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Grundlagen
Notions fondamentales

Réduction d'une courbe
de rotation / de luminosité

qui est la liste des valeurs observées
aux instants des mesurages.

Raoul Behrend

Introduction
Les phénomènes répétitifs et réguliers

sont nombreux en astronomie /
astrophysique. L'analyse des propriétés
de répétition et de ses éventuels variations

peut apporter une moisson
insoupçonnée de données importantes:
rayonnement des astres à la frontière
de trous noirs, pulsars, planètes extra
solaires, physique des étoiles variables,
astéroïdes, détection de satellites
gravitant autour d'astéroïdes, etc.
Fréquemment, les observations au radar
d'astéroïdes demandent d'avoir une
courbe de rotation pour être pleinement

exploitées. Pareil pour la réduction

des occultations par des astéroïdes

qui fournissent des formes et
dimensions absolues qui, mises en
rapport avec l'éclat, permettent d'établir
de manière très précise l'albébo des
diverses familles d'astéroïdes.

De nombreux travaux fort utiles
dans la photométrie des étoiles variables

ont été réalisés par des amateurs
patients et méthodiques. Grâce à l'arrivée

des cécédés à prix abordables par
des associations voire même des
particuliers, des objets présentant des variations

de quelques centièmes de magnitude
sont désormais accessibles aux

amateurs. Malheureusement, les moyens
mathématiques et/ou informatiques
leurs font parfois défaut pour pouvoir
tirer le maximum d'informations de leurs
mesures. Cet article a pour objectif
d'initier les observateurs au traitement
de leurs données.

Cet article est le résumé d'une des
conférences du Week-end romand des
cécédéistes 2001.

Analyse
d'un signal périodique
Pour décrire un phénomène périodique,

les mathématiciens utilisent très
volontiers les séries dites de Fourier.
Sans entrer dans les moindres détails
parfois fort subtils, un signal de période
T'est la somme d'un terme constant C\ et
de sinusoïdes d'amplitudes ms et de phases

Pf

m(t) Cj +S Tïij sin (2n j^jß+Pj).

A=

E est l'époque, si t est le temps, pour
laquelle sont spécifiées les phases; les
amplitudes ne dépendent pas du choix
de l'époque, si on les définit comme
étant toujours non négatives, car sinon,
la phase serait indéterminée à n radians
près. En présence d'un signal supposé
périodique, l'art de l'analyse consiste à
rechercher les valeurs des constantes
Ci, wq, Pj et T, après s'être donné E.
Lorsque T est connu ou imposé, la
détermination des autres valeurs se nomme

calcul de la transformée de Fourier
de m(t). Dans certains cas, des outils
extrêmement puissants permettent de
faire cette opération (transformée de
Fourier rapide). Malheureusement, ces
méthodes ne peuvent pas être
appliquées dans le cas qui nous intéresse ici,
car 1) les instants des mesurages ne
sont pas toujours régulièrement espacés,

2) la période est inconnue et ne
peut pas être divisée a priori régulièrement,

3) les incertitudes ne sont pas les
mêmes pour toutes les mesures et 4) la
détermination de T ne fait pas partie
des méthodes habituelles. Question:
comment faire?

Si la période est connue
Supposons dans un premier temps

que T soit connu ou imposé. En récrivant

légèrement différemment la formule
de base qui est non linéaire pour la

résolution de la phase, on obtient le
système entièrement linéaire facile à

résoudre) suivant:

m(t) Cj +X (a;.cos(2itjt^ß+bj sin(27t

Comme le nombre d'observations
n'est pas infini, une limite doit être
posée dans la sommation. Cette limite d
peut être bien plus basse que le nombre
n d'observations si une méthode de type
«moindres carrés» est utilisée. La
méthode des moindres carrés à plusieurs
inconnues est assez relativement facile
à programmer (même dans un tableur)
à condition d'utiliser le formalisme des
matrices et vecteurs. On écrira par
exemple les vecteurs et matrices comme

suit:

dm(tj dm(tj dm(tj
_

dm(tj dm(tj
da, 36,3c, 3a.

V

3m(tj 3m(tj 3m(tj 3m(tj 3m(tj
3c, 3a, 36, 3ai dbt

est la matrice des dérivées de la
fonction à ajuster par rapport à ses
paramètres; elle est parfois appelée matrice

constitutive. W est la matrice carrée
de pondération dont les éléments de la
diagonale sont

{c2(m0(ti)), o"2(m0(t2)), -, o"2(m0(tn))}

et les autres éléments sont nuls; les
o(m0(t)) sont les incertitudes individuelles

des mesures. Les inconnues sont

X
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La solution par la méthode des
moindres carrés est donnée par X:
XMC (A'WAX1 A'WY. Les symboles
' et 1 définissent repectivement la
transposée et l'inverse de la matrice
carrée juste à leurs gauches dans
l'expression. Un choix «optimale» de d
peut se faire comme suit: d part de 1

ou 2 et croît jusqu'à ce que les constantes

ad et ad soient compatibles avec
zéro et que les écarts entre valeurs
calculées soient compatibles, toujours
aux incertitudes près, avec celles
observées; un diagramme montrant les
couples (Oj, bj) avec les incertitudes
(en tenant compte des covariances!)
aide grandement dans ce choix.
Habituellement, on se limite à d < 6 pour
les astéroïdes et à d < 15 pour les
binaires à éclipse.

Si la période est inconnue

Dans le cas de T inconnu, on procède

comme suit. On balaie avec T la zone
dans laquelle la vraie valeur se cache
avec une grande probabilité avec à chaque

fois un calcul complet de X et des
écarts Y-AX entre observations et
valeurs calculées avec les valeurs duX
obtenu. Les valeurs de T pour lesquelles la
somme des écarts quadratiques
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(Y-AX)' w{Y-AX)=2
*=1 <s(rn.(tj)

est un minimum local sont susceptibles

d'être proches de la bonne solution.
A ces endroits, on rajoute l'inconnue de
la correction AT à apporter à T dans
l'expression de la linéarisation: une
colonne de plus

(constituée des

dans la matrice A et un élément AT
de plus dans le vecteur X. Comme cette
correction est établie linéairement pour
un système non linéaire, quelques
cycles de calculs T: T + AT sont à faire
avant stabilisation de la solution. Pour
avoir une bonne convergence, il faut que
l'époque E soit proche de la moyenne
pondérée des instants des mesurages.

L'expérience montre qu'il faut
examiner soigneusement et graphiquement,
chaque courbe de rotation/luminosité
pour déterminer sa vraisemblance. En
effet, des solutions parasites provenant
de la fréquence d'échantillonnage trop
faible peuvent apparaître; la courbe de
luminosité peut également présenter
plusieurs pics secondaires d'amplitude
similaire (voire même supérieure) au
pic principal.

Le cas de (321) Florentina
Mais plutôt que de plus longues

formules et développements, prenons un
exemple. L'astéroïde (321) Florentina est
connu pour avoir une variabilité de quelques

dixièmes de magnitude. Olivier Thi-
zy et une équipe du Club d'astronomie
Lyon-Ampère (CALA, http://www.cala.
asso.fr et http://thizy.free.fr/cala.htm)
décidèrent de s'y intéresser lors d'ime
expédition de photométrie à l'Observatoire du
Pic du Château-Renard (AstroQueyras,
http:// astroqueyras.free. fr). Des images
furent prises très régulièrement à l'aide
d'une caméra cécédé montée sur un
télescope de 620mm d'ouverture et de
focale résultante 1.8 m durant les nuits du
13 au 15 octobre 1999. Les poses étaient
de 120s et le filtre utilisé est en bande R.

Une des nuits est décrite comme étant
brumeuse dans le rapport de mission
(http ://thizy. free. fr/stveran/stveran99.
htm). En l'absence de catalogues
photométriques fiables en bande R (erreur
systématique possible supérieur à une demi-
magnitude), les observateurs ont eu la
sagesse de centrer les images de sorte
que l'astéroïde puisse être comparé aux
mêmes étoiles durant les deux nuits: toutes

les mesures sont ainsi en principe
cohérentes à quelques centièmes de magnitude.

L'échelle de la magnitude est
relative à un groupe d'étoile.

Recherche de périodes: on trace le résidus quadratique moyen en fonction de la période imposée.

Magnitude relative en fonction de la position dans la fraction du touri=ßmodi avec
TsO. 058jour. Le fond et le sommet de la courbe ayant une dispersion plus grande qu 'ailleurs,
la possibilité d'un cycle à deux pics doit être envisagée.

3® <3 ORION 2001 13
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E=19991014.62639 T=0.11960939 (0.00003408) f=0.568

A1 =-0.0028 0.0026) B1 -0.0023 0.0026)

A2=-0.1152 0.0025) B2=-0 1295

A3=-0.0143 (0.0025) B3=-0.0027

0.0025) B4=-0.0314

0.0025) B5= 0.0028

0.0025) B6=-0.0097 0.0025)

0.0026)

0.0036)

A4=-0.0032

A5= 0.0066

A6= 0.0018

C1= 0.5038

C2= 0.0715

0.0026)

0.0026)

0.0025)

0.0025)

(321) Florentina
1—io —

js. en
oi o -H

oi
CO 00
O Ol

Magnitude relative en fonction de la phase -tSmod 1. Le cycle à deux pics est clairement confirmé. Bien que le diagramme polaire de la

luminosité ne représente pas la forme de l'astéroïde, il peut nous en donner une certaine idée.

Le graphe de recherche de période
indique que 0,058 jour correspond à une
période probable, tout comme ses
multiples entiers. Il apparaît également une
différence systématique d'éclat entre les
deux nuits; cette différence est estimée
à 0,05 magnitude. Elle correspond à

l'absorption différente de la lumière par la
brume signalée par les observateurs, en
fonction de la couleur des étoiles et de
l'astéroïde. Pour tenir compte de ce fait,
une seconde constante additive c-i est
ajoutée au système d'équations pour la
seconde nuit; une nouvelle colonne
contenant des 0 pour les observations de la
première nuit et des 1 pour celles de la
seconde est insérée dans la matrice A, et
l'inconnue c% est rajoutée dansX

L'examen des courbes de rotation
pour la période 0.058 jour, son double et
son triple montre que la courbe de rotation

présente deux pics de valeurs presque

égales et que la période est de
0.11961 ± 0.00003 jour. L'éclat varie de
0.39 magnitude. L'éclat de la seconde
nuit est systématiquement plus faible de
0.071 ± 0.004 magnitude par rapport à la
première nuit. Les résidus sont de l'ordre

de 57% de l'estimation a priori des

14

incertitudes (0.02 magnitude), soit un
peu plus que 0.01 magnitude. L'incertitude

relative sur la période est de 0.025%,
soit plusieurs dizaines de fois mieux que
ce qu'on pourrait faire en recherchant la
période à la main.

Quelques remarques
et conseils

- Il faut veiller à ce que le signal soit
théoriquement le plus périodique
possible. En particulier, pour les
étoiles variables, les périodes et
phases n'ont un sens que pour le ba-
rycentre du système solaire car
elles sont alors indépendantes de la
position de la terre. La correction se
calcule aisément en coordonnées
écliptiques: tbarycentrique — tuniversel
499s r cos p-ej cos iQùr est la distance
terre-soleil en UA et 9 la longitude
écliptique du soleil. I et b sont les
longitude et latitude écliptiques de
l'étoile variable. Pour les astéroïdes,

les variations intrinsèques de
l'éclat par rapport aux changements
des distances soleil-astéroïde et
astéroïde-terre, et de l'angle soleil-as-
téroïde-terre sont éliminées en
soustrayant la magnitude «moyen¬

ne» tirée des éphémérides de la
magnitude observée. La période
déterminée (apparente) et la phase de
l'astéroïde ne sont des valeurs valables

que sur un court intervalle de

temps; en effet, la période et la phase

observées dépendent de la
configuration géométrique soleil-astéroï-
de-terre et de la vitesse angulaire de
l'astéroïde (direction et grandeur);
en se basant sur plusieurs séries
d'observations réparties sur toute
l'orbite de l'astéroïde, il est possible
de déterminer la période vraie et la
direction du pôle de rotation de
l'astéroïde; cela peut apporter des
contraintes sur sa nature: sablonneux,
ou monolithique?

- Il n'est généralement pas extrême¬
ment utile de faire des mesures sur
de nombreuses rotations: une fois la
période estimée, il est suffisant de
refaire quelques mesures uniquement

quand l'incertitude sur la phase

atteint environ un dixième de
tour. Dans le cas de l'astéroïde
présenté, cela correspond à 0.10.12/
(3-105)=4-102 rotations, soit trois
mois après la double série initiale.
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Il est extrêmement hasardeux de
rechercher une période pour un
ensemble de mesures qui ne couvre pas
une période complète, avec répétition

d'un pic ou d'un creux.
Il faut inclure dans la formule une
constante additive par famille
observateur+instrument+filtre+logiciel
de réduction, et par zone de catalogue

utilisée (dans le cas des GSC, A
et SA) ainsi que par nuit problématique

(comme dans le cas traité ici).
Cette remarque est spécialement
valable pour les mesures cécédés faites

sans filtre. Si l'albédo de l'astéroïde

varie sans que sa couleur ne
change, il est théoriquement possible

de combiner des observations
faites dans des bandes différentes,
toujours en rajoutant les inconnues
additives ad hoc. Dans le cas des
astéroïdes d'amplitude inférieure à 0.2

magnitude, la multiplication des
observateurs ne sert presque à rien s'ils
ne font pas plusieurs mesures chacun,

car le nombre d'inconnues
deviendrait similaire au nombre
d'observations, et tous les gains apportés
par l'analyse fine (les moindres
carrés) s'évaporeraient!
Pour voir si un astéroïde varie et
pour établir une estimation des
paramètres de base (ci, ah b\ et T), il n'y
a aucune raison de mitrailler à plus
que 10 points de mesure par tour (la
période typique est de 0.1-0.2 jours).
Un télescope à pointage automatique

est capable de suivre à ce rythme
une demi-dizaine d'astéroïdes à la
fois. Les télescopes automatisés
pour la recherche de supernovae
peuvent facilement intégrer un
astéroïde par nuit dans leurs programmes,

avec à chaque fois des résultats
de valeur scientifique garantis. L'excès

inverse (moins de 1 point par
tour) est difficile (mais pas impossible)

à exploiter, car il devient difficile
de discerner la période vraie des

périodes parasites.
Pour mesurer des variations de quelques

centièmes de magnitude, il faut
profiter des périodes durant lesquelles

l'astéroïde est stationnaire pour
avoir toujours les mêmes étoiles de
calibration.
Lorsque le prétraitement des images
n'est pas correctement effectué, en
particulier si les images des plats
(PLU, flats) sont bâclées, une période

fictive qui correspond au temps
de traversée de l'image par l'astéroïde

est créée. Plus les variations que
l'on cherche à mesurer sont faibles,
et plus grande est l'importance d'un
prétraitement complet et correct des
images. Une bonne compréhension

(321) Florentina
f=0.568

Mmax-Mmoy=0.17Q

Mmoy-Mmin=0.224

Diagramme polaire de la luminosité; le cercle correspond à la moyenne.

de la méthode photométrique et
l'usage d'un logiciel rigoureux sont
également nécessaires pour obtenir
des résultats fiables et utilisables.

- Pour les programmeurs mathopho-
bes: (voir encadré ci-dessous)

- Il n'est pas nécessaire d'allouer de la
mémoire pour W entière car seule sa
diagonale est non-nulle; il faut alors
programmer soi-même les multiplications

de matrices.

- Un graticiel pour faire les réductions
de courbes de rotation/luminosité
est disponible sur demande: voir les
détails sur http://obswww.unige.ch/
~behrend/page_omg.html.
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