
potential is the highest of all at Ly and Ls. (cf.
Table 1)
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Fig. 4. Plot of the potential function W along the x-axis for a mass ratio q = M;/M, = 100.
Because of the fairly high mass ratio M is located close to x = 0 and M) close to x = 1. At these
positions the potential tends to - . Note that W(L;) < W(L,) < W(Ls). (cf. Table 1)
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% y q=35 q=24.96 q=100
i Y% x =0.491889 x=0.744935 | x=0.848624
L x:l_[m} y=0 (x=0.618429) | (x=0.765834) | (x=0.851115)
3-(g+D) y=0 y=0 y=0
W=-1874495 | W=-1.682581 | W=-1.583321
' Y x=1271410 | x=1214439 | x=1.146320
L, x=1+l:———:| y=0 (x=1.381571) | (x=1.234167) | (x=1.148886)
3-(g+D y=0 y=0 y=0
W=-1768170 | W=- 1657078 | W=-1.576726
x=-1.069165 | x=-1.016047 | x=1.004125
Ls e g B (x=-1.069144) | (x =-1.016050) | (x =-1.004125)
12-(g+1) y=0 y=0 y=0 y=0
W=-1582524 | W=-1519239 | W=-1.504949
_1 (- J3 | x=0333333 | x=0.461479 | x=0.490099
L4 2 y=+—"| y=0866025 | y=0866025 | y=0.866025
W=-1430556 | W=-1.481482 | W=-1.495099
_1 (g-D J3 | ¥=0333333 | x=0461479 | x=0.490099
Ls T2 g+ Y==—75" | y=-0866025 | y=-0866025 | y=-0.866025
W=-1430556 | W=-1.481482 | W=-1.495099

Table 1. Co-ordinates of the Lagrange equilibrium points and potential values expressed in
terms of W as defined in the text, for mass ratios g of 5, 24.96 and 100 for the two main
bodies. The formulae for co-ordinate x of the co-linear points Ly, L, and L3 are only first order
approximations, with the corresponding figures given in brackets. The unbracketted figures,
on the other hand, are the true co-ordinates of these points.
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