Zeitschrift: Orion: Zeitschrift der Schweizerischen Astronomischen Gesellschaft

Herausgeber: Schweizerische Astronomische Gesellschaft

Band: 60 (2002)

Heft: 312

Artikel: Rund um den Tierkreis

Autor: Bachmann, H.

DOI: https://doi.org/10.5169/seals-898520

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 10.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Rund um den Tierkreis

H. BACHMANN

Tierkreiszeichen und Tierkreissternbilder

Die Ekliptik, auf der die Sonne im Laufe des Jahres umläuft, wurde schon im Altertum vom Frühlingspunkt aus (dem Punkt, wo die Sonne den Himmelsäquator aufsteigend passiert) in 12 gleichgrosse Abschnitte zu 30° eingeteilt, in die sog. Tierkreiszeichen, die nach dem Namen des in ihnen liegenden Sternbildes benannt wurden. In Tabelle 1 ist die geozentrische ekliptikale Länge, kurz die Länge L (der auf der Ekliptik vom Frühlingspunkt aus in Richtung der Sonnenbewegung gemessene Winkel) für die Anfangspunkte der Tierkreiszeichen mit ihren Namen (in Klammern lateinisch) angegeben.

Wegen der Kreiselbewegung der Erdachse weicht der Frühlingspunkt gegenüber den Fixsternen pro Jahr gegen die Sonnenbewegung um etwa 0°,01397 zurück, oder die Fixsterne rücken um ebensoviel gegenüber dem Frühlingspunkt in Richtung der Sonnenbewegung vor, woher sich der Name «Präzession» für diese Bewegung herleitet (nämlich von lat. «praecedere» = vorangehen). Sternbilder längs der Ekliptik (die den sog. Tierkreis oder Zodiacus bilden) rücken deshalb stets langsam vor, so dass sie nicht mehr in den Tierkreiszeichen gleichen Namens liegen. Die Grenzen zwischen diesen Tierkreissternbildern können nicht eindeutig angegeben werden; es sind schon verschiedene Versuche unternommen worden. Die Sternbilder sind zwar offiziell genau gegeneinander abgegrenzt, aber teilweise verzahnen sie sich in der Nähe der Ekliptik; oder dann ergeben sich verschiedene Grenzen, je nach den

in Betracht gezogenen Sterngrössen; zudem ist noch die Präzession in Rechnung zu stellen. Nach einer sorgfältigen Berücksichtigung dieser Faktoren würde ich für die Grenzpunkte der Tierkreissternbilder auf der Ekliptik (Anfangspunkte) für das Jahr 2000 die in der 2. Kolonne von Tabelle 1 aufgeführten Werte vorschlagen.

Der Frühlingspunkt liegt also jetzt im Tierkreissternbild Fische; es geht noch etwa 610 Jahre, bis er ins Sternbild Wassermann eintritt (Beginn des im Musical «Hair» besungenen «Age of Aquarius»; vor etwa 2260 Jahren lag er am Anfang und vor etwa 3010 Jahren in der Mitte des Sternbildes Widder.

Wann passiert die Sonne die Grenzen der Tierkreiszeichen?

Die Zeitabschnitte, die die Sonne zum Durchlaufen eines Tierkreiszeichens braucht, sind nicht genau gleich lang, weil die Erde in ihrer Bahn um die Sonne nicht gleichförmig schnell umläuft. Das hat seinen Grund darin, dass die Erdbahn eine (fast kreisförmige) Ellipse mit der Sonne in einem Brennpunkt ist und die Erde in der Umgebung des Perihels (des sonnennächsten Punkts) nach dem 2. Keplerschen Gesetz schneller und in der Umgebung Aphels (des sonnenfernsten Punkts) langsamer umläuft. Dazu kommt noch die Komplikation, dass das Perihel pro Jahr um etwa 0°,0172 in gleicher Richtung wie die Erde in ihrer Bahn umläuft. Die Zeiten, in denen die Sonne die Grenzen der Tierkreiszeichen passiert, sind in den Horoskopseiten gewisser populärer Zeitschriften nur sehr ungenau angegeben; zudem verändern sie sich von Jahr zu Jahr etwas. Ich möchte hier ein einfaches Verfahren zur Bestimmung dieser Zeitpunkte (und somit auch für die sog. astronomischen Jahreszeiten) für das 20. und 21. Jahrhundert mit einer niedrigen Genauigkeit von etwa einer Viertelstunde angeben.

Dazu berechnete ich für das Jahr ab dem Frühlingsäquinoktium 2000 etwa auf 0^d .001 genau die Daten $D_o(L)$ in Dynamischer Zeit, an denen die Länge der Sonne die Tierkreiszeichengrenzen $L=0^\circ, 30^\circ, 60^\circ$... durchläuft (siehe Tabelle 2). Ferner bedeute J_L die Zeit, die die Sonne braucht, um vom Datum $D_o(L)$ aus wieder zur gleichen Länge L zu gelangen; in derselben Tabelle 2 sind die Differenzen

$$D_1(L) = J_L - 365^d$$
 angegeben.

(Siehe Tabelle 2)

Für die Zeit vom 1. März 1900 bis 28. Febr. 2100 findet man die Daten D(L) der Passagen der Sonne durch die Tierkreiszeichengrenzen wie folgt: n Jahre nach dem Datum $D_o(L)$ (oder bei negativem n vor diesem) ist das entsprechende Datum

$$D(L) = D_0(L) + D_1(L) n - int(n/4).$$

Dabei bedeutet int(n/4) den ganzzahligen Teil von n/4 (also z. B. int(12/4) = 3, int(17/4) = 4; Vorsicht bei negativen Zahlen, z. B. int(-17/4) = -5). Das Resultat ist dann noch auf 2 Dezimalen zu runden.

Beispiel 1. Wann trat die Sonne im Jahr 1938 ins Tierkreiszeichen Wassermann ein? Mit $L=300^\circ$ und n=-63 erhalten wir

$$D(L) = 1938 \text{ Jan. } 20,71$$

(entsprechend etwa 18 Uhr MEZ).

Tabelle 1

Tierkreiszeichen Ste	ernbild (1	ür 2000)
Widder (Aries)	0°	31°,6
Stier (Taurus)	30	52,5
Zwillinge (Gemini)	60	90,0
Krebs (Cancer)	90	118,6
Löwe (Leo)	120	136,8
Jungfrau (Virgo)	150	174,1
Waage (Libra)	180	219,5
Skorpion (Scorpius)	210	240,4
Schütze (Sagittarius)	240	267,4
Steinbock (Capricornu	s) 270	299,4
Wassermann (Aquariu	s) 300	323,5
Fische (Pisces)	330	351,5

Tabelle 2

L	Tierkreiszeichen		D _o (L)	D ₁ (L)	
0°	Widder	2000	März 20,310	0,24237	
30	Stier		April 19,771	0,24207	
60	Zwillinge		Mai 20,736	0,24180	
90	Krebs		Juni 21,068	0,24163	
120	Löwe		Juli 22,522	0,24161	
150	Jungfrau		Aug. 22,816	0,24176	
180	Waage		Sept. 22,717	0,24202	
210	Skorpion		Okt. 23,106	0,24232	
240	Schütze		Nov. 22,004	0,24258	
270	Steinbock		Dez. 21,559	0,24274	
300	Wassermann	2001	Jan. 20,003	0,24275	
330	Fische		Febr. 18,593	0,24262	

Beispiel 2. Wann findet die Sommersonnenwende im Jahr 2009 statt? Mit L = 90° und n = 9 wird

D(L) = 2009 Juni 21,24

(entsprechend etwa 7 3/4 Uhr MESZ).

Bemerkung über höhere Genauigkeit:

Zur Erzielung einer höheren Genauigkeit (von Minuten oder gar Sekunden) müsste man folgende Punkte beachten:

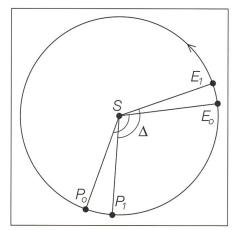
- Die Daten von Tabelle 2 müssten genauer berechnet werden, und in der Formel für D(L) müsste noch ein zusätzliches kleines Glied mit n² zugefügt werden.
- 2. Auch dies würde noch nicht viel genauere Daten ergeben, denn die so berechneten Daten sind ja nur mittlere Daten, d.h. ohne Berücksichtigung der kurzperiodischen Schwankungen. Diese von den Planeten herrührenden kurzperiodischen Störungen können mittels langer Reihen berechnet werden. Das grösste Glied dieser Reihe ist verursacht von der Nutation und bedingt eine Korrektur der mittleren Daten um bis ±0^d,005; das zweite Glied rührt vom Jupiter her (mit Schwankungen bis ±0^d,002).
- 3. Auch die so korrigierten Zeiten bedürften noch einer weiteren Korrektur, denn sie sind in Dynamischer Zeit angegeben. Um die Angaben in Weltzeit zu erhalten, müsste man noch einen Betrag subtrahieren, der von der Unregelmässigkeit der Erdrotation herrührt und im Laufe des 20. Jahrhunderts unregelmässig von etwa 0 auf 1 Minute zugenommen hat, dessen Verhalten in der Zukunft aber nicht vorausgesagt werden kann.

Die astronomischen Jahreszeiten und das tropische Jahr

Die astronomischen Jahreszeiten werden definitionsgemäss begrenzt durch die Zeitpunkte, in denen die Sonnenlänge ein Vielfaches von 90° ist. Sie fallen nicht genau mit den meteorologischen Jahreszeiten zusammen; denn das Nachhinken des jährlichen Temperaturgangs macht nicht 1 1/2 Monate aus, sondern höchstens etwa 1 Monat (der Sommer beginnt ja nicht erst am längsten Tag, sondern im Mittel gegen einen Monat früher).

Die astronomischen Jahreszeiten sind wegen der Ungleichförmigkeit des Umlaufs der Erde um die Sonne nicht gleich lang; im dem Frühlingsäquinoktium 2000 folgenden Jahr beträgt die Dauer des astronomischen Frühlings 92^d,758, des Sommers 93^d,649, des Herbstes 89^d,842 und des Winters 88^d,993 (wenn man die mittleren Daten ohne Störungskorrekturen nimmt).

Da das Perihel der Erdbahn (in dessen Umgebung die Erde schneller umläuft) selbst langsam umläuft, verändert sich die Dauer der astronomischen Jahreszeiten im Laufe der Zeit allmählich. Ist die Perihellänge gleich der Sonnenlänge in der Mitte einer bestimmten astronomischen Jahreszeit, so hat diese Jahreszeit minimale und die Gegeniahreszeit (1/2 Jahr später oder früher) maximale Dauer (wobei die Differenz zwischen diesen Extremen 5 bis 6 Tage beträgt). Z. B. hat in den Zeiten, in denen die Perihellänge 225° beträgt, der Herbst (mit der Sonnenlänge 180° bis 270°) minimale und der Frühling maximale Dauer (wie z. B. um 1400 v. Chr. mit 88,4 bezw. 94,3 Tagen).


Aus Tabelle 2 ist ferner zu ersehen, dass die mittlere Zeit J_L mit L etwas variiert (die angegebenen Zahlen gelten mit sehr kleinen Abweichungen für das ganze 20. und 21. Jahrhundert). So braucht die Sonne z. B. vom Fruhlingsä-2000 zum nächsten guinoktium 365^d,42437, von der Sommersonnenwende 2000 bis zur nächsten 365^d,24163. Das Mittel aller 12 Werte J_L ist das tropische Jahr mit 365^d,24219. Der Name «tropisches Jahr» kommt von griech. trepein = wenden, weil man es ursprünglich definierte als die Zeit zwischen zwei aufeinanderfolgenden Sommer- oder Wintersonnenwenden: diese Definition ist nach den obigen Ausführungen also nicht ganz genau.

Zudem verändern sich die Zeiten J_L im Laufe grosser Zeitabschnitte langsam: so hatte das «Frühlingspunktsjahr» J_o (dessen jetziger Wert 365^d ,24237 beträgt) um 4100 v. Chr. bei einer Perihellänge von 180° ein Minimum von etwa 365^d ,24216 und wird um 6400 n. Chr. ein Maximum von etwa 365^d ,24275 haben.

Die Erscheinungen, dass J_L von L abhängt und dass Jo in langen Zeiträumen veränderlich ist, lassen sich so erklären: J_L ist die Zeit, die die Erde braucht, um von einem Punkt Eo ihrer Bahn mit der Länge L wieder zu E_o zurückzugelangen (siehe die Fig.). Während dieser Zeit ist das Perigäum von einem Punkt Po aus im gleichen Sinn etwa vorgerückt. Bis die Längendifferenz von Sonne und Perigäum (die wir mit Δ bezeichnen wollen) wieder gleich ist wie am Anfang, ist das Perigäum zu einem Punkt P₁ und die Erde zu einem Punkt E₁ vorgerückt, wobei $\lt P_0SE_0 = \lt P_1SE_1 = \Delta$ ist. Da die Erde für die Drehung bis E₁ in erster Näherung ein anomalistisches Jahr A braucht, ist die Differenz A-J_L die Zeit, die sie für das Bahnstück E₀ E₁ braucht, und diese Zeit hängt wegen des 2. Keplerschen Gesetzes von Δ ab; somit hängt auch J_L von Δ ab.

Tabelle 3

Sternbild		D ₀ '
Fische	2000	März 11,8
Widder		April 21,4
Stier		Mai 12,9
Zwillinge		Juni 21,1
Krebs		Juli 21,0
Löwe		Aug. 9,1
Jungfrau		Sept. 16,7
Waage		Nov. 1,6
Skorpion		Nov. 22,4
Schütze		Dez. 19,0
Steinbock	2001	Jan. 19,4
Wassermann		Febr. 12,1

Wann passiert die Sonne die Grenzon der Tierkreissternbilder?

Berechnet man die Durchgangszeiten der Sonne durch die Tierkreissternbildgrenzen vom 1. März 2000 an, so erhält man die Daten D_0 ' von Tabelle 3. Da die Grenzen der Tierkreissternbilder nicht genau bestimmt werden können, genügt die Genauigkeit von 0^d ,1.

Die Daten D' für n Jahre nach den Daten von Tabelle 3 können genügend genau mit der Formel $D' = D_0' + 0.242 \text{ n} - \text{int}(n/4)$

berechnet werden.

Beispiel 3. Wann tritt die Sonne im Jahr 2050 ins Sternbild Jungfrau ein? Mit n = 50 erhält man D' = 2050 Sept. 16,8.

Berechnung des Aszendenten

Unter dem **Aszendenten** für einen bestimmten Ort und eine bestimmte Zeit versteht man das Tierkreiszeichen, das dort in diesem Moment am mathematischen Osthorizont steht (d.h. gerade aufgeht). Der Aszendent variiert an einem festen Ort im Laufe des Tages über alle Tierkreiszeichen. Seine angebliche Wichtigkeit für Astrologen interessiert uns hier nicht; wir wollen nur zeigen, wie man ihn berechnet.

Zunächst berechnen wir für verschiedene Längen L die Zeitpunkte in lokaler Sternzeit θ , an denen die Punkte P auf der Ekliptik mit der Länge L am gegebenen Ort mit der geographischen Breite b und der nach Osten positiv gezählten geographischen Länge l aufgeht: Die Aequatorkoordinaten α , δ von P erhält man aus

L		
0°	270°	
30	285,17	
60	304,32	
90	331,89	
120	8,68	
150	49,35	
180	90	
210	130,65	
240	171,32	
270	208,11	
300	235,68	
330	254,83	

Tabelle 4

 $e = 23^{\circ},43929 - 0^{\circ},00013 \text{ n (n - Jahreszahl } - 2000)$

 $\tan \alpha = \cos \varepsilon \tan L$ $\sin \delta = \sin \varepsilon \cdot \sin L$

(wobei α im gleichen Quadranten wie L liegen muss), daraus für den Stundenwinkel s $von\,P$

 $\cos s = -\tan b \tan \delta$, $\sin s < 0$, daraus

 $\theta = s + \alpha$.

Für Zürich (Bahnhofplatz, b = $47^{\circ}377$, 1 = 8° ,540) erhält man für L = 0° ,

30°, 60°... die in Tabelle 4 angegebenen Werte (im Gradmass).

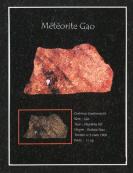
Die lokale Sternzeit θ_1 für den gegebenen Ort und das gegebene Datum (mit Uhrzeit) des ins Auge gefassten Ereignisses erhält man für das Jahr 2000 + n im Intervall vom 1. März 1900 bis 28. Februar 2100

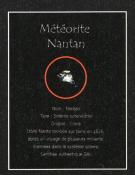
 $\theta_1 = 100^{\circ},953 - 0^{\circ},23811 \text{ n} + 360^{\circ},985647(\text{int}((n-1)/4) + z) + 1$,

wobei geeignete Vielfache von 360° abgezogen werden müssen; z bedeutet die Zeit in Tagen und Tagesbruchteilen nach Jan. 1,0 dieses Jahres. Aus dem Winkel θ_1 ergibt sich durch Vergleich mit Tabelle 4 (die aber für den betreffenden Ort berechnet werden muss) das Tierkreiszeichen, in dem der Punkt P liegt.

Beispiel 4. Man berechnet den Aszendenten für das Datum 24. März 1924, 12.33 Uhr MEZ in Zürich. Mit n = -76 und z = 83,48125 erhält man θ_1 = $3^{\circ},41$, also liegt P im Tierkreiszeichen mit den Grenzen 90° und 120° , also im Krebs.

Dr. H. Bachman Im Klösterli 10, CH-8044 Zürich


Météorite Nantan Gréfal d'almiració fore Resea fore Solicia Garrello fores Para en fores Solicia Garrello fores Para en fores Solicia Garrello fores en 1930 fores


METEORITE

Über 500 Meteorite mit Echtheitszertifikat, gerahmt und mit einer hochauflösenden Fotografie, die auch kleinste Details erkennen lässt: Ab Fr. 39.-. Plus de 500 météorites certifiées, encadrées et accompagnées d'une photographie haute résolution révélant les détails les plus subtiles. A partir de 39.-.

Wir stehen gerne für eine persönliche Beratung zu Ihrer Verfügung : Pour un conseil personnalisé et professionnel, n'hésitez pas à nous contacter :

www.galileo-planet.ch

GALILEO · Grand-Rue 68 · CH-1110 Morges · e-mail : info@galileo-planet.ch Tél : +41 (0) 21 803 30 75 (français) · Tel : +41 (0) 78 675 53 95 (deutsch) · Fax : +41 (0) 21 803 71 2