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Geschichte der Astronomie
Histoire de l'astronomie

Zum Gedenken an den Geburtstag
von Daniel Bernoulli vor 300 Jahren

Daniel Bernoullis
Beiträge zur Astronomie

Andreas Verdun

Im Mai dieses Jahres fanden in Basel die Feierlichkeiten anlässlich der 300sten
Jährung des Geburtstages von Daniel Bernoulli (1700 - 1782) statt. In zahlreichen
Vorträgen und einer Ausstellung wurden die Leistungen dieses berühmten Basler

Gelehrten gewürdigt. Wir setzen diese Würdigung hier durch die Vorstellung
seiner wichtigsten Beiträge zur Astronomie fort. Sie behandeln aktuelle Probleme

seiner Zeit und geben Einblick in die astronomische Forschung der ersten
Hälfte des 18. Jahrhunderts.
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Fig. 2: Der Stammbaum der Mathematiker, Physiker und Astronomen Bernoulli. Um die
Gleichnamigen voneinander unterscheiden zu können, wurden deren Vornamen mit
römischen Ziffern numeriert.

Zusammenfassung
Daniel Bernoulli löste ein altes

Problem aus der sphärischen Astronomie.
Es handelt sich darum, wie aus drei
aufeinanderfolgenden Beobachtungen
eines Sterns, dessen Koordinaten
unbekannt sind, die geographische Breite
bestimmt werden kann. Er benutzte
eine stereometrische Methode, mit der
er das Problem auf die ebene Trigonometrie

zurückführen konnte. Ein weiterer

Beitrag widmete er dem Problem der
Bahnneigungen der Planeten und Kometen.

Darin entwickelte Bernoulli eine
Theorie, mit der er erklären konnte,
weshalb sich die Planetenbahnen etwa
in derselben Ebene befinden, die
Neigungen der Kometenbahnen dagegen
fast beliebig sind. Er erkannte, dass
nach seiner Theorie das Planetensystem
himmelsmechanischen Entwicklungen
unterworfen sein muss, die in sehr grossen

Zeitskalen ablaufen. Damit begründete

er als einer der ersten die Wissen-

13®®

schaft der Kosmogonie. Für diese Arbeit
erhielt er den ersten Preis der Pariser
Akademie. Schliesslich versuchte
Bernoulli, die «Grosse Ungleichung»
zwischen Jupiter und Saturn durch
numerische Integration zu erklären. Leider
wählte er die Anfangs- und Randbedingungen

unglücklich, so dass er zu
keinem befriedigenden Resultat kam.
Dennoch erhielt er für diese Arbeit die
Anerkennung der Pariser Akademie.
Insbesondere könnte sie Clairaut dazu
angeregt haben, die Periheldurchgangs-
zeit des Halleyschen Kometen für das
Jahr 1759 ebenfalls mit numerischer
Integration zu berechnen.

Fig. 1 : Johann I Bernoulli (1667-1748), der
Vater von Daniel Bernoulli.
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Leben und Werk:
Eine kurze Übersicht
Daniel Bernoulli wurde am 8. Februar

1700 in Groningen (Holland) geboren.
Sein Vater war der berühmte Mathematiker

Johann Bernoulli (Figur 1). Seine
Mutter, Dorothea Falkner, war die Tochter

eines bekannten Basler Patriziers.
Unter den Geschwistern von Daniel sind
der ältere und jüngere Bruder, Niklaus
und Johann, zu erwähnen. Diese waren,
wie Daniel, wie ihr Vater Johann und ihr
Onkel Jakob, auf dem Gebiet der exakten

Wissenschaften tätig, doch gelangten

sie nie zu vergleichbar hohem Ansehen.

Der Stammbaum der Mathematiker,

Physiker und Astronomen Bernoulli
ist in Figur 2 dargestellt. Im Jahre 1705

kam Johanns Familie nach Basel, wo
Daniel 1713 seine Studien in Philosophie
und Logik begann, die er mit den
üblichen akademischen Graden 1715 bzw.
1716 abschloss. Während dieser Zeit
wurde er durch seinen Vater und seinen
älteren Bruder in die Mathematik eingeführt.

Zusätzlich studierte er Medizin,
zuerst in Basel, dann in Heidelberg und
später in Strassburg. 1720 kam er nach
Basel zurück und doktorierte 1721 mit
einer Dissertatio Inauguralis Physico-
Medica De respiratione. Aus dieser Zeit
stammt auch das in Figur 3 wiedergegebene

Portrait. 1723 reiste er nach Venedig,

wo er ein Jahr später seine Exerci-
tationes quaedam mathematicae
veröffentlichte. Aufgrund dieser Arbeit
erhielt er eine Berufung an die neu
gegründete Petersburger Akademie der
Wissenschaften. 1725 trat er die Mathe-
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bezahlen und erwiderte: «Und ich heis-
se Newton». Bernoulli konnte ihn
schliesslich überzeugen, dass er keineswegs

scherzte. Diese Geschichte belegt
die schon früh erfolgte Anerkennung
der wissenschaftlichen Leistungen von
Daniel Bernoulli. Sein berühmtestes
Werk ist die Hydrodynamica (ein
Begriff, den er geprägt hat), die 1738 in
Strassburg erschien (Figur 6). Weniger
bekannt dagegen sind seine astronomischen

Werke, auf die wir jetzt näher
eingehen wollen.

Ein Problem aus der
sphärischen Astronomie
Für Luft- und Seefahrt sind genaue

Positionsbestimmungen von entscheidender

Bedeutung. Im Gegensatz zur
heutigen Navigation mit Satelliten
beruhten im frühen 18. Jahrhundert die
Methoden zur Orts- und Zeitbestimmung

ausnahmslos auf astronomischen
Beobachtungen. Die Messungen waren
mit grossen Problemen behaftet, ihre
Auswertung mit mühsamer Rechenarbeit

verbunden. Besonders schwierig
war die Bestimmung der geographischen

Länge (Zeitbestimmung). Dieses
Problem konnte erst mit der Entwicklung

der Marine-Chronometer von John
Harrison in den 1730er Jahren allmählich

besser gelöst werden. Dennoch
wurde noch lange Zeit die Länge auf
hoher See mit Hilfe der Bewegung des
Mondes bestimmt. Man mass die
Positionen unseres Erdtrabanten bezüglich
jener Sterne, deren Koordinaten
bekannt waren, und verglich die resultierenden

Mondpositionen mit den
vorausberechneten Ephemeriden. Im Gegensatz

zu den teuren, aber genauen
Schiffschronometern von Harrison war
die Methode mit Hilfe des Mondes im
Prinzip einfach und billig. Ihr Problem
bestand (abgesehen vom Wetter und der
Genauigkeit der Mondtafeln) allerdings
darin, dass auf einem schwankenden
Schiff angestellte Beobachtungen nicht
sehr genau sein konnten. Dies galt für
jede astronomische Beobachtung auf
hoher See, insbesondere auch für die
Messungen zur Ermittlung der
geographischen Breite. Es galt deshalb, einfache

und genaue Methoden zur
astronomischen Ortsbestimmung zu Land und
auf See zu entwickeln. Am 13. April 1727

publizierte die Académie des Sciences
in Paris ihre jährliche Preisausschreibung

für das Jahr 1729. Sie war dem
Problem der Breitenbestimmung gewidmet
und lautete: «Quelle est la meilleure
Méthode d'observer les hauteurs (d.h. die
Polhöhen) sur Mer, par le Soleil & par
les Etoiles, soit par des instrumens
déjà connus, soit par des instrumens
de nouvelle Invention?». Es war eigent-
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Fig. 3: Daniel Bernoulli im Alter von etwa 20 Jahren.

Fig. 4: Leonhard Euler (1707- 1783),

der Freund von Daniel Bernoulli.

matikprofessur in St. Petersburg an. In
der russischen Metropole begann seine
fruchtbarste Zeit, die bis 1733 dauern
sollte. Mit seinem Freund Leonhard Euler

(1707 -1783), mit dem er gemeinsam
die Zeit zwischen 1727 und 1733 in St.

Petersburg verbrachte, pflegte er einen
für die Wissenschaft äusserst fruchtbaren

Briefwechsel (Figur 4). Es war vor
allem Daniel Bernoulli, der Euler immer
wieder mit genialen Ideen «belieferte»,
die diesen zur Abfassung von bedeutenden

Werken anregte. Daniel Bernoulli
folgte 1733 einem Ruf an den Lehrstuhl
für Anatomie und Botanik nach Basel.
Er verliess seine Heimatstadt bis zu
seinem Tode am 17. März 1782 nicht mehr.
Figur 5 zeigt die Titelseite des Nekrologes,

den Condorcet 1782 verfasst und
Daniels Neffe Daniel II Bernoulli 1787

ins Deutsche übersetzt hat.
Daniel Bernoulli erlangte internationalen

Ruhm auf den Gebieten der
Mathematik und Physik und gewann bzw.
teilte zehn Akademiepreise. Im erwähnten

Nekrolog ist eine bezeichnende
Anekdote überliefert. Als die beiden Brüder

Daniel und Johann Bernoulli sich im
Jahre 1733 auf der Rückreise von St. Pe¬

tersburg über Paris nach Basel befanden,

reiste zufällig ein Gelehrter und
Adjunkt der königlichen Akademie der
Wissenschaften zu Paris mit. Als die
Reisegefährten sich vorstellten, sagte Daniel:

«Ich heisse Bernoulli». Der Franzose,
der anscheinend grossen Respekt vor
diesem Namen hatte, wollte den
vermeintlichen Scherz mit einem ähnlichen
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Fig. 5: Titelseite des Nekrologes auf Daniel

Bernoulli, den Condorcet 1782 verfasst und
den Daniels Neffe Daniel II Bernoulli 1787 ins
Deutsche übersetzt hat.

lieh nur eine Teilaufgabe der bereits im
Jahre 1720 zum ersten Mal gestellten
Preisfrage. Sie geht auf ein Legat von J.-
B. Rouillé de Meslay zurück, der in
seinem Testament verfügte: «Item, je donne

et lègue à l'Académie des sciences de
Paris la rente de mille livres, à
condition que Messieurs de l'Académie
proposeront tous les ans un prix de la
moitié de ladite rente, pour être par
eux donné tous les ans à celui qui aura
le mieux réussi en une méthode courte
et facile pour prendre plus exactement
les hauteurs et degrés de longitude en
mer et en les découvertes utiles à la
navigation et grands voyages». Das
Problem der Längenbestimmung auf See
wurde noch in verschiedenen weiteren
Preisaufgaben bis 1793 gestellt. Da die
Preisaufgaben jeweils gut dotiert
waren, reichten stets zahlreiche Bewerber
ihre Lösungen ein. So auch für den Preis
von 1729. Unter ihnen befanden sich
Daniel Bernoulli und Pierre Bouguer, der
schliesslich den Preis für seine Arbeit
De la Méthode d'observer exactement
surMer la hauteur des astres (gedruckt
1752 in Paris) erhielt.

Die Lösung von Daniel Bernoulli
wurde im Band IV (für das Jahr 1729)
der Commentarii academiae scien-
tiarum imperialis Petropolitanae (Figur

7) im Jahre 1735 unter dem Titel
Problema astronomicum inveniendi
altitudinem Poli una cum declinatione

Stellae ejusdemque culminatione ex
tribus altitudinibus Stellae et duobus
temporum intervallis brevi calculo so-
lutum veröffentlicht (Figur 8).
Anschliessend an diese Abhandlung folgen
vier weitere Arbeiten von Jacob
Hermann, Leonhard Euler, Friedrich
Christoph Mayer und Georg Wolfgang Krafft
zum selben Thema, wie das Inhaltsverzeichnis

des vierten Bandes der Petersburger

Kommentare in Figur 9 zeigt. Damit

hat es eine ganz besondere
Bewandtnis, die auch mit den «Zänkerey-
en» um die Priorität von Daniel
Bernoullis vorgeschlagener Methode zu
tun hat und auf die wir hier nicht eingehen

wollen. Seine Methode besteht darin,

die Polhöhe aus drei aufeinanderfolgenden

Höhenmessungen (bzw. Zenitdi¬

stanzen) ein und desselben Sternes, dessen

Koordinaten nicht bekannt sein
müssen, sowie aus den korrespondierenden

Zeitintervallen zu bestimmen. In
seinem ersten Entwurf Discours sur la
question des hauteurs von 1728 nannte
er dieses Problem «Problema astronomicum

trium altitudinum». Es ist
eigentlich eine Modifikation des schon im
15. Jahrhundert aufgetauchten
Problems, aus zwei Höhen und ihrer
Zwischenzeit die Polhöhe zu bestimmen.
Dieses Problem aus der sphärischen
Astronomie wurde immer wieder variiert

und verschiedene (exakte und
genäherte) Lösungen entwickelt, u.a. von Re-
giomontan (1472), Wilhlem IV. Landgraf
von Hessen (1566) und Tycho de Brahe
(1573), später dann von Douwes (1754)

Fig. 6: Titelseite der «Hydrodynamica», des Meisterwerkes von Daniel Bernoulli.

DANIELIS BERNOULLI Jon F.u
Med. Prof, Basil,

ACAD. SCIENT. IMPER. PETROPOLITANJE, PRIUS MATHESEOS-
SUBLIMIONS PROF. ORD. NUNC A1EMBR1 ET PROF. HONOR.

HYDRODYNAMICA,
SIV E

DE VIRIBUS ET MOTIBUS FLUIDORUM
COMMENTARII.

OPUS ACADEMICUM
AB A UCTORE, DUM PETROPOLl AGERET,

CONGESTUM,

tbéRGENTORATfr
Surnom JOHANNIS REINHOLDÏ DULSECKERI,

Anno MD CCXXXVI11.

Typis Joh. He.n'r, Dïckew, Typographi Balilicnfiï,
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oder Gauss (1808). Aber auch Daniels
Onkel Jakob Bernoulli erwähnte in seiner

Dissertation von 1687 einen Spezialfall

dieses Problems. Es ist daher nicht
ausgeschlossen, dass Daniel Bernoullis
Methode schon früher formuliert, deren
Lösung jedoch noch nicht erbracht wurde.

Seine Neuerung bestünde folglich in
der mathematischen Lösung sowie dem
Vorteil, dass mit drei Höhenmessungen
mögliche Unbestimmtheiten in der
Lösung verhindert werden können,
obwohl mit drei Höhen und zwei Zeitintervallen

das Problem eigentlich überbestimmt

ist. Zur Lösung des Problems
drängten sich damals drei Methoden
auf:

1. Lösung mit Hilfe der sphärischen
Trigonometrie (intrinsische Methode)

2. Lösung mit Hilfe geometrischer
Streckenverhältnisse in einer
Halbebene der Sphäre, z.B. der Meridian-
Ebene (stereometrische Methode)

3. Lösung mit Hilfe der in eine Ebene,
z. B. die Äquatorebene, stereographisch

projizierten sphärischen
Dreiecke, die dann als ebene Dreiecke

behandelt werden können
(stereographische Methode).

Während Euler, Mayer und Krafft
das Problem nach der intrinsischen
Methode angingen, wählten Daniel
Bernoulli und Hermann den stereometrischen

Zugang. Die mathematischen
Ausführungen innerhalb einer
eingeschlagenen Methode weichen jedoch

Fig. 7: Titelseite des vierten Bandes der

Petersburger Kommentare für das Jahr 1729,

gedruckt 1735.

COMMENTARII
ACADEMIAE
SCIENTIARVM

IMPERIALIS
P ETROPOL1TANAE

TO M V SIV.

AD ANNVM da bcc xxix.

PBTROPOLÏ

TYPIS ACADEMIAE
ch bcc xxxta

H

deutlich voneinander ab. Euler
veröffentlichte 1777 noch eine sehr elegante
und allgemein gültige Lösung, in der er
wenige Gleichungen aus der sphärischen

Trigonometrie verwendete. Der
Vorteil seiner Lösung besteht darin,
dass die Beobachtungen auf dem
Deklinationskreis fast beliebig verteilt sein
und permutiert werden können. Daniel
Bernoulli projiziert die drei gemessenen
Sternhöhen p, q, r in die Meridianebene
aioc (Figur 10) sowie in die Ebene des
Deklinationskreises ipqro und
bestimmt die entstehenden Sehnen und
Strecken in diesen Flächen mittels ebener

Trigonometrie. Figur 11 zeigt die
Ebene des Deklinationskreises ORI, auf
dem sich die beobachteten Sternhöhen
P, Q, R befinden. IVO ist die Meridianebene,

V das Zentrum des Deklinationskreises.

Die Trigonometrie dieser Figur
liefert die Formeln zur Berechung der
Stundenwinkel. Insbesondere sind die
Stundenwinkel ZVI, QVP und RVP aus
den gegebenen Streckenverhältnissen
von Figur 11 zu bestimmen. Mit Hilfe
dieser Winkel lässt sich die Aufgabe in
der Meridianebene leicht lösen. Aus den
Stundenwinkeln und den in der
Meridianebene gebildeten Dreiecks- und
Streckenverhältnisse können die
Zenitdistanzen der oberen und unteren
Kulmination bestimmt und daraus die
Polhöhe ermittelt werden.

Daniel Bernoulli beschreibt in einem
Kapitel De tubis communicantibus
seines Discours von 1728 ebenfalls ein
Instrument, mit dessen Hilfe man auf
einem schwankenden Schiff Höhenmessungen

durchführen kann. Es besteht
im wesentlichen aus kommunizierenden

Röhren, auf denen Teilungen
angebracht sind, sowie einer mit Quecksilber

gefüllten Wanne, die als künstlicher
Horizont dienen soll. Offenbar hatte er
damit auch Versuchsmessungen auf See

durchgeführt, denn er schreibt: «Pour
moi j'ai fait des experiences avec de

simples tuyaux que je maniois à la
main et allant à Voile j'ai pris des
hauteurs jusqu'à dix degrez et sans prendre

toutes les precautions je pouvois
m'assurer d'une justesse à vingt au
trente minutes près; mais je crois
qu'en prenant toutes les mesures possibles,

un homme bien éxercé à faire ces

experiences pourra répondre de 3 à 4
minutes dans ses observations, laquelle

exactitude est plus que suffisante sur
mer». Diese Experimente schien er
fortgesetzt zu haben, berichtete er doch am
22. September 1733 in einem Brief an
Euler, dass er zur See einige hübsche
Beobachtungen angestellt und dabei
bemerkt habe, dass seine angegebene
Maschine zur Beobachtung der Sternhöhen
sich als recht effizient erwiesen habe.

IM FLV1DO. >s

vi villain rntione fpatiorum defcriptorum tnuto-
chronarn cxhibere in promtti eft ; eaque facile ex
inuentâ hac forraari poteft. Ponatur cnim tantum-
modo in nequatione noftra taurochrouae iuuenta
loco x haec quantitas .v-j-çt, vbi literag, ex quan-
titate hujns refiftentiac a tenacitate vel fri&ione or-
ta determinari debet. Quo fado habebitur tauto-
clirona quaefita.

PROBLEMA ASTRONOMÎCUM
INUEN1ENDI ALTITUDINEM POLI VNA
CUM DECLINATIONE STELLAR EJUSDEM-
OUE CULMINATIONE EX TRIBUS ALTE

TUDIN1BUS STELLAR ET DUOBUS
TEMPORUM INTERUALLIS BREUI CAL-

CULO SOLUTUM.

Auctore

Daniele Bernoulli Job. Fil.

Lemma. Sint tres arcus circulares contigui
IP, VQ_, QR, dico fore
vbi IZ fignificat tangentem arcus IP; LN tm>.viu.

differentiam cofinuum pro areubus IP et IR ; LM F's' u

differential« cofinuum pro areubus IP et IQ.» QX et
RY funt finus verfi arctuim PQ et PR; et PX PY
funt eorundem areuum finus ; denique IV eft fi-'1

Tom. IV. M «us

Fig. 8: Titelseite der Abhandlung von Daniel

Bernoulli zur Bestimmung der Polhöhe, aus
dem vierten Band der Petersburger
Kommentare.

Abgesehen von den Beobachtungsfehlern

bleibt ein Problem unberücksichtigt.

Damit die Polhöhe mit dieser
Methode gut bestimmt werden kann,
sollten die Höhenmessungen zeitlich
möglichst weit auseinander liegen.
Während des Zeitintervalles der
Messungen kann ein Schiff den Standort
jedoch erheblich ändern. Ob Daniel
Bernoulli diesen Aspekt ebenfalls in
Erwägung zog, ist uns nicht bekannt.
Als Ergänzung sei noch erwähnt, dass
Daniel Bernoulli zwei weitere Arbeiten
zum Thema Orts- und Zeitbestimmung
auf See als Preisschriften für die Jahre
1745-47 einreichte, die 1750 publiziert
wurden. Es sind dies die unter dem
Titel Recherches Méchaniques et
Astronomiques zusammengefassten
Abhandlungen La meilleure maniéré de

trouver l'heure en Mer, par observations,

soit dans la jour, soit dans les

crépuscules, & sur-tout la nuit, quand
on ne voit pas l'horison sowie ...Qui
tend principalement à fournir aux
Navigateurs les moyens Méchaniques
les plus sûres pourfaire en Mer, malgré

l'agitation du vaisseau, les
observations dont on peut conclurre
l'heure. Unveröffentlicht blieben die
Werke Discours sur la cause et la
nature de la pesanteur sowie der bereits
erwähnte Entwurf Discours sur la
question de 1729. quelle est la
meilleure méthode d'observer les
hauteurs sur mer par le soleil et par les
étoiles soit par des instrumens deja
connus soit par des instrumens de
nouvelle invention?
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INDEX
COMMENTARIORVM

IN CLASSE MATHEMATICA.

Frid. Crißoph. Maier de Orbita folis definienda
pag- 3-

lac. Hermanni de Loris folidis ad mentem Cartefii
concinnc conftruendis. pag. 15.

Frid. Crißoph. Maier de Aequinoftiorum et Solfti-
tiorum momcntis nec non de Obliquitace
Eclipticae obfcruandis. pag. 25.

EjKjrfe/flProblemaTrigonometricofphaericum. p. 31.
lac. Hermanni Confideratio Curuarum in punftum

pofitione datum projeftarum et de affeftio-
nibus earum indc pendentibus. pag. 37.

Ejusdem de Ellipfi Conica cuius àxis aiterutcr da-
tus cft, angulo pofitione et magnitudine dato
ita infcribenda, vt centrum eins intra datum
angulum fit etiam pofitione datum, pag. 4.6.

beonh. Euler de innumerabilibus Curuis tautochro-
nis in vacuo, pag. 49.

Ejusdem Curua tautochrona in fluido refiftentiam
faciente fccundum quadrata celeritatum.p. 67.

Dan. Bernoulli Problema aftronomicum inucniendi
aititudinem poli, vna cum declinntione ftel-
lae, eiusdemque culmination^ ex tribus altitu-
dinibus ftellae et duobus temporum interuallis
bteui caiculo folutum. pag. 89.

Jac.

Fig. 9: Inhaltsverzeichnis des vierten Bandes der Petersburger Kommentare mit den Titeln der
fünfAbhandlungen von Bernoulli, Hermann, Euler, Mayer und Krafft.

Das Problem der
Bahnneigungen der Planeten

Apian stellte in der ersten Hälfte des
16. Jahrhunderts die merkwürdige
Eigenschaft fest, dass Kometenschweife
stets von der Sonne wegweisen und
somit irgend ein Zusammenhang zwischen
ihrer Bahn und der Sonne bestehen
rnuss. In der zweiten Hälfte des 17.

Jahrhunderts erkannte man die wahre Natur
der Kometenbahnen. Es war lange nicht
klar, ob ein Komet vor und nach dem Pe-

riheldurchgang überhaupt ein und
dasselbe Objekt ist und was bei einem «Pe-

riheldurchgang» eigentlich geschieht.
Wenn es sich jeweils um die Bahn ein
und desselben Objektes handelt, musste
gezeigt werden, ob sich das Perihel seiner

Bahn «hinter» der Sonne oder
zwischen Sonne und Erde befindet.
Aufgrund zahlreicher Beobachtungen
vermutete Dörffel bereits in den frühen
1670er Jahren, dass sich Kometen
tatsächlich um die Sonne bewegen. Newton

und anderen gelang es, die Bahnformen

der Planeten und Kometen aus dem
Gravitationsgesetz abzuleiten. Dies
eröffnete Halley die Möglichkeit, Bahnelemente

von Kometenbahnen aus alten
Beobachtungen zu bestimmen. In seiner
Astronomiae cometicae synopsis von
1705 veröffentlichte er Bahnelemente
von 24 Kometen, die zwischen 1337 und
1698 beobachtet wurden (Figur 12).
Obwohl Halley für seine Berechnungen
stets von parabolischen Bahnen
ausging, erkannte er später, dass sich
gewisse Bahnelemente von scheinbar un-

13®®

lac. Hermann! Problems ex obferuatîs tribus altitu-
dinibus alicuius ftellae immutabilem habentis
declinationem, ce interuaJlU remporte inter
primam et fccundam obferiiationeni, et inter
fecundam et tertiam, inucnire altitudincm poli

et declinationem ftellae. pag. 94.
heonh. Euleri Solutio problematis aftronomici ex

datis tribus ftellae fixae altitudinibus, et
temporum diffcrentiis invenire cleuationem poli;
et declinationem ftellae. pag. 98.

Frid. Crißoph. Maier Problema Sphaerico-aftrono-
micum. pag* 102.

Georg. IVolffg. Krafft Solutiones quorundam pro-
blematum aftronomicorum. p. no.

IN CLASSE PHYSICA.
Frid. Crißoph. Maier de Luce boreali. pag. rar.
loh. Georg. Duvernoi de Sinibus cerebri, pag. 130.
Dan. Bernoulli Theorems de motu curuilineo cor-

porum, quae refiftentiam patiuntur vclocita-
tis fuae quadrato- proportionalem, vna cum fo-
lutione problematis in Aft. Lipf. M.Nou. 1.728»
propofiti. pag. 13<S".

Georg. BernlK Bulffingeri Solutio Problematis de vi
centrifuga corporis fphaerici in vortice fphae-
rico gyrantis. pag. 144.

Job. Georg. Duvernoi de Liene. pag.
Georg. Beruh. Bulffingeri de Solidorum refiftenti»

fpeeimen. pag. 164.
Elwsdem de Trachete plantarum ex Melone obfer~

uatio. pag. 182.
Miisdem de Ventriculo et inteftinis» pag. 187.

Dan*.

terschiedlichen Kometenerscheinungen
gleichen. Dies führte ihn zur Vermutung,
dass auch unter den Kometen elliptische

Bahnen und somit periodische
Erscheinungen möglich sind. Nicht nur
Halley war mittlerweile aufgefallen,
dass die Kometenbahnen offenbar beliebige

Bahnneigungen haben können.
Diese Erkenntnis kontrastierte mit der
Tatsache, dass sich die Bahnneigungen
der Planeten nicht stark unterscheiden
und dass sich alle Planeten etwa in der
Ekliptikebene bewegen. Erklärungen
für diese beiden Phänomene wurden
gesucht. Bereits zum zweiten Mal stellte
die Académie Royale des Science von
Paris für das Jahr 1734 die Preisaufgabe:
«Quelles est la cause physique de
l'inclinaison des Plans des Orbites des
Planetes par rapport au plan de
l'Équateur de la revolution du Soleil
autour de son axe; Et d'où vient que les
inclinaisons de ces Orbites sont
différentes entre elles».

Dass man in dieser Frage die
Bahnebenen der Planeten auf die Äquatorebene

der Sonne bezog, hatte einen sehr
gewichtigen Grund, der mit den damaligen

beiden Theorien zur Erklärung der
Planetenbewegungen zusammenhängt.
Seit der Entdeckung der Sonnenflecken
und ihrer regelmässigen Beobachtung
wusste man, dass sich die Sonne um
ihre eigene Achse dreht und dass diese
nicht senkrecht auf der Ekliptik steht.
Unabhängig davon entwickelte Descartes

in der ersten Hälfte des 17. Jahrhunderts

eine Theorie, welche die Ursache
der Planetenbewegung erklären sollte.

ORION 2000

Seine «Wirbeltheorie» bestand darin,
dass die Planeten von einem das ganze
Weltall füllenden Medium in einer
Wirbelbewegung um die Sonne getrieben
werden. Diese Theorie stand anfangs in
krassem Gegensatz zur «Gravitationstheorie»,

die eine Wechselwirkung der
Himmelskörper im leeren Raum postulierte.

Die Ansicht, dass Himmelskörper
über eine Entfernung aufeinander wirken

können, ohne die Wirkung über ein
dazwischenliegendes Medium zu
übertragen, war für das damalige mechanistisch

geprägte «cartesische Weltbild»
vieler Kontinentaleuropäer absurd. Die
Auseinandersetzungen zwischen «New-
tonianern» und «Cartesianern» um die
Ursache der Gravitation dauerten bis in
die Mitte des 18. Jahrhunderts, obwohl
es Bestrebungen gab, beide Theorien zu
vereinen. Angeheizt wurde die Diskussion

durch Probleme, die auch mit der
Gravitationstheorie scheinbar nicht
befriedigend gelöst bzw. erklärt werden
konnten. Sie betrafen vor allem die
Figur der Erde, die Grosse Ungleichung
von Jupiter und Saturn, die scheinbare
säkulare Beschleunigung des Mondes
sowie, als «pièce de résistance», die
Apsidendrehung des Mondes. Diese
Phänomene bildeten Prüfsteine für und
wider eine Theorie der Fern- oder
Nahwirkung. In diesem Kontext ist die
Preisfrage zu verstehen. Es war naheliegend,

die beiden Aspekte «Rotation der
Sonne» und «Bahnneigung der Planeten»

bereits in der Preisfrage mit der
Wirbeltheorie in einen Zusammenhang
zu bringen. Die Pariser Akademie stand
in den 1730er Jahren deutlich auf der
Seite der Cartesianer und erhoffte sich
mit der Lösung klare Argumente für die
Wirbeltheorie. Insbesondere schien
eine Lösung im «Cartesischen System»

Fig. 10: Zweite Figur zu Daniel Bernoullis

Abhandlung über die Polhöhenbestimmung.
Die Kreise abcd und ipqro stellen den
Horizont sowie einen Deklinationskreis dar,

der Halbkreis aioc ist der Ortsmeridian, p, q
und rsind die gemessenen Sternhöhen.
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weniger problematisch zu sein als im
«Newtonschen System», wonach die
fernwirkende Gravitation keine
Bahnebene bevorzugt und daher alle möglichen

Bahnneigungen zulässt.
Der Preis wurde geteilt und ging an

Daniel Bernoulli und seinen Vater
Johann. Ihre Abhandlungen wurden 1735

publisiert (Figur 13). Die Arbeiten von
Duclos und Bouguer erhielten Anerkennung.

Figur 14 zeigt die Titelseite der
von Johann Bernoulli eingereichten
Abhandlung, Figur 15 jene der ursprünglich

in lateinischer Sprache verfassten
Abhandlung von Daniel Bernoulli. Der
Titel der französischen Übersetzung der
Preisschrift von Daniel Bernoulli lautet:
Recherches physiques et astronomiques

sur le problème proposépour la
secondefois par VAcadémie Royale des
Sciences de Paris. Quelle est la cause
physique de l'inclinaison des Plans des
Orbites des Planetes par rapport au
plan de l'Équateur de la revolution du
Soleil autour de son axe; Et d'où vient
que les inclinaisons de ces Orbites sont
différentes entre elles (Figur 16). Daniel
Bernoulli bemerkt gleich zu Beginn,
dass die beiden Fragen nicht unabhängig

voneinander beantwortet werden
können, und unterstreicht ihre Berechtigung

angesichts der verschwindend
kleinen Wahrscheinlichkeit, dass eine
vergleichbare Situation überhaupt
eintreten könne. Dafür müsse es eine
physikalische Ursache geben. Er berechnet
die Wahrscheinlichkeit dafür, dass alle 5

Bahnneigungen innerhalb jener des
Merkur von 6°54' liegen, als 1 zu 175 - 1

bzw. 1 zu 1'419'856, da die von der
Merkurbahn an der Himmelsphäre
beanspruchte Zone 1/17 der gesamten Fläche
der Sphäre ausmache. Bezüglich des
Sonnenäquators, der nach Cassini im
Jahre 1701 eine Neigung von 7°30'
gegenüber der Ekliptik aufwies, betrage

Fig. 17: Erste Figur zu Daniel Bernoulus

Abhandlung über die Polhöhenbestimmung.
Sie zeigt den Deklinationskreis IRO sowie die

gemessenen Sternpositionen P, Q und R.
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Fig. 12: Halleys Kometentafel aus seinem Werk «Astronomiae cometicae synopsis» von 1705.

die maximale Überdeckung 1/12 der
Himmelsphäre. Die Wahrscheinlichkeit,
dass alle 6 Planetenbahnen innerhalb
dieses Gürtels liegen, sei also 1 zu m6 -1
bzw. 1 zu 2'985'983, mit m 12. Damit
hat er vermeintlich gezeigt, dass die
Bahnneigungen der Planeten nicht
zufällig sind. Für die weiteren Überlegungen

nimmt Daniel Bernoulli aufgrund
der Beobachtungen an, dass die mittlere

Bahnebene der Planeten mit der Ebene

des Sonnenäquators zusammenfällt,
was ihm aus physikalischen Gründen
plausibel erscheint und wovon gemäss
der Preisaufgabe auch ausgegangen
werden soll. Es gehe nur darum zu
zeigen, weshalb diese beiden Ebenen
zusammenfallen und weshalb dennoch
einige Planetenbahnebenen ein wenig
davon abweichen würden.

Daniel Bernoulli sieht die Lösung
dieser Probleme in der Existenz einer
bis über die Saturnbahn reichenden,
ausgedehnten Sonnenatmosphäre,
deren Eigenschaften er aus den Charakteristiken

der irdischen Atmosphäre ableitet,

im wesentlichen aus der barometrischen

Höhenformel. Dies glaubt er tun
zu dürfen, weil alle Himmelskörper (so
auch der Mond!) Atmosphären mit
vergleichbaren Eigenschaften besässen.
Die Sonnenatmosphäre besteht nach
seiner Vorstellung aus einem sehr subtilen,

elastischen Fluidum (vergleichbar
mit der irdischen Luft), das sich mit der
Sonne einmal in 25V2 Tagen um ihre
Achse dreht. Die Rotationsgeschwindigkeit

der Sonnenatmosphäre wachse im
wesentlichen proportional mit der Di¬

stanz von der Sonne, nehme aber durch
den Reibungswiderstand an der
Atmosphärengrenze mit der Entfernung von
der Sonne leicht ab. Die Reibung werde
durch eine an unsere Sonnenatmosphäre

angrenzende, unbekannte Atmosphäre
verursacht. Die resultierende

«différentielle Rotation» der Sonnenatmosphäre

entspreche aber nicht den
Rotationen jener «Cartesischen» Wirbel, die
nach dem dritten Keplerschen Gesetz
die Planeten um die Sonne herum
tragen, wie dies sein Vater in seiner
Preisschrift von 1730 gezeigt habe (Figur 17).
Im Gegenteil: die Rotationsgeschwindigkeit

der angenommenen Sonnenatmosphäre

übertreffe an den jeweiligen
Bahnradien der Planeten jene der Wirbel:

«Enfin, la remarque la plus essentielle

pour notre dessein est, que cefluide
solaire doit nécessairementfaire ses

révolutions autour de l'axe du Soleil, &
même que toutes ses parties ne
manqueraient pas défaire le tour ensemble
avec le Soleil dans 251/%jours de temps,
si le mouvement n'étoit pas empêché
dans les limites de l'atmosphère; cet
empêchement fera que les temps
périodiques de la matière croîtront vers les
limites. Je présume pourtant que malgré

cette diminution de mouvement,
les vitesses (qui sans cela suivroient la
proportion des distances de l'axe du
Soleil) ne laissent pas d'être plus grandes,

quand les distances dudit axe sont
plus grandes». Damit versuchte Daniel
Bernoulli zwei Effekte zu erklären.
Einerseits bewirke die höhere Geschwindigkeit

des Fluidums auf den sonnenab-
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gewandten Seiten der Planeten, dass
ihre Rotations- und Revolutionsbewegungen

gleichsinnig erfolgen. Andererseits

erzeuge der Geschwindigkeits-
überschuss des Fluidums gegenüber
den Planetenbewegungen, dass deren
Bahnneigungen langsam in die Ebene
des Sonnenäquators gedrückt und ihre
elliptischen Bahnen immer kreisförmiger

würden. Betrachten wir diese Theorie

etwas genauer.
Unter Annahme der Gültigkeit des

Gravitationsgesetzes leitet Bernoulli
eine «barometrische Höhenformel» her,
mit der er die Druckverteilung der
Sonnenatmosphäre in Abhängigkeit von der
Sonnenentfernung berechnen kann.
Würden die Parameter so gesetzt, dass
das Maximum der Druckverteilung sich
im Abstand der Marsbahn befindet,
erhalte er folgende Zahlenwerte: Druck an
der Oberfläche der Sonne 1, bei Merkur

4170, Venus 8910, Erde 12300,
Mars 14400, Jupiter 1310 und Saturn

15. Diese Druckverteilung erachte er
als plausibel. Daniel Bernoulli betont
ausdrücklich, dass die rotierende
Sonnenatmosphäre nicht mit den «Cartesi-
schen Wirbeln» identifiziert werden dürfe,

weil sie nicht die den Wirbeln
zugeschriebenen Eigenschaften erfüllen

könne, insbesondere nicht mit jener,
welche die Planeten in ihren Bahnen
halte. Als Gründe führt er u.a. das dritte
Keplersche Gesetz an, wonach die
Umlaufszeit eines (fiktiven) Planeten dicht
an der Sonnenoberfläche nur 3 Stunden
betragen würde, während die
Atmosphäre, welche die Sonnenoberfläche
berührt, für einen Umlauf 25i/s Tage
benötige. Er zweifelt, ob die Wirbel den
Zentrifugalkräften entgegenwirken bzw.
diesen die Waage halten können. Es
müsse deshalb noch einen anderen
Grund dafür geben, dass die Planeten
auf ihren Bahnen gehalten werden,
nämlich die Schwerkraft der Sonne.
Bernoulli nennt sie «pesanteur solaire,
qui contrebalance laforce centrifuge, &
qui pousse continuellement les Planètes

& la Terre vers le centre du Soleil».
Wie diese Schwerkraft zustande kommt,
lässt er offen, bekräftigt jedoch, «que
tous les Physiciens sont en ces temps-
ci d'accord, que toutes les Planetes ont
une pesanteur mutuelle qui pousse
l'une vers l'autre». Wir erkennen in
seinen Aussagen erste Ansätze einer
Abkehr von den nahwirkenden Wirbeln
und eine Zuwendung zur fernwirkenden
Gravitation. Mit dieser Ansicht schien er
damals, nach seiner eigenen Meinung,
nicht der einzige gewesen zu sein.
Dennoch ist er vorsichtig und zeigt sich vorerst

davon überzeugt, dass in irgend
einem subtilen Medium bzw. «un grand
nombre de Tourbillons d'une matière

PIECES
QUI ONT REMPORTE'

LE PRIX DOUBLE
D E

L'ACADEMIE ROYALE
'

DES SCIENCES,
EN M. DCCXXXIV.

A PARIS,
DE L'IMPRIMERIE ROYALE.

M. DCCXXXV.

Fig. 13: Titelseite der Preisschriften der
Pariser Akademie für 1734, gedruckt 1735.

subtile gravifique, se traversant librement

& sur differens axes, qui passent
touspar le centre du Soleil» die Ursache
für die Schwere zu suchen sei. Als Argument

nennt er die Theorie des Lichtes,
welche die Existenz eines subtilen
Mediums erfordere. Somit seien zwei
Effekte zur Erklärung der Planetenbewegungen

zu berücksichtigen: 1) die
rotierende Sonnenatmosphäre, die
bewirke, dass die Bahnneigungen langsam
aber stetig abnehmen und sich der
Äquatorebene der Sonne (oder einer
Ebene parallel dazu) nähern, und 2) die
Schwerkraft der Sonne, die den
Zentrifugalkräften entgegenwirke, sie ausgleiche

und damit bewirke, dass sich die
Planeten stets in Ebenen bewegen würden,

die durch das Zentrum der Sonne
gehen.

Bernoulli beschreibt nun seine
Grundidee, wie der aus dem Zusammenspiel

dieser beiden Effekte entstehende
Mechanismus eine Verringerung der
Balmneigungen hervorrufen kann. Dazu
führt er die noeuds solaires als Knotenpunkte

zwischen den Planetenbahnebenen
und der Äquatorebene der Sonne ein

und betrachtet einen Planeten in einem
dieser Knoten. Das Fluidum der schneller

rotierenden Sonnenatmosphäre
erteile ihm eine kleine Bewegung parallel
zur Äquatorebene der Sonne, was ein
stetes Vorwärtsdrehen der Knoten- und
Apsidenlinien zur Folge habe. Da die
Planetenbahn an dieser Stelle gegenüber
dem Sonnenäquator am stärksten
geneigt sei, resultiere eine Bewegung in
Richtung der Äquatorebene der Sonne.

Dasselbe geschehe im anderen Knoten.
Dagegen erfolge in den Punkten 90° zu
den Knoten keine Wirkung, weil dort die
Planetenbewegung parallel zur
Rotationsbewegung der Sonnenatmosphäre
verliefe. Bernoulli bemerkt, dass derselbe

Mechanismus auch dann noch wirksam

bleibe, wenn die
Rotationsgeschwindigkeit der Sonnenatmosphäre
kleiner ist als die Bahngeschwindigkeit
des betrachteten Planeten. Bernoulli
scheint mit seiner Theorie nicht nur
zeigen zu können, dass die Exzentrizitäten
der Planetenbahnen langsam abnehmen
müssen, sondern auch, weshalb
Kometenbahnen sehr grosse Exzentrizitäten
erreichen können. Er schliesst aus
seinen Überlegungen, dass die Balmneigungen

der Planeten vor sehr langer Zeit
wesentlich grösser gewesen sein müssen
und sich sukzessive auf den beobachteten

Wert verkleinert hätten. Je nach
Dichte der Sonnenatmosphäre und
Bewegungszustand der Planeten verlaufe
dieser Prozess unterschiedlich schnell.
Nach langer Zeit würden jedoch alle
Bahnebenen mit der Ebene des
Sonnenäquators zusammenfallen. Aus der
Tatsache, dass man seit der Antike keine
messbare Änderung festgestellt habe,
schliesst er, dass die Sonnenatmosphäre
aus einem äusserst subtilen Medium
bestehen müsse und dass somit die Abnahme

der Bahnneigungen nur sehr langsam
fortschreiten könne. Angesichts der kleinen

Bahnneigungen der Planeten folge,
dass die Welt vor sehr langer Zeit
entstanden sein müsse und daher einem
Entwicklungsprozess unterworfen sei:
«.. .je ne crois pas qu'il y ait personne,
qui soutienne encore les corps célestes
n'être sujets à aucuns changements; car
le monde n'est pas depuis l'éternité, ni
ne durera éternellement, ni ne demeurera

enfin toujours dans le même état,
tant qu'il dure».

Fig. 14: Titelseite der Preisschrift von
Johann I Bernoulli.
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DISQUISITIONES
PHYSICO-ASTRONOMIOE

PRO B L E M A TIS
A B

INCLYTA SCIENTIARUM ACADEMIA REGIA,

QUA; PARISIIS FLORET,

IT B RU M PROPOSITI.
Quelle eft la caufc phyfiquc de i'inclinaifon des plans des Orbites

des Planètes par rapport au plan de l'Equateur de la revolution
du Soleil autour de fon axe; Et d'où vient que les inclinaifons
de ces Orbites font différentes entre elles.

S IV E
Qutenam eft caufa phyfica inclinationis planorum, in quibus

Planetae Orbitas fuas perficiunt ad planum AEquatoris,
vertigîni Solis circa axem fuum refpondentis; Et quî fit
ut inclinationes iftarum Orbitarum Tint inter fe diverße.

Authors DAN. BERNOULLI, Acad. Pctrop. &Bonou, Socio,
in Acad. Baßienß Amt. & Pot. Profejfore.

Fig. 15: Titelseite der lateinischen Version der
Preisschrift von Daniel Bernoulli.

Im folgenden versucht Bernoulli,
seine Theorie anhand der beobachteten
Bahnneigungen der Planeten, Satelliten
und Kometen, teils mit physikalischen
(nach seiner Theorie), teils mit statistischen

Überlegungen, noch einmal zu
bekräftigen. Er bemerkt zwar, dass nach
seiner Theorie die Knoten- und Apsidenlinien

bezüglich der Ebene des
Sonnenäquators vorwärts schreiten sollten,
genau diesen Sachverhalt verifiziert er
aber nicht anhand der Beobachtungen.
Er hätte sonst feststellen können, dass
die Bahnknoten der Planeten (ausser
für Jupiter) eine retrograde Bewegung
von etwa 5" - 20" / Jahr aufweisen: ein
Resultat, das Euler 15 Jahre später aus
theoretischen Überlegungen herleiten
konnte. Daniel Bernoulli bestimmt eine
mittlere Bahnneigung der Planeten
bezüglich der Ebene des Sonnenäquators
zu 5° 11'. Da er diesen Wert als unsicher
erachtet, berechnet er die Neigung des

Sonnenäquators bezüglich der Ekliptik
derart, dass die Abweichungen der
Bahnneigungen aller anderen Planeten
von dieser Ebene minimal wird und
erhält dafür einen Wert von 3° 22'. Unter
der Annahme, dass der Sonnenäquator
mit der Ekliptik diesen Winkel von 3° 22'

bildet (übrigens ein Wert, der nach
Bernoullis verwendeten Keplerschen
Tafeln zufälligerweise mit der
Bahnneigung der Venus gegenüber der Ekliptik

übereinstimmt), berechnet er die
Bahnneigungen der Planeten bezüglich
dieser Äquatorebene der Sonne und findet

für Saturn 1°51', für Jupiter 2°7', für
Mars 2°4', für die Erde 3°22', für Venus
0°20' und für Merkur 4°34'. Er findet
eine Bestätigung seiner Theorie in der
Tatsache, dass die mittlere Bahnneigung

der Planeten bezüglich dieser
Äquatorebene der Sonne nur 2°23' be¬

trage, während sich die mittlere
Bahnneigung der Kometen gemäss Halleys
Angaben (siehe Figur 12) zu 43°39'
ergibt. Er interpretiert diese Resultate
dahin, dass die Neigungen der elliptischen
Planetenbahnen periodisch über sehr
lange Zeit ein wenig verkleinert wurden.
Den Grund für die irreguläre Verteilung
der als parabolisch oder hyperbolisch
angenommenen Kometenbahnen sieht
er in der kleinen Dichte der
Sonnenatmosphäre, in der sich die Kometen
vorwiegend aufhalten. Daher ergebe sich
ein Mittelwert nahe dem «Erwartungswert

einer isotropen Verteilung» von 45°

(de facto beträgt dieser 57°18'), wie wir
heute sagen würden. Eine weitere
Bestätigung findet er in der Tatsache, dass
die Bahnneigungen und Exzentrizitäten
der Planetenbahnen entsprechend seiner

Theorie korreliert zu sein scheinen.
Bahnneigung und Exzentrizität seien
bei der Venus sehr klein, während sie
bei Merkur grosse Werte hätten. Dies ist
übrigens eine Feststellung, die Euler
offenbar mit dem (berechtigten) Hinweis
kritisierte, dass diese scheinbare Korrelation

stark von der Wahl der mittleren
Bahnebene abhänge (siehe die
Klammer-Bemerkung zur Bahneigung von
Venus), wie aus der Reaktion Bernoullis in
einem späteren Brief vom 25. Januar
1737 an Euler hervorgeht. Darin wirft er
Euler vor, dass er sein Mémoire offenbar

nur oberflächlich und in höchster
Eile gelesen haben könne. Es sei ihm
niemals in den Sinn gekommen, die Ebene

des Sonnenäquators so abzuändern,
dass die Inklinationen in der Ordnung
der Exzentrizitäten fortschreiten. Er
habe nur angemerkt, dass - weil diese
Äquatorebene noch nicht feststehe -
man durchaus untersuchen könne, wie
diese zu platzieren sei, damit das
arithmetische Mittel aller Inklinationen minimal

sei. Dies habe er getan, ohne es zu
bereuen. Im folgenden Brief vom 16.

März 1737 gibt Bernoulli noch einmal
sein Unverständnis gegenüber dem
Vorwurf Eulers zum Ausdruck, er hätte die
Äquatorebene der Sonne derart verändert,

um den Exzentrizitäten Genüge zu
tun. Seine Theorie trage doch in sich,
dass keinerlei Beziehung zwischen den
Exzentrizitäten und den Inklinationen
vermutet werden könne und müsse. Seine

Bemerkungen bestünden nur darin,
dass, wenn man die Äquatorebene auf
die von ihm angegebene Art ändern würde,

die Summe der Inklinationen minimal

würde.
Offenbar war sich Daniel Bernoulli

bewusst, dass seine Hypothese mit den

Beobachtungen nur schwer zu
untermauern ist. Einige Jahre später, in einem
Brief vom 4. September 1743, schrieb er
an Euler, er habe im 7. Band der (Peters¬

burger) Kommentare verschiedene
Abhandlungen von Euler über die
Planetenbahnen gesehen. Darin habe Euler
viele alte astronomische Beobachtungen

durchgerechnet und diese mit dem
heutigen Stand der Bahnen verglichen.
Er möchte nun von Euler wissen, ob
dieser nicht gefunden habe, dass die
Exzentrizitäten wie auch die Schiefe der
Bahnen bezüglich einer gewissen mittleren

Ebene nach und nach ein wenig
abnehmen. Seine Vermutung darüber, warum

die Planeten nahezu in Kreisbahnen
und die Kometen etwa in parabolischen
Bahnen laufen und die ersteren ungefähr

in derselben Ebene, die letzteren
jedoch in allen möglichen Bahnneigungen
vorkommen, dünke ihn noch immer bei
weitem die wahrscheinlichste unter
allen Hypothesen zu sein. Es scheint, als
habe Bernoulli seinerseits Eulers
Abhandlungen nur flüchtig gelesen. In De

motu planetarum et orbitarum deter-
minatione entwickelte Euler ein
Näherungsverfahren zur analytischen Lösung
der Keplergleichung und bestimmte die
wahren Anomalien des Mars. Weiter
leitete er Gleichungen her zur Bestimmung
der Form und Lage der Bahnellipse
eines Planeten bei gegebener Umlaufszeit
und drei beobachteten heliozentrischen
Örtern und berechnete die Apsidenlinie
und Exzentrizität der Erdbahn aus
Beobachtungen von 1716. In der Abhandlung

Orbitae solaris determinatio, die
sich inhaltlich an die vorige anschliesst,
bestimmte Euler die Erdbahn aus drei
beobachteten Sonnenörtern nebst den
Zwischenzeiten nach der in der vorigen
Abhandlung gegebenen Methode. Er
verwendete dazu Beobachtungen von
Flamsteed aus dem Jahre 1690 und
bestimmte damit die mittleren Sonnenör-
ter, die «grösste Gleichung» sowie die
mittlere und wahre Anomalie der
Erdbahn. In der dritten Abhandlung Solutio
problematum quorundam astronomi-
corum des angesprochenen Bandes
handelt es sich um praktische Regeln
zur vereinfachten Berechnung der
Exzentrizität sowie der mittleren Anomalie.

Diese Arbeiten Eulers bezeugen
zwar seine meisterhafte Beherrschung
des Zweikörper-Problems, sie enthalten
jedoch nicht die von Daniel Bernoulli
erhofften Resultate. Im Zusammenhang
mit dem Problem des Prinzips der kleinsten

Wirkung und dem Grund für die
Kegelschnitte als Bahnformen weist Daniel

Bernoulli in einem Brief an Euler
vom 25. Dezember 1743 noch einmal auf
ein mögliches Missverständnis seiner
Theorie hin. Dass die Umlaufbahnen der
Planeten mehr und mehr kreisförmig
würden, die Kometenbahnen nahezu
parabolisch, habe er nicht aus den
widerstehenden Mitteln (dem Fluidum der
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RECHERCHES
PHYSIQUES

ET ASTRONOMIQUES
SUR LE PROBLEME PROPOSE

POUR LA SECONDE FOIS
Par l'Academie Royale des Sciences de Paris.'

Quelle rfl la caufephyfique de l'mclmaifen desPlans des Oelites
des Planètes par rapport au plan de l'Equateur de la
revolution du Soleil autour de fin axe; Et d'oit vient que les
mclmtùfms de tes Orbites font différentes entre elles.

PIECE DE M. DANIEL BERNOULLI,
Des Academies de Petersbourg, de Bologne, &c.

& Profcficur (['Anatomie & de Botanique
cr TUniverfité de Bâle.

Qui a partagé le Prix double de l'année 1734.

Traduite en François par fin Amicus.

Fig. 16: Titelseite der korrigierten
französischen Version der Preisschrift von
Daniel Bernoulli.

Sonnenatmosphäre) deduziert, sondern
aus quasi hinführenden, indem er diese
Mittel nicht im Ruhezustand, sondern
als sehr schnell um die Sonne bewegt
betrachtete. Seine Erklärungen würden
ihm noch immer sehr gut gefallen, ohne
glauben zu müssen, dies sei durch
Eigenliebe beeinflusst.

Zusammenfassend erwähnen wir
drei wichtige Aspekte dieser Abhandlung:

1) Daniel Bernoulli verwendete
statistische Argumente, was eigentlich
nicht verwundert, war doch sein Onkel
Jakob mit der 1713 publizierten Ars con-
jectandi ein Mitbegründer der Statistik.
2) Als eine Folgerung aus seiner Theorie
vermutete Daniel Bernoulli, dass unser
Sonnensystem einerseits himmelsmechanischen

Entwicklungsprozessen
unterworfen sein muss, und andererseits,
dass diese in Zeitskalen ablaufen müssen,

die wesentlich grösser sind als das
damals immer noch akzeptierte biblische

Weltalter von etwa 5000 Jahren.
Damit begründete er die Wissenschaft
der Kosmogonie, die im Laufe des 18.

Jahrhunderts von Lambert, Kant und
Laplace weiterentwickelt wurde. 3) Aus
Daniel Bernoullis Theorie folgt, dass die
Bahnelemente der Planeten über grosse
Zeitskalen säkularen Änderungen
unterworfen sein müssen. Damit nahm er
eine Erkenntnis vorweg, die erst 15 Jahre

später, zumindest was langperiodische

Änderungen anbelangt, ihre
himmelsmechanische Rechtfertigung durch
die grundlegenden Arbeiten Eulers
finden sollte. Nach dem Urteil seiner
Korrespondenten wird die Abhandlung von
Daniel Bernoulli als einer seiner besten
Beiträge zur Astronomie bezeichnet.
Offensichtlich war er ebenfalls stolz auf
seine Arbeit.
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Die Grosse Ungleichung von
Jupiter und Saturn
Schon Kepler bemerkte 1625 eine

scheinbare Anomalie in den mittleren
Bewegungen von Jupiter und Saturn.
Der Grund dieser Anomalie liegt in den
gegenseitigen Störungen dieser Planeten,

die jeweils zur Zeit ihrer Konjunktionen

besonders ausgeprägt sind. Diese

Annäherungen führen zu kurz- und
langperiodischen Störungen in den
mittleren Bewegungen. Die Konjunktionen
zwischen Jupiter und Saturn treten alle
19.86 Jahre auf. Die mittlere Bewegung
des Jupiter beträgt 30.35° pro Jahr, jene
des Saturn 12.22° pro Jahr. In der Zeit
zwischen zwei Konjunktionen bewegt
sich Saturn daher um 242.70°. Wäre dieser

Wert exakt 240°, dann würden sich
alle Konjunktionen stets an drei
gleichen Stellen im Zodiak ereignen, jeweils
um 120° voneinander getrennt. Die
Konjunktionsstellen würden somit ein
gleichseitiges Dreieck bilden. Der
«Überschuss» von 2.70° bewirkt, dass
die Konjunktionen nach jeweils 3-19.86

59.58 Jahren um 3-2.70° 8.1° weiter
östlich im Tierkreis stattfinden. Das
Dreieck dreht somit in 120°-59.58 / 8.1°

882.7 Jahren um 120°. Diese Periode

Fig. 17: Die «Cartesische» Wirbeltheorie nach
Johann I Bernoulli. S stellt die Sonne dar. Die

um S konzentrischen Kreise L, M, N, O stellen
Grenzlinien der Wirbel A, B, C dar. Der
Abstand der Grenzlinien voneinander wird
als differentiell klein (Strecke t) betrachtet.
Diese Wirbel bewegen sich nicht mit
derselben Winkelgeschwindigkeit um S,

sondern vollführen eine différentielle
Rotation. Die Kurve RTVPF ist der
geometrische Ort aller Wirbelpartikel, die
sich vor einer bestimmten Zeit auf der Linie
ES befunden haben. Die différentielle
Rotation erfolgt nach dem dritten
Keplerschen Gesetz.
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nennt man die Grosse Ungleichung. Das
Problem bestand nun darin, die Grosse
Ungleichung aus den gegenseitigen
Störungen in den Bewegungen von Jupiter
und Saturn aufgrund des Gravitationsgesetzes

herzuleiten. Es beschäftigte
die besten Mathematiker des 18.

Jahrhunderts, unter ihnen d'Alembert,
Clairaut, Euler, Lagrange und Laplace.
Die Académie Royale des Sciences de
Paris stellte dieses Problem als
Preisaufgabe für die Jahre 1748, 1750 und
1752. Für 1750 wurde kein Preis
zugesprochen. Die anderen beiden Preise
gingen an Euler, wobei zu bemerken ist,
dass er mit seinen Arbeiten zu diesem
Thema die planetare Störungstheorie
begründete. Das Problem blieb jedoch
lange ungelöst. Erst im Jahre 1785 konnte

Laplace die Lösung bekanntgeben.
Auch Daniel Bernoulli beteiligte sich

an den Preisausschreiben für 1748 und
1752 und erhielt für ersteres das Prädikat

proxime accessit, was dem zweiten
Preis entspricht. Leider wurde seine
Arbeit nie publiziert. Man weiss aber, dass
seine Abhandlung Clairaut, der in der
Preiskommission vertreten war, sehr
beeinflusst hat. Wie aus der von Euler
eingereichten Preisschrift hervorgeht,
ging es bei der Preisaufgabe um «Une
Théorie de Saturne et de Jupiter, par
laquelle on puisse expliquer les inégalités

que ces deux Planetes paroissent
se causer mutuellement, principalement

vers le tems de leur conjunction».
Es war aus verschiedenen Gründen eine
äusserst anspruchsvolle Aufgabe.
Gegenüber der Mondtheorie, an der ebenfalls

seit Mitte der 1740er Jahre
insbesondere von Clairaut gearbeitet wurde,
handelt es sich hier um eine
himmelsmechanisch völlig neue Situation. Während

beim Dreikörper-Problem Erde -
Mond - Sonne die Störkräfte der Sonne
auf den Mond wegen seiner Entfernung
zur Sonne immer etwa gleich gross bleiben,

können sich die Abstände
zwischen Jupiter und Saturn im Laufe ihrer
Bewegung um die Sonne (von Opposition

zu Konjunktion) um einen Faktor 3

und die Störkräfte von Jupiter auf
Saturn bei Konjunktion (aufgrund der
unterschiedlichen Exzentrizitäten) um
einen Faktor 1.6 ändern. Was die Sache
nicht einfacher machte, war der
Umstand, dass zu dieser Zeit an der exakten
Gültigkeit des Gravitationsgesetzes
gezweifelt wurde. Neben der scheinbaren
säkularen Beschleunigung des Mondes
konnte vor allem seine Apsidendrehung
vorerst nicht aus dem 1/r2 - Gesetz
hergeleitet werden. Es wurden daher
gleichzeitig alternative Kraftgesetze
diskutiert. Letztlich ging es der Akademie
darum, mit ihrer Preisaufgabe auch
hinsichtlich dieses Problems Klarheit zu
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schaffen, wie sich aus den Arbeiten
Eulers folgern lässt. Insbesondere hoffte
man, dass mit den Lösungen vielleicht
etwas Licht in die Streitfrage um die
Ursache der Gravitation als Nah- oder
Fernwirkungsprinzip gebracht werden
könnte.

Die Schwierigkeiten des Problems
kommen in der von Daniel Bernoulli am
6. Juli 1747 eingereichten Arbeit sowie
in den Briefen an Euler deutlich zum
Ausdruck. Aus einem Brief vom 21.

Januar 1747 an Euler wird ersichtlich,
dass sich Bernoulli bereits zu Beginn
dieses Jahres mit dem Problem beschäftigt

haben muss. Die Idee zu dessen
Lösung kam ihm vermutlich im
Zusammenhang mit der Absicht, die Bewegung
des Mondapogäums zu bestimmen, um
damit verbesserte Mondtafeln herstellen

zu können. Wie er Euler mitteilte,
bestehe sein Lösungsansatz darin, dass

man die Ungleichheiten in der Bewegung

des Saturn auf eine und dieselbe
natürliche, nicht gestörte Umlaufbahn
beziehen solle. Er nannte sie in der Folge

die natürliche Bahn und meinte
damit jene Ellipse, die entstehen würde,
wenn sämtliche Störkräfte verschwinden

würden. Dafür hat sich später der
Begriff der «oskulierenden Bahn»
etabliert. Leider ging er in seinem Mémoire
von zwei falschen Annahmen aus, die
sich als verhängnisvoll erweisen sollten
und deren Folgen im Briefwechsel mit
Euler in tragischer Weise sichtbar werden.

Einerseits setzte er voraus, dass die
Sonne unbeweglich sei, andererseits
betrachtete er die ungestörten Bahnen von
Jupiter und Saturn als kreisförmig und
konzentrisch zur Sonne. Die Sonne als
stillstehend zu betrachten, rechtfertigte
er im erwähnten Brief damit, dass dies
die Störungen des Saturn seiner Definition

gemäss nicht ändern könne, wenngleich

auch die Sonne eine kleine Bahn
um den gemeinsamen Schwerpunkt
beschreiben würde. Letzteres brachte ihn
zur Ansicht, dass die natürliche Umlaufbahn

des Saturn (von jeder Wirkung
Jupiters auf den Saturn abgesehen) keine
Ellipse mehr wäre, wie sie von den
Astronomen definiert werde, weder
bezüglich des Sonnenzentrums noch des

gemeinsamen Schwerpunktes. Saturns
und Jupiters natürliche Bahnen als
Kreisbahnen anzunehmen, bedeutete
aber eine schwerwiegende Einschränkung,

die letztlich nur mit der mathematischen

Vereinfachung des Problems
begründet werden kann. Dazu veranlasst
wurde Bernoulli möglicherweise durch
das Verfahren, mit dem er das Problem
zu bewältigen erhoffte. Es gleicht einer
numerischen Integration, bei der gewisse

Randbedingungen erfüllt sein müssen,

die Bernoulli zur Vereinfachung des
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Problems setzte. Wie aus dem Brief
hervorgeht, schien er erste Ergebnisse mit
jenen Eulers verglichen und erhebliche
Abweichungen festgestellt zu haben.
Das ist nicht weiter erstaunlich, wählte
Euler doch einen grundlegend anderen
und wesentlich allgemeineren Zugang.

Bernoulli scheint das knifflige
Problem in seiner ganzen Tragweite
(vielleicht inspiriert durch Euler) erkannt zu
haben. Etwas resigniert schrieb er am
29. April 1747 an Euler, dass ihm die
Theorie des Saturn sehr verleidet sei,
weil sie so penibel (empfindlich) und
letzten Endes noch immer vielen Zweifeln

unterworfen sei. Wenn das Zentrum
der Sonne nicht als fest betrachtet werden

könne, dann genüge es nicht, die
Wirkung des Jupiter auf die Sonne von
derjenigen auf den Saturn abzuziehen
oder sie zu addieren (wie Euler dies in
seiner Theorie tut), sondern man müsse

- um eine wahre Theorie des Saturn
aufstellen zu können - die wahre und
vollständige Theorie der Sonnenbewegung
um den gemeinsamen Schwerpunkt
kennen. Wolle man die Exzentrizitäten
der Bahnen des Saturn und des Jupiter
gemäss genuinen Gesetzen betrachten,
so erfordere diese Untersuchung wieder
unüberwindliche Mühe. Die damit
verbundenen Approximationsrechnungen
seien sehr heikel. Zudem könne man -
weil die Örter der Aphelien bezüglich
der Konjunktionsörter veränderlich seien

- keine fortlaufenden Tafeln anfertigen.

Bernoulli nahm an, dass auch andere

sich in dieser scheinbar ausweglosen
Situation befanden und war deshalb
gespannt zu wissen, wie Euler wohl das
Problem angepackt hatte. Aus dem nur
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lückenhaft überlieferten Briefwechsel
der beiden Freunde (viele Briefe von
Euler an Bernoulli gingen verloren)
wird nicht klar, wie ausführlich Euler
seine Theorie darlegte, oder ob er lediglich

Ergebnisse bekannt gab. Bernoulli
erwähnte in seinem Antwortbrief vom
16. August 1747 nur, dass sein eigenes
Mémoire lange nicht so ausgearbeitet
sei wie es Euler von dem seinigen melde.

Er war aber in der Lage, seine Resultate

mit den Werten von Euler zu
vergleichen.

Tatsächlich war Eulers Theorie
wesentlich allgemeiner und stellte sich
wegen der eingeführten neuen Methoden
für die weitere Entwicklung der
Störungstheorie als überaus fruchtbar
heraus. Ausgehend von den in drei Dimensionen

formulierten Bewegungsgleichungen

leitete Euler in einer vorgängigen

Arbeit Störungsgleichungen für den
Radiusvektor, die wahre Anomalie, die
Knotenlänge sowie die Bahnneigung
des Saturn her, die er dann in seinem
Mémoire integrierte, indem er vereinfachende

Einschränkungen bzgl. Bahnformen

und Neigungen der beiden Planeten

schrittweise lockerte. Es ist
anzunehmen, dass Bernoulli die EuLERsche

Theorie in groben Zügen kannte, denn
er schrieb im erwähnten Brief, dass sich
in allen seinen (eigenen) Berechnungen
gewisse Verschlingungen und
Wahrheitsmerkmale zeigten, die ihn auf einen
guten Fortschritt hoffen liessen, wenn
er nicht wüsste, dass Euler die Sache

ganz anders befunden habe. Nicht nur,
weil Bernoulli bis dato noch keine
Empfangsbestätigung für sein eigenes
Mémoire erhielt, sondern vor allem auch

S(D®

Fig. 18: Originalseite aus dem Manuskript über die «Grosse Ungleichung», das Daniel Bernoulli
als Preisschrift für das Jahr 1749 derAcadémie Royale des Sciences de Paris einreichte und
wofür er den zweiten Preis erhielt.
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THÉORIE
DU MOUVEMENT

DES COMÈTES,
- »' \ T ' " " >

Dans laquelle on a égard aux altérations

que leurs orbites éprouvent par
l'action des Planètes.

Avec l'application de cette Théorie \ la
Comète quia été obfervée dans les années

i 1, 1607, 168z & 1759.

Par M. Cl ai RA UT, des Académies des Sciences
de France, d'Angleterre, de PruJJe y

de Rujjie,
de Bologne & d'Vpfal.

Chez Michel LAMBERT, Imprimeur-Libraire,
rue & à côté «ie la Comédie Françoife, au Parnaffe.

Avec Approbation & Privilège du Roi.

Fig. 19: Titelseite von Clairauts Arbeit zur
numerischen Berechnung der
Periheldurchgangszeit des Kometen Halley.

deshalb, weil er von Eulers glänzender
Theorie beeindruckt gewesen sein mus-
ste, schrieb er im selbigen Brief etwas
vergrämt, dass ihn der mutmassliche
Verlust seines Mémoires nicht besonders

gereue. Euler könne also diesmal
doppelt sicher sein, den Preis nicht mit
ihm teilen zu müssen. Es sollte sich
erweisen, dass dies nicht der Grund war,
weshalb Euler den Preis erhielt.
Bernoullis Mémoire traf vor jenem
Eulers in Paris ein und wurde unter der
Nummer 1 kotiert. Nachdem Bernoulli
seine Abhandlung abgeschickt hatte,
schilderte er Euler in den folgenden
Briefen ausführlich seine Theorie und
seine Resultate. Wir fassen seine
Abhandlung sowie die relevanten Textstellen

aus seinen Briefen an Euler zusammen.

Überzeugt davon, dass sein Mémoire
verschiedene gute Teilstücke enthalte,
legte Daniel Bernoulli im Brief an Euler
vom 16. August noch einmal seine
Ausgangslage dar. Nach reiflicher Erwägung

aller Umstände halte er sich an die
Hypothese, dass die Sonne in einem
Punkt fixiert sei, gleich wie wenn ihre
Masse eine unendliche Trägheit hätte.
Danach betrachte er eine gewisse
Konjunktion zwischen Sonne, Jupiter und
Saturn, die er erste Konjunktion nenne.
Für diese Konjunktion betrachte er die
Geschwindigkeit des Saturn, dessen Ab-
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stand von der Sonne und den Winkel
zwischen der Tangente und dem Radiusvektor

(das sind die sog. Anfangsbedingungen).

Dann nenne er natürliche
Bahn diejenige Bahn, welche Saturn
gemäss der Keplerschen Hypothese ohne
eine Einwirkung des Jupiters beschreiben

würde. Auf diese natürliche Bahn
beziehe er alle Störungen. (Man beachte,

dass dies nicht mit der Voraussetzung

in seinem Mémoire übereinstimmt,
wo er die natürliche Bahn als kreisförmig

und konzentrisch zur Sonne
annahm.) Wären die Umlaufzeiten von
Saturn und Jupiter genau im Verhältnis 5:2,
so zeige er, dass nach drei aufeinanderfolgenden

Konjunktionen die früheren
Störungen wieder beginnen würden,
und deshalb habe er seine Tafeln von
der ersten bis zur vierten Konjunktion
ausgedehnt. Nach dieser Periode würden

sich die Exzentrizität, das Aphel
und alles Übrige wieder herstellen.
Bernoulli leitet in seinem Mémoire
zuerst eine Differentialgleichung zweiter
Ordnung für die radiale Abweichung a
Saturns von seiner Kreisbahn her. Er
nennt sie im Brief numerische
Fundamentalgleichung. Diese Gleichung ist
unter den getroffenen Annahmen nur
näherungsweise gültig. Als unabhängige
Variable führt er den heliozentrischen
Winkel o zwischen den beiden Planeten
ein. Die Gleichung enthält aber auch die
lineare Distanz z zwischen Jupiter und
Saturn in der Form Uz und Uz''. Nun
beginnen die mathematischen bzw.
numerischen Schwierigkeiten. Um diese
Faktoren in Funktion von <7 ausdrücken zu
können, berechnet er zuerst die numerischen

Werte von Uz und 1/z3 in Intervallen

zu 10°, ausgehend von der Konjunktion
bis zur Opposition. Dann leitet er

Interpolationsformeln her zur Bestimmung

der dazwischenliegenden Werte
in Potenzen von o für die sechs 30°-In-
tervalle zwischen Konjunktion und
Opposition. Dies führt ihn auf sechs
Differentialgleichungen für a, die er mit der
Methode der unbestimmten Koeffizienten

löst. Als Resultat erhält er
Polynomausdrücke in a als Funktion von Potenzen

in a und multipliziert mit numerischen

Koeffizienten für jedes der sechs
Intervalle. Jeder Fehler wirkt sich
kumulativ aus, weil die Genauigkeit eines
Ausdruckes für ein 30°-Intervall vom
vorhergehenden abhängt. Bernoulli
bemerkt in seinem Brief an Euler, dass er
gesehen habe, wie gefährlich es wäre,
die Integration von Grad zu Grad
auszuführen, da sich die Fehler masslos
aufsummieren würden. Dies zeigt sich
bereits bei der Elongation von 180°. An
dieser Stelle bewegt sich Saturn
(gemäss Rechnung) noch von der Sonne
weg und die erste Ableitung davon aist
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nicht Null. Trotzdem müssen die
umfangreichen Rechnungen fortgesetzt
werden, da noch kein Anzeichen irgend
einer Periodizität erkennbar ist. Obwohl
Daniel Bernoulli diese mühsame Arbeit
am liebsten aufgegeben hätte, führt er
sie dennoch zu Ende. Glücklicherweise
fällt ihm ein Trick ein, mit dem er den
Rechenaufwand verringern kann. Er
wählt die Steigung da/dcrnach der 180°-
Elongation derart, dass die radialen
Abweichungen a symmetrisch zu den
vorhergehenden zu liegen kommen (das
sind die sog. Randbedingungen). In
seinem Brief schrieb Bernoulli jedoch, er
habe seine Fundamentalgleichung von
30 zu 30 Grad durch Approximation
integriert und es so eingerichtet, dass die
da/davom Ende der vorangehenden
Integration bis zum Anfang der nachfolgenden

unter sich gleich seien. Tatsächlich

bedeutet diese Massnahme nichts
anderes, als dass Saturns Bahnkreis in
eine exzentrische Lage bezüglich der
Sonne verschoben wird. Dies hat jedoch
zur Folge, dass er die dadurch entstandenen

Änderungen im Bahnradius wieder

berücksichtigen muss. Damit kann
er aber die Werte von a für die folgenden

Intervalle einfacher berechnen.
Figur 18 zeigt den Graphen von a von der
ersten Konjunktion (C') bis zur vierten
(C""). Zur Interpretation der in die Figur
eingetragenen numerischen Werte von
a ist anzumerken, dass Bernoulli den
Wert von 1 zu 211 für das Verhältnis der
Kraft von Jupiter auf Saturn bezüglich
jener der Sonne auf Saturn aus der zweiten

Ausgabe von Newtons Principia
entnahm. Die angegebenen Werte von a
sind, wenn durch 211 dividiert, in
Bruchteilen des ursprünglich für Saturn
angenommenen Kreisradius zu verstehen.

Die gestrichelte Linie repräsentiert
die als Folge der geforderten
Randbedingungen stetige Fortsetzung der
Abweichungen. In der vierten Konjunktion,

etwa 59 bis 60 Jahre nach der ersten,
sind sowohl a als auch da fast Null.
Bernoulli glaubt daher, eine fundamentale

Periode gefunden zu haben. Mit
bekanntem a kann er nun Saturns
Bahngeschwindigkeit und somit die Positionen
bezüglich des Jupiter berechnen.

Daniel Bernoulli war sich sehr wohl
bewusst, dass die Annahme von
Kreisbahnen in seinem Mémoire falsch war,
glaubte jedoch, dass der Dissens
zwischen seinen und Eulers Werten von
den verschiedenen Methoden komme,
den Übergang von einer Integration zur
nächsten in Teilschritten zu vollziehen.
Er erkannte nicht, dass unter der
Voraussetzung von exzentrischen Kreisbahnen

seine vermeintlich gefundene Periode

verschwindet, obwohl ihn Euler
vermutlich darauf aufmerksam gemacht
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haben musste. Im nächsten Brief vom
22. September 1747 an Euler rechtfertigte

sich Bernoulli damit, dass er die
Periode der Ungleichheiten nach drei
aufeinanderfolgenden Konjunktionen,
die Euler angreife, erst kürzlich in der
Neuausgabe der Institutions astronomiques

von Le Monnier gelesen habe als

etwas, das man aus Beobachtungen
abgeleitet habe. In diesem Brief schien
sich Bernoulli der Unzulänglichkeiten
seines Mémoires bewusst zu werden,
insbesondere von der Annahme der
Kreisbahnen. Dennoch: er fange an, von
seiner Methode eine gute Meinung zu
bekommen. Hätte er sich dazu ent-
schliessen können, die Exzentrizitäten
zu betrachten und die Approximationen
näher auszugestalten, sei er sicher, dass

er eine exakte Theorie gefunden haben
würde. Bernoulli glaubte, Eulers
Einwand entkräften zu können, indem er
ihn noch einmal darauf aufmerksam
machte, dass sich die Störungen des
Saturn (und daher Bernoullis vermeintlich
gefundene Periode) nach seiner Theorie
von einer Konjunktion zur nächsten auf
die jeweilige natürliche Bahn bezögen.
Bei seiner Theorie sei somit zu beachten,

dass seine Gleichungen nicht so zu
verstehen seien, als müssten oder könnten

sie auf die bis heute herausgegebenen

astronomischen Tafeln angewandt
werden, da deren Grundannahmen
nicht mit der Bewegung, die er die natürliche

nenne, übereinstimmen würden.
Denn zuerst müsse man die natürliche
Bewegung berechnen, was man - wie er
zeige - tun könne mittels mehrerer
Beobachtungen, deren Zeiten man zuerst
korrigieren müsse. Nachher müsse man
Tafeln dieser natürlichen Bewegung
konstruieren und dazu seine Gleichungen

verwenden. Ob Bernoulli nach
diesem umständlichen Vorgehen seine
Periode in Lemonniers Institutions auch
wirklich bestätigt fand, bleibt dahingestellt.

In einem Punkte hatte Bernoulli
allerdings völlig recht. Während er das

Dreikörper-Problem rein numerisch zu
lösen versuchte, strebte Euler, soweit
es ging, stets eine analytische Lösung
an. Diesen Zugang hielt Bernoulli für
problematisch, denn wolle man die Sonne

als beweglich betrachten, so halte er
die gewöhnliche (analytische) Methode
für etwas schlüpfrig und er glaube fast,
dass die ganze Mathematik in der Welt
nicht ausreiche, um alle Ungleichheiten
genau zu berechnen, weil es nicht
erlaubt sei, die Theorien der Himmelskörper

von einander zu trennen und es

gleichsam unmöglich sei, die Ungleichheiten

im ganzen gleichzeitig betrachteten

System zu bestimmen. Was Bernoulli
hier vermutete, ist jedoch nicht die

Tatsache, dass das Dreikörper-Problem

Fig. 20: Daniel Bernoulli zurZeit des Erscheinens des Kometen Halley.

analytisch überhaupt nicht exakt lösbar
ist, sondern er brachte damit zum
Ausdruck, dass das Problem seine Fähigkeiten

überstieg. Ein «Unmöglichkeitsbeweis»

wurde erst viel später erbracht.
Bernoulli musste die Mängel in seinem
Mémoire erkannt haben, denn im
folgenden Brief vom 9. März 1748 an Euler
gestand er, dass ihm die Theorie des
Saturn noch viel zu schaffen mache. Er
könne nicht begreifen, wie Euler mit
der Annahme einer festen Sonne eine
Gleichung von nur 9' finden könne, wo
er auf etwas mehr als 30' komme. Wäre
ihm Eulers Tiefgang nicht so gut
bekannt, so würde er meinen, Euler hätte
seine Integrationsmethode nicht den
Umständen angepasst. Er sei neugierig
darauf, wo er einen Fehler gemacht
habe, und er wünsche, dass sein
Mémoire anonym gedruckt würde, damit
ihn Euler korrigieren könne. Noch
einmal versuchte Bernoulli in einem Brief
vom Juli 1748 Euler von den Vorteilen

ORION 2000

seiner Theorie zu überzeugen. Mit der
Hypothese, dass die Sonne vollkommen
still steht und also eine gleichsam
unendliche Trägheit hat, berechnete er
eine Tafel, die Korrekturterme in
Abhängigkeit von den Elongationen
zwischen Jupiter und Saturn enthält. Die
aufgeführten zeitlichen Terme entsprechen

Korrekturen in der mittleren
Bewegung des Saturn, die bezüglich einer
beliebig wählbaren ersten Konjunktion
angebracht werden müssen. Bernoulli
beklagte sich in diesem Brief, dass er
seine Theorie mangels Beobachtungen
nicht mit der tatsächlichen Bewegung
des Saturn vergleichen konnte. Wie er
im nächsten Brief an Euler vom 3.
September 1748 berichtete, habe man ihn
sehr ermutigt, zu seinem Mémoire über
den Saturn noch einen Kommentar zu
verfassen, doch könne er sich nicht
dazu entschliessen. Um eine sichere
Theorie bilden zu können, sollte man
viele Irregularitäten aus Beobachtungen
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bestimmt haben, um sehen zu können,
ob die Theorie damit übereinstimmen
würde, da doch die Astronomen von diesen

Ungleichheiten nur vage reden würden.

Käme es nur auf die rein mathematischen

Berechnungen an, würde er sich
schon zutrauen, nach verschiedenen
Hypothesen alles auszurechnen und zu
ermitteln, welche Hypothese mit der
Natur übereinstimme.

Vielleicht beabsichtigte er sogar, diese

Arbeit unter realistischeren Annahmen

zu wiederholen. In einem im Jahre
1749 verfassten Brief an Euler schrieb
er jedoch entmutigt, dass er viel weniger
Hoffnung habe denn je, die Irregularitäten

des Saturn mittels mechanischer
Prinzipien eruieren zu können. Er könne

aber Euler versichern, dass er genügend

Einsicht in diese Materie habe, um
die Hoffnung zu hegen, mit gleicher
Mühe ebensoviel wie Andere
herausbringen zu können. Eine exakte Lösung
sei unmöglich, und alle Approximationen

seien so gefährlich, dass es
unüberwindliche Anstrengungen erforderte,
die Irregularitäten mit hinreichender
Genauigkeit und Gewissheit bestimmen
zu können. Er wundere sich sogar (zu
Recht!) über Euler, dessen Autorität er
sonst sehr respektiere, dass Euler mit
so grossem Vertrauen beanspruche, dieses

Problem mit äusserster Präzision
gelöst zu haben. Im Brief vom 26. Januar

1750 kritisierte Bernoulli Eulers
Preisschrift und liess gleichzeitig die
Enttäuschung über sein eigenes Scheitern

deutlich erkennen. Der Brief gibt
Zeugnis eines sehr unzufriedenen Daniel

Bernoulli, der sich als Rechtfertigung
seines Scheiterns dazu verleiten liess,
Eulers Arbeit - nicht immer zu Recht -
zu disqualifizieren. Er habe Eulers
Mémoire über den Saturn gesehen und es

flüchtig gelesen. Dieser Gegenstand
würde ihm schier zum Hals heraushängen,

sonst hätte er es mit aller Aufmerksamkeit

gelesen. Er hätte darin viel
vortreffliche Kunstfertigkeit bemerkt, doch
im Wesentlichen glaube er, dass notwe-
nigerweise Fehlschlüsse darin versteckt
sein müssten. Unter der Hypothese der
Nichtexzentrizität halte er es für gewiss,
dass die Ungleichheiten nicht von der
einfachen Elongation abhängen noch
nach den einzelnen Konjunktionen
wiederkehren würden. Wäre dies der Fall,
so wäre seine Arbeit zu 90% leichter
geworden. Doch es sei gewiss nicht so,
sondern die Periode der Ungleichheiten
betrage drei Konjunktionen, und auch
dann nur in Näherung. Auch seien die
Ungleichheiten unter dieser Hypothese
sicher viel grösser als Euler meinte. Ferner

sei es unbegreiflich, dass die Exzentrizität

eine so grosse Wirkung zeitigen
könne - die blosse Vorstellung sei

schockierend. In Paris gestehe man nun
ein, dass sich seine Theorie besser halten

liesse als jene von Euler, und seine
Freunde hätten alles versucht, damit er
wieder konkurriere, doch die mühseligen

Arbeiten seien nichts für ihn. Er
glaube nun einmal, dass es nicht möglich

sei, dem Problem anders als schrittweise

(d.h. durch numerische Integration)

gerecht zu werden, weil die
Ungleichheiten von den von beiden
Planeten beschriebenen Bogen und allen
Bahnelementen dieser zwei durchlaufenen

Bogen abhängen würden. Wollte
man eine allgemeine Reihe bilden (wie
Euler dies zu bevorzugen pflegte), so
müsste diese durch alle Dimensionen
von beiden Bogen und nicht eines einzigen

allein laufen. Er glaube noch immer,
dass etwas in Eulers Approximationen
stecke, das nicht richtig sei. Euler solle
alles nochmals mit grösster Aufmerksamkeit

und Skepsis untersuchen, denn
niemand in der Welt könne dies tun ausser

Euler selbst. Für seine eigene Arbeit
könne Bernoulli nicht garantieren, da er
eine Methode verwendet habe, wo ein
einziger numerischer Fehler alles
zunichte machen würde, aber diese seine
Methode halte er für unfehlbar. Er hätte
auch die Rückwirkung auf die Sonne
nicht vernachlässigen dürfen, wie er es

getan habe, bloss um seine bereits
ausgeführten Rechnungen nicht wiederholen

zu müssen. Schliesslich solle Euler
ihm nicht übel nehmen, dass er so frei
rede und sich diesmal so viel herausnehme.

Das geschehe gewiss, ohne die
Verehrung zu verletzen, die er für Eulers
Verdienste - besonders in der reinen
Mathematik - habe.

Beide Abhandlungen, jene von Daniel

Bernoulli wie auch jene von Leonhard
Euler, haben ihre Mängel, enthalten
aber auch fruchtbare Ideen. Beide müssten

mit Näherungen und Vereinfachungen

arbeiten, um das Problem meistern
zu können. Während die Approximationen

bei Euler in seinen Reihenentwicklungen

zu suchen sind, liegen sie bei
Bernoulli in seinen unglücklich gewählten

Anfangs- sowie in den Tücken und
Folgen seiner Randbedingungen. Während

Euler in seiner Arbeit geniale
mathematische Methoden entwickelte,
erkannte Bernoulli die Bedeutung der
numerischen Integration. Beides sollte
sich für die künftige Himmelsmechanik
in der allgemeinen und speziellen
Störungsrechnung als äusserst fruchtbar
erweisen. Wie bereits erwähnt, war
Clairaut nicht umsonst beeindruckt von
Bernoullis Preisschrift. Vermutlich
nahm Clairaut aufgrund dieser Arbeit
die Idee auf, mit Hilfe der numerischen
Integration die im März 1759 erwartete
Periheldurchgangszeit des Halleyschen
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Kometen zu berechnen. Er führte
zusammen mit Lalande und Madame Le-
paute die erste umfangreiche numerische

Integration durch und konnte die
Periheldurchgangszeit auf einen Monat
genau bestimmen. Dass zu jenen Zeiten
eine numerische Integration (trotz
bescheidener Genauigkeit) mit immenser
Rechenarbeit verbunden war, belegt
nicht nur Daniel Bernoullis Versuch,
sondern auch die Tatsache, dass
Clairaut seine Resultate erst nach
mehrjähriger Rechenzeit im Jahre 1761
publizieren konnte, zwei Jahre nach Erscheinen

des Kometen (Figur 19). Der von
Daniel Bernoulli (Figur 20) gewählte
Zugang sollte sich jedochlm Kindergarten
des Sonnensystems erst mit der Erfindung

der Rechenmaschinen für die
Himmelsmechanik als äusserst nützlich und
effizient erweisen.

Der Vollständigkeit halber erwähnen
wir noch jene Arbeiten von Daniel
Bernoulli, die ebenfalls dem Gebiet der
Himmelsmechanik zugeordnet werden
können. Es sind dies die in Paris im Jahre

1741 gedruckte Preisschrift Traité
sur le Flux et Reflux de la Mer für das
Jahr 1740 sowie die für den Preis des
Jahres 1728 eingereichte, aber
unveröffentlichte Abhandlung Discours sur la
cause et la nature de la pesanteur.
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