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GESCHICHTE DER ASTRONOMIE v
HISTOIRE DE L ’ASTRONOMIE

Zum Gedenken an den Geburtstag
von DanieL BernoutLl vor 300 Jahren

DANIEL BERNOULLIS

Beitrage zur Astronomie

ANDREAS VERDUN

Im Mai dieses Jahres fanden in Basel die Feierlichkeiten anlasslich der 300sten
Jahrung des Geburtstages von Danier Bernoutt (1700 — 1782) statt. In zahlreichen
Vortragen und einer Ausstellung wurden die Leistungen dieses beriihmten Bas-
ler Gelehrten gewdirdigt. Wir setzen diese Wiirdigung hier durch die Vorstellung
seiner wichtigsten Beitrdge zur Astronomie fort. Sie behandeln aktuelle Proble-
me seiner Zeit und geben Einblick in die astronomische Forschung der ersten

Halfte des 18. Jahrhunderts.

Zusammenfassung

DanieL BErNouLLI 16ste ein altes Pro-
blem aus der sphirischen Astronomie.
Es handelt sich darum, wie aus drei auf-
einanderfolgenden Beobachtungen ei-
nes Sterns, dessen Koordinaten unbe-
kannt sind, die geographische Breite
bestimmt werden kann. Er benutzte
eine stereometrische Methode, mit der
er das Problem auf die ebene Trigono-
metrie zuriickfithren konnte. Ein weite-
rer Beitrag widmete er dem Problem der
Bahnneigungen der Planeten und Kome-
ten. Darin entwickelte BErRNOULLI eine
Theorie, mit der er erkliren konnte,
weshalb sich die Planetenbahnen etwa
in derselben Ebene befinden, die Nei-
gungen der Kometenbahnen dagegen
fast beliebig sind. Er erkannte, dass
nach seiner Theorie das Planetensystem
himmelsmechanischen Entwicklungen
unterworfen sein muss, die in sehr gros-
sen Zeitskalen ablaufen. Damit begriin-
dete er als einer der ersten die Wissen-

Leben und Werk:
Eine kurze Ubersicht

DanieL BErnouLLl wurde am 8. Febru-
ar 1700 in Groningen (Holland) geboren.
Sein Vater war der beriihmte Mathema-
tiker Jonann Bernourul (Figur 1). Seine
Mutter, DoroTHEA FALKNER, war die Toch-
ter eines bekannten Basler Patriziers.
Unter den Geschwistern von DANIEL sind
der altere und jlingere Bruder, NikLAUS
und JoHANN, zu erwidhnen. Diese waren,
wie DANIEL, wie ihr Vater JonanN und ihr
Onkel JaxoB, auf dem Gebiet der exak-
ten Wissenschaften tétig, doch gelang-
ten sie nie zu vergleichbar hohem Anse-
hen. Der Stammbaum der Mathemati-
ker, Physiker und Astronomen BERNOUL-
Listin Figur 2 dargestellt. Im Jahre 1705
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Fig. 2: Der Stammbaum der Mathematiker, Physiker und Astronomen BernoutL. Um die
Gleichnamigen voneinander unterscheiden zu kénnen, wurden deren Vornamen mit

rémischen Ziffern numeriert.

schaft der Kosmogonie. Fiir diese Arbeit
erhielt er den ersten Preis der Pariser
Akademie. Schliesslich versuchte
BernouLL, die «Grosse Ungleichung»
zwischen Jupiter und Saturn durch nu-
merische Integration zu erklaren. Leider
wéhlte er die Anfangs- und Randbedin-
gungen ungliicklich, so dass er zu kei-
nem befriedigenden Resultat kam. Den-
noch erhielt er fiir diese Arbeit die
Anerkennung der Pariser Akademie.
Insbesondere kénnte sie CLAIRAUT dazu
angeregt haben, die Periheldurchgangs-
zeit des Halleyschen Kometen fiir das
Jahr 1759 ebenfalls mit numerischer In-
tegration zu berechnen.

Fig. 1. JoHann | Bernoutt (1667 — 1748), der
Vater von DANIEL BERNOULLI.

kam Jonanns Familie nach Basel, wo Da-
NIEL 1713 seine Studien in Philosophie
und Logik begann, die er mit den tibli-
chen akademischen Graden 1715 bzw.
1716 abschloss. Wihrend dieser Zeit
wurde er durch seinen Vater und seinen
élteren Bruder in die Mathematik einge-
fihrt. Zuséatzlich studierte er Medizin,
zuerst in Basel, dann in Heidelberg und
spéter in Strassburg. 1720 kam er nach
Basel zuriick und doktorierte 1721 mit
einer Dissertatio Inauguralis Physico-
Medica De respiratione. Aus dieser Zeit
stammt auch das in Figur 3 wiedergege-
bene Portrait. 1723 reiste er nach Vene-
dig, wo er ein Jahr spiter seine Exerci-
tationes quaedam mathematicae verof-
fentlichte. Aufgrund dieser Arbeit er-
hielt er eine Berufung an die neu
gegriindete Petersburger Akademie der
Wissenschaften. 1725 trat er die Mathe-




matikprofessur in St. Petersburg an. In
der russischen Metropole begann seine
fruchtbarste Zeit, die bis 1733 dauern
sollte. Mit seinem Freund LeEoNHARD EU-
LER (1707 — 1783), mit dem er gemeinsam
die Zeit zwischen 1727 und 1733 in St.
Petersburg verbrachte, pflegte er einen
fiir die Wissenschaft dusserst fruchtba-
ren Briefwechsel (Figur 4). Es war vor
allem DaNIEL BErNoOULLL, der EULER immer
wieder mit genialen Ideen «belieferte»,
die diesen zur Abfassung von bedeuten-
den Werken anregte. DANIEL BERNOULLI
folgte 1733 einem Ruf an den Lehrstuhl
fiir Anatomie und Botanik nach Basel.
Er verliess seine Heimatstadt bis zu sei-
nem Tode am 17. Mérz 1782 nicht mehr.
Figur 5 zeigt die Titelseite des Nekrolo-
ges, den ConNDORCET 1782 verfasst und
DanieLs Neffe Danier IT BernouLr 1787
ins Deutsche tibersetzt hat.

DaNieL BErNoULLI erlangte internatio-
nalen Ruhm auf den Gebieten der Ma-
thematik und Physik und gewann bzw.
teilte zehn Akademiepreise. Im erwihn-
ten Nekrolog ist eine bezeichnende An-
ekdote iiberliefert. Als die beiden Brii-
der DaNiEL und JoHANN BERNOULLI Sich im
Jahre 1733 auf der Riickreise von St. Pe-

Fig. 4: LeonHARD EuLer (1707 — 1783),
der Freund von DANIEL BERNOULLI.

Fig. 3: DanieL Bernouttr im Alter von etwa 20 Jahren.

tersburg iiber Paris nach Basel befan-
den, reiste zufillig ein Gelehrter und Ad-
junkt der koniglichen Akademie der
Wissenschaften zu Paris mit. Als die Rei-
segefahrten sich vorstellten, sagte DaNI-
EL: «Ich heisse Bernoulli». Der Franzose,
der anscheinend grossen Respekt vor
diesem Namen hatte, wollte den ver-
meintlichen Scherz mit einem dhnlichen

bezahlen und erwiderte: «Und ich heis-
se Newton». BernouLLl konnte ihn
schliesslich iiberzeugen, dass er keines-
wegs scherzte. Diese Geschichte belegt
die schon friih erfolgte Anerkennung
der wissenschaftlichen Leistungen von
DanieL BernouLLl. Sein berithmtestes
Werk ist die Hydrodynamica (ein Be-
griff, den er geprégt hat), die 1738 in
Strassburg erschien (Figur 6). Weniger
bekannt dagegen sind seine astronomi-
schen Werke, auf die wir jetzt ndher ein-
gehen wollen.

Ein Problem aus der
spharischen Astronomie

Fiir Luft- und Seefahrt sind genaue
Positionsbestimmungen von entschei-
dender Bedeutung. Im Gegensatz zur
heutigen Navigation mit Satelliten be-
ruhten im frithen 18. Jahrhundert die
Methoden zur Orts- und Zeitbestim-
mung ausnahmslos auf astronomischen
Beobachtungen. Die Messungen waren
mit grossen Problemen behaftet, ihre
Auswertung mit mithsamer Rechenar-
beit verbunden. Besonders schwierig
war die Bestimmung der geographi-
schen Linge (Zeitbestimmung). Dieses
Problem konnte erst mit der Entwick-
lung der Marine-Chronometer von Joun
Harrison in den 1730er Jahren allméh-
lich besser gelost werden. Dennoch
wurde noch lange Zeit die Lénge auf ho-
her See mit Hilfe der Bewegung des
Mondes bestimmt. Man mass die Posi-
tionen unseres Erdtrabanten beziiglich
jener Sterne, deren Koordinaten be-
kannt waren, und verglich die resultie-
renden Mondpositionen mit den voraus-
berechneten Ephemeriden. Im Gegen-
satz zu den teuren, aber genauen
Schiffschronometern von HARRISON war
die Methode mit Hilfe des Mondes im
Prinzip einfach und billig. Ihr Problem
bestand (abgesehen vom Wetter und der
Genauigkeit der Mondtafeln) allerdings
darin, dass auf einem schwankenden
Schiff angestellte Beobachtungen nicht
sehr genau sein konnten. Dies galt fiir
jede astronomische Beobachtung auf
hoher See, insbesondere auch fiir die
Messungen zur Ermittlung der geogra-
phischen Breite. Es galt deshalb, einfa-
che und genaue Methoden zur astrono-
mischen Ortsbestimmung zu Land und
auf See zu entwickeln. Am 13. April 1727
publizierte die Académie des Sciences
in Paris ihre jahrliche Preisausschrei-
bung fiir das Jahr 1729. Sie war dem Pro-
blem der Breitenbestimmung gewidmet
und lautete: «Quelle est la metllewre Mé-
thode d’observer les hauteurs (d.h. die
Polhohen) sur Mer, par le Soleil & par
les Etoiles, soit par des instrumens
déja connus, soit par des instrumens
de nouvelle Invention?». Es war eigent-
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Fig. 5: Titelseite des Nekrologes auf DanieL
Bernouttl, den Conporcer 1782 verfasst und
den Danies Neffe Dawier Il Bernouttr 1787 ins
Deutsche Ubersetzt hat.

lich nur eine Teilaufgabe der bereits im
Jahre 1720 zum ersten Mal gestellten
Preisfrage. Sie geht auf ein Legat von J.-
B. RouiLLE DE MESLAY zuriick, der in sei-
nem Testament verfiigte: «Item, je don-
ne et legue a l’Académie des sciences de
Paris la rente de mille livres, ... a con-
dition que Messieurs de l’Académie
proposeront tous les ans un prix de la
moitié de ladite rente, pour étre par
eux donné tous les ans a celui qui aura
le mieux réussi en une méthode courte
et facile pour prendre plus exactement
les hauteurs et degrés de longitude en
mer et en les découvertes utiles a la na-
vigation et grands voyages». Das Pro-
blem der Léngenbestimmung auf See
wurde noch in verschiedenen weiteren
Preisaufgaben bis 1793 gestellt. Da die
Preisaufgaben jeweils gut dotiert wa-
ren, reichten stets zahlreiche Bewerber
ihre Losungen ein. So auch fiir den Preis
von 1729. Unter ihnen befanden sich Da-
NIEL BErNoULLI und PiErrE BOUGUER, der
schliesslich den Preis fiir seine Arbeit
De la Méthode d’observer exactement
sur Mer la hauteur des astres (gedruckt
1752 in Paris) erhielt.

Die Losung von DaNIEL BERNOULLI
wurde im Band IV (fiir das Jahr 1729)
der Commentarii academiae scien-
tiarum imperialis Petropolitanae (Fi-
gur 7) im Jahre 1735 unter dem Titel
Problema astronomicum inveniendi
altitudinem Poli una cum declinatione

GESCHICHTE DER ASTRONOMIE
HISTOIRE DE L’ASTRONOMIE

Stellae ejusdemque culminatione ex
ribus altitudinibus Stellae et duobus
temporum intervallis brevi calculo so-
lutum veroffentlicht (Figur 8). An-
schliessend an diese Abhandlung folgen
vier weitere Arbeiten von Jacos HEer-
MANN, LEONHARD EULER, FRrIEDRICH CHRI-
stoPH MAYER und GEORG WOLFGANG KRAFFT
zum selben Thema, wie das Inhaltsver-
zeichnis des vierten Bandes der Peters-
burger Kommentare in Figur 9 zeigt. Da-
mit hat es eine ganz besondere Be-
wandtnis, die auch mit den «Zinkerey-
en» um die Prioritit von DANIEL
BernNouLLis vorgeschlagener Methode zu
tun hat und auf die wir hier nicht einge-
hen wollen. Seine Methode besteht dar-
in, die Polhohe aus drei aufeinanderfol-
genden Hohenmessungen (bzw. Zenitdi-

stanzen) ein und desselben Sternes, des-
sen Koordinaten nicht bekannt sein
miissen, sowie aus den korrespondie-
renden Zeitintervallen zu bestimmen. In
seinem ersten Entwurf Discours sur la
question des hauteurs von 1728 nannte
er dieses Problem «Problema astrono-
micum trium altitudinum». Es ist ei-
gentlich eine Modifikation des schon im
15. Jahrhundert aufgetauchten Pro-
blems, aus zwei Hohen und ihrer Zwi-
schenzeit die Polhohe zu bestimmen.
Dieses Problem aus der sphirischen
Astronomie wurde immer wieder vari-
iert und verschiedene (exakte und geni-
herte) Losungen entwickelt, u.a. von RE-
GIOMONTAN (1472), WiLHLEM IV. Landgraf
von Hessen (1566) und TycHo DE BRAHE
(1573), spater dann von Douwes (1754)

Fig. 6: Titelseite der «Hydrodynamica», des Meisterwerkes von DANIEL BERNOULLI.
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oder Gauss (1808). Aber auch DANIELS
Onkel JakoB BERNOULLI erwihnte in sei-
ner Dissertation von 1687 einen Spezial-
fall dieses Problems. Es ist daher nicht
ausgeschlossen, dass DANIEL BERNOULLIS
Methode schon frither formuliert, deren
Losung jedoch noch nicht erbracht wur-
de. Seine Neuerung bestiinde folglich in
der mathematischen Losung sowie dem
Vorteil, dass mit drei Hohenmessungen
mogliche Unbestimmtheiten in der Lo-
sung verhindert werden konnen, ob-
wohl mit drei Hohen und zwei Zeitinter-
vallen das Problem eigentlich iiberbe-
stimmt ist. Zur Losung des Problems
dringten sich damals drei Methoden
auf:

1. Losung mit Hilfe der sphéirischen
Trigonometrie (intrinsische Metho-
de)

2. Losung mit Hilfe geometrischer
Streckenverhéltnisse in einer Halb-
ebene der Sphére, z.B. der Meridian-
Ebene (stereometrische Methode)

3. Losung mit Hilfe der in eine Ebene,
z. B. die Aquatorebene, stereogra-
phisch projizierten sphérischen
Dreiecke, die dann als ebene Drei-
ecke behandelt werden kénnen (ste-
reographische Methode).

Wihrend EuLEr, MaYER und KRAFFT
das Problem nach der intrinsischen
Methode angingen, wéhlten DANIEL
BernouLLl und HERMANN den stereometri-
schen Zugang. Die mathematischen
Ausfithrungen innerhalb einer einge-
schlagenen Methode weichen jedoch

Fig. 7: Titelseite des vierten Bandes der
Petersburger Kommentare fir das Jahr 1729,
gedruckt 1735.
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deutlich voneinander ab. EULER verof-
fentlichte 1777 noch eine sehr elegante
und allgemein giiltige Losung, in der er
wenige Gleichungen aus der sphéri-
schen Trigonometrie verwendete. Der
Vorteil seiner Losung besteht darin,
dass die Beobachtungen auf dem Dekli-
nationskreis fast beliebig verteilt sein
und permutiert werden konnen. DANIEL
BERNOULLI projiziert die drei gemessenen
Sternhohen p, ¢, r in die Meridianebene
atoc (Figur 10) sowie in die Ebene des
Deklinationskreises ipqro und be-
stimmt die entstehenden Sehnen und
Strecken in diesen Flichen mittels ebe-
ner Trigonometrie. Figur 11 zeigt die
Ebene des Deklinationskreises ORI, auf
dem sich die beobachteten Sternhéhen
P, @, R befinden. IVO ist die Meridian-
ebene, V das Zentrum des Deklinations-
kreises. Die Trigonometrie dieser Figur
liefert die Formeln zur Berechung der
Stundenwinkel. Insbesondere sind die
Stundenwinkel ZVI, QVP und RVP aus
den gegebenen Streckenverhéltnissen
von Figur 11 zu bestimmen. Mit Hilfe
dieser Winkel lisst sich die Aufgabe in
der Meridianebene leicht 16sen. Aus den
Stundenwinkeln und den in der Meridi-
anebene gebildeten Dreiecks- und
Streckenverhiltnisse konnen die Zenit-
distanzen der oberen und unteren Kul-
mination bestimmt und daraus die Pol-
hohe ermittelt werden.

DanieL BErRNoOULLI beschreibt in einem
Kapitel De tubis communicantibus sei-
nes Discours von 1728 ebenfalls ein In-
strument, mit dessen Hilfe man auf ei-
nem schwankenden Schiff Hohenmes-
sungen durchfithren kann. Es besteht
im wesentlichen aus kommunizieren-
den Rohren, auf denen Teilungen ange-
bracht sind, sowie einer mit Quecksil-
ber gefiillten Wanne, die als kiinstlicher
Horizont dienen soll. Offenbar hatte er
damit auch Versuchsmessungen auf See
durchgefiihrt, denn er schreibt: «Pour
moi j'ai fait des experiences avec de
simples tuyaux que je maniois a la
main et allant a Voile j’ai pris des hau-
teurs jusqu’'a dix degrez et sans pren-
dre toutes les precautions je pouvois
m’assurer d’'une justesse a vingt au
trente minutes pres; mais je crois
qu'en prenant toutes les mesures possi-
bles, un homme bien éxercé a faire ces
experiences pourra répondre de 3 a 4
minutes dans ses observations, laquel-
le exactitude est plus que suffisante sur
mer». Diese Experimente schien er fort-
gesetzt zu haben, berichtete er doch am
22. September 1733 in einem Brief an
EuLERr, dass er zur See einige hiibsche
Beobachtungen angestellt und dabei be-
merkt habe, dass seine angegebene Ma-
schine zur Beobachtung der Sternh6hen
sich als recht effizient erwiesen habe.

IN FLUIDO. 89

vi viua in ratione fpatioram defcriptorum , tauto-
chronam exhibere in promeu eft; eaque facile ex
inuentd hac formari poteft.  Pooatur enim tantum=
modo in aequatione noftra tautochronac inuenta
loco x haec quantitas —-gs, vbi litera g, ex quan-
titate hujus refiftentiae a tenacitate vel frictione or-
ta determinari debet. Quo facto habebitur tauto-
chrona quaefita,

PROBLEMA ASTRONOMICUM
INUENIENDI ALTITUDINEM POLI VNA
CUM DECLINATIONE STELLAE EJUSDEM-
QUE CULMINATIONE EX TRIBUS ALTI-
TUDINIBUS STELLAE ET DUOBUS TEM-
PORUM INTERUALLIS BREUI CAL-
CULO SOLUTUM.

Auctore
Daniele Bernoulli Fob. Fil.

emma. Sint tres arcus circulares mmiguiM L
i ' 1Z— DNxOX~Lxry Menf Nov,
IP, PQ, QR, dico fore 4 12—ttt s,

vbi 1Z fignificat tangentem arcus IP; LN Twb.vir,

differentiam cofinuum pro arcubus IP et IR LM Fis =
differentiam cofinuum pro arcubus IP et IQ, QX et
RY funt finus verfi arcuum PQ et PR; et PX, PY
funt eorundem arcuum finus: denique 1V eft fi-7
Tom. 1V, M nus

Fig. 8: Titelseite der Abhandlung von DAnieL
Bernoutti zur Bestimmung der Polh6he, aus
dem vierten Band der Petersburger
Kommentare.

Abgesehen von den Beobachtungs-
fehlern bleibt ein Problem unberiick-
sichtigt. Damit die Polhohe mit dieser
Methode gut bestimmt werden kann,
sollten die Hohenmessungen zeitlich
moglichst weit auseinander liegen.
Wihrend des Zeitintervalles der Mes-
sungen kann ein Schiff den Standort je-
doch erheblich andern. Ob DAaNIEL
BernouLLl diesen Aspekt ebenfalls in
Erwagung zog, ist uns nicht bekannt.
Als Ergianzung sei noch erwihnt, dass
DaNIEL BERNOULLI Zzwei weitere Arbeiten
zum Thema Orts- und Zeitbestimmung
auf See als Preisschriften fiir die Jahre
1745-47 einreichte, die 1750 publiziert
wurden. Es sind dies die unter dem Ti-
tel Recherches Méchaniques et Astro-
nomiques zusammengefassten Ab-
handlungen La meilleure maniere de
trouver l’heure en Mer, par observa-
tions, soit dans la jour, soit dans les
crépuscules, & sur-tout la nuit, quand
on ne voit pas l’horison sowie ...Qui
tend principalement a fournir aux
Navigateurs les moyens Méchaniques
les plus stires pour faire en Mer, mal-
gré Uagitation du vaisseau, les obser-
vations dont on peul conclurre
Uheure. Unveroffentlicht blieben die
Werke Discours sur la cause et la na-
ture de la pesanteur sowie der bereits
erwahnte Entwurf Discours sur la
question de 1729. quelle est la
metlleure methode d’observer les hau-
teurs sur mer par le soleil et par les
etoiles soit par des instrumens deja
connus soit par des instrumens de
nouvelle invention?
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Das Problem der
Bahnneigungen der Planeten

Apian stellte in der ersten Hilfte des
16. Jahrhunderts die merkwiirdige Ei-
genschaft fest, dass Kometenschweife
stets von der Sonne wegweisen und so-
mit irgend ein Zusammenhang zwischen
ihrer Bahn und der Sonne bestehen
muss. In der zweiten Hélfte des 17. Jahr-
hunderts erkannte man die wahre Natur
der Kometenbahnen. Es war lange nicht
klar, ob ein Komet vor und nach dem Pe-
riheldurchgang tiberhaupt ein und das-
selbe Objekt ist und was bei einem «Pe-
riheldurchgang» eigentlich geschieht.
Wenn es sich jeweils um die Bahn ein
und desselben Objektes handelt, musste
gezeigt werden, ob sich das Perihel sei-
ner Bahn «hinter» der Sonne oder zwi-
schen Sonne und Erde befindet. Auf-
grund zahlreicher Beobachtungen
vermutete DORFFEL bereits in den frithen
1670er Jahren, dass sich Kometen tat-
sichlich um die Sonne bewegen. NEw-
ToN und anderen gelang es, die Bahnfor-
men der Planeten und Kometen aus dem
Gravitationsgesetz abzuleiten. Dies er-
offnete HaLLey die Moglichkeit, Bahnele-
mente von Kometenbahnen aus alten
Beobachtungen zu bestimmen. In seiner
Astronomiae cometicae sSynopsis von
1705 veroffentlichte er Bahnelemente
von 24 Kometen, die zwischen 1337 und
1698 beobachtet wurden (Figur 12). Ob-
wohl HaLLey fiir seine Berechnungen
stets von parabolischen Bahnen aus-
ging, erkannte er spiter, dass sich ge-
wisse Bahnelemente von scheinbar un-

terschiedlichen Kometenerscheinungen
gleichen. Dies fiihrte ihn zur Vermutung,
dass auch unter den Kometen ellipti-
sche Bahnen und somit periodische Er-
scheinungen moglich sind. Nicht nur
HauLey war mittlerweile aufgefallen,
dass die Kometenbahnen offenbar belie-
bige Bahnneigungen haben konnen.
Diese Erkenntnis kontrastierte mit der
Tatsache, dass sich die Bahnneigungen
der Planeten nicht stark unterscheiden
und dass sich alle Planeten etwa in der
Ekliptikebene bewegen. Erklarungen
fiir diese beiden Phinomene wurden ge-
sucht. Bereits zum zweiten Mal stellte
die Académie Royale des Science von
Paris fiir das Jahr 1734 die Preisaufgabe:
«Quelles est la cause physique de
Uinclinaison des Plans des Orbites des
Planetes par rapport au plan de
UVEquateur de la revolution du Soleil
autour de son axe; Et d’on vient que les
inclinaisons de ces Orbites sont diffe-
rentes entre elles».

Dass man in dieser Frage die Bahn-
ebenen der Planeten auf die Aquator-
ebene der Sonne bezog, hatte einen sehr
gewichtigen Grund, der mit den damali-
gen beiden Theorien zur Erkldrung der
Planetenbewegungen zusammenhingt.
Seit der Entdeckung der Sonnenflecken
und ihrer regelmissigen Beobachtung
wusste man, dass sich die Sonne um
ihre eigene Achse dreht und dass diese
nicht senkrecht auf der Ekliptik steht.
Unabhingig davon entwickelte DEscar-
TES in der ersten Hilfte des 17. Jahrhun-
derts eine Theorie, welche die Ursache
der Planetenbewegung erkliren sollte.

Seine «Wirbeltheorie» bestand darin,
dass die Planeten von einem das ganze
Weltall fiillenden Medium in einer Wir-
belbewegung um die Sonne getrieben
werden. Diese Theorie stand anfangs in
krassem Gegensatz zur «Gravitations-
theorie», die eine Wechselwirkung der
Himmelskorper im leeren Raum postu-
lierte. Die Ansicht, dass Himmelskorper
iiber eine Entfernung aufeinander wir-
ken konnen, ohne die Wirkung tiber ein
dazwischenliegendes Medium zu iiber-
tragen, war fiir das damalige mechani-
stisch geprigte «cartesische Weltbild»
vieler Kontinentaleuropéer absurd. Die
Auseinandersetzungen zwischen «New-
tonianern» und «Cartesianern» um die
Ursache der Gravitation dauerten bis in
die Mitte des 18. Jahrhunderts, obwohl
es Bestrebungen gab, beide Theorien zu
vereinen. Angeheizt wurde die Diskussi-
on durch Probleme, die auch mit der
Gravitationstheorie scheinbar nicht be-
friedigend gelost bzw. erklart werden
konnten. Sie betrafen vor allem die Fi-
gur der Erde, die Grosse Ungleichung
von Jupiter und Saturn, die scheinbare
sikulare Beschleunigung des Mondes
sowie, als «piece de résistance», die Ap-
sidendrehung des Mondes. Diese Phi-
nomene bildeten Priifsteine fiir und wi-
der eine Theorie der Fern- oder
Nahwirkung. In diesem Kontext ist die
Preisfrage zu verstehen. Es war nahelie-
gend, die beiden Aspekte «Rotation der
Sonne» und «Bahnneigung der Plane-
ten» bereits in der Preisfrage mit der
Wirbeltheorie in einen Zusammenhang
zu bringen. Die Pariser Akademie stand
in den 1730er Jahren deutlich auf der
Seite der Cartesianer und erhoffte sich
mit der Losung klare Argumente fiir die
Wirbeltheorie. Insbesondere schien
eine Losung im «Cartesischen System»

Fig. 10: Zweite Figur zu DanieL BErnouLLIS
Abhandlung Uber die Polh6henbestimmung.
Die Kreise abcd und ipgro stellen den
Horizont sowie einen Deklinationskreis dar,
der Halbkreis aioc ist der Ortsmeridian. p, q
und r sind die gemessenen SternhGhen.
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weniger problematisch zu sein als im
«Newtonschen System», wonach die
fernwirkende Gravitation keine Bahn-
ebene bevorzugt und daher alle mogli-
chen Bahnneigungen zulésst.

Der Preis wurde geteilt und ging an
DanieL BErNouLLI und seinen Vater Jo-
HANN. Thre Abhandlungen wurden 1735
publisiert (Figur 13). Die Arbeiten von
Ducros und BouGugr erhielten Anerken-
nung. Figur 14 zeigt die Titelseite der
von JoHANN BErNoULLI eingereichten Ab-
handlung, Figur 15 jene der urspriing-
lich in lateinischer Sprache verfassten
Abhandlung von DanieL BErnouLLL. Der
Titel der franzosischen Ubersetzung der
Preisschrift von DanieL BErnouLLI lautet:
Recherches physiques et astrono-
maiques sur le probleme proposé pour la
seconde fois par ’Academie Royale des
Sciences de Paris. Quelle est la cause
physique de l'inclinaison des Plans des
Orbites des Planetes par rapport au
plan de UEquatewr de la revolution du
Soleil autour de son axe; Et d’ou vient
que les inclinaisons de ces Orbites sont
differentes entre elles (Figur 16). DANIEL
BernouLLl bemerkt gleich zu Beginn,
dass die beiden Fragen nicht unabhin-
gig voneinander beantwortet werden
konnen, und unterstreicht ihre Berech-
tigung angesichts der verschwindend
kleinen Wahrscheinlichkeit, dass eine
vergleichbare Situation iiberhaupt ein-
treten konne. Dafiir miisse es eine phy-
sikalische Ursache geben. Er berechnet
die Wahrscheinlichkeit dafiir, dass alle 5
Bahnneigungen innerhalb jener des
Merkur von 6°54‘ liegen, als 1 zu 17° - 1
bzw. 1 zu 1‘419‘856, da die von der Mer-
kurbahn an der Himmelsphire bean-
spruchte Zone 1/17 der gesamten Fliche
der Sphire ausmache. Beziiglich des
Sonnendquators, der nach CASSINI im
Jahre 1701 eine Neigung von 7°30° ge-
geniiber der Ekliptik aufwies, betrage

Fig. 11: Erste Figur zu DANiEL BERNOULLIS
Abhandlung tber die Polhéhenbestimmung.
Sie zeigt den Deklinationskreis IRO sowie die
gemessenen Sternpositionen R Q und R.
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MOTUVUM COMETARUM IN ORBE PARABOLICO
ELEMENTA ASTRONOMIC A
Nodws  Afcend. Inelin. Orbite. Peribeliom. Diftantia Logarithmus Logarithmus | Temp, quat. Perihel.| Peribel. & Nodo,

Comete Perikelia Diflantie Pe- Medii Mosus

Auni. sor il ain, o s, & Sole. rihelie 4 Sole. Disrni. DI SR

1337] I 24 21 o|32 11 o8 7 59 of 40666 |9 609236 |0 546274 | Junii 2 6 25| 46 22 o Retrog.
1472 | W 11 46 20| 5 20 o| 8 15 33 30| 54273 |9 734584 |0 358252 Feb. 28 22 23|123 47 10| Retrog
1531| ¥ 19 25 0|17 56 oW 1 39 of 56700 |9 753583 [0 329754 | Aug.24 21 18|t07 46 o Retrog.
1532 | Il 20 27 0|32 36 o| % 21 7 of 50910 |9 706803 |0 399924 OF. 19 22 12| 30 40 o| Dirct.
1556| M 25 42 of32 6 30| W 8 50 of 46390 |9 666424 [0 460492 Apr. 21 20 3{103 8 o Dire.
15771 T 25 52 0|74 32 45| SL 9 22 of 18342 |9 263447 | T 064958 0. 26 18 45|103 30 o Retrog.
15801 YV 18 57 2064 40 0| % 19 5 50| 59628 |9 775450 |0 296953| Nov.28 15 o| 90 8 30| Dire&.
158518 7 42 301 6 4 ol T 8 51 o[109358 |0 038850 |9 901853 Sepr.27 19 20| 28 51 30 | Diredt.
1590 | M) 15 30 40[29 40 40| Ul 6 54 30| 57661 |9 760882 |0 318805 | Jan. 29 3 45| 51 23 50| Retrag.
1596 | W4 12 12 30|55 12 o T 18 16 of 51293 |9 710058 [0 395041 | Fukiizt 19 55| 83 56 30 | Retrog.
1607 | ¥ 20 21 of17 2 oW 2 16 o| 58680 [9 7684900 307393| 0# 16 3 s0|108 5 o|Retrog.
1618| I 16 1 0|37 34 of Y 2 14 of 37975 |9 579498 |0 590881 | O 29 12 23| 73 47 ©|Diret.
1652 | I 28 10 ©|79 28 o T 28 18 40| 84750 |9 928140 |0 067918| Nuw. 2 15 40| 59 51 20/ Dired.
1661 { IT 22 30 30{32 35 50| B 25 58 40| 44851 |9 651772 {0 482470| Fan. 16 23 41| 33 28 10 | Dirett.
1664 | XL 21 14 o|21 18 30| 8 10 41 25|102575%| 0 O11044 |9 943562 | Nov.24 11 52| 49 27 25 | Retrog.
16651 M 18 2 o|76 § of Il 11 54 30| 10649 |9 027309 |I 419164| Apr. 14 5 15|156 7 30 Retrog.
1672 | W 27 30 30[83 22 10| 8 16 59 30| 69739 |9 843476 |0 194914 Feb. 20 8 37|109 29 o Direct.
1677{ M. 26 49 1of79 3 15| & 17 37 5| 28059 |9 448072 |0 788020| Apr.26 o 37| 99 12 5| Retrog.
1680|W 2 2 of|60 56 of [ 22 39 30| co612%|7 787106 |3 279469| Dec. 8 o 6| 9 22 30| Direft.
1682 | & 21 16 30|17 56 oW 2 52 45| 58328 |9 765877 |0 311313 Sepr. 4 7 39[108 23 45 | Retrog.
1683 | M) 23 23 o83 11 o I 25 29 30| 56020 |9 748343 |0 337614| Fulii 3 2 5o| 87 53 30| Rewog.
1684| I' 28 15° 0|65 48 40| W 28 52 o| 96015 |9 982339|9 986620 Maii29 10 16| 29 23 o] Diret.
1686 | 3 20 34 40|31 21 40| IL 17 o 30| 32500 |9 511883 |0 692304 | Sept. 6 14 33| 86 25 50 | Diret.
1698 | I 27 44 15|11 46 o| W o 51 15| 69129 |9 839660 |0 200638 |0 8 16 57| 3 7 o Retrog

Fig. 12: HatLevs Kometentafel aus seinem Werk «Astronomiae cometicae synopsis» von 1705.

die maximale Uberdeckung 1/12 der
Himmelsphire. Die Wahrscheinlichkeit,
dass alle 6 Planetenbahnen innerhalb
dieses Giirtels liegen, sei also 1 zum® -1
bzw. 1 zu 2'985983, mit m = 12. Damit
hat er vermeintlich gezeigt, dass die
Bahnneigungen der Planeten nicht zu-
fallig sind. Fiir die weiteren Uberlegun-
gen nimmt DANIEL BeErnouLLl aufgrund
der Beobachtungen an, dass die mittle-
re Bahnebene der Planeten mit der Ebe-
ne des Sonnendquators zusammenfallt,
was ihm aus physikalischen Griinden
plausibel erscheint und wovon geméss
der Preisaufgabe auch ausgegangen
werden soll. Es gehe nur darum zu zei-
gen, weshalb diese beiden Ebenen zu-
sammenfallen und weshalb dennoch ei-
nige Planetenbahnebenen ein wenig
davon abweichen wiirden.

Danier. BErnouLLl sieht die Losung
dieser Probleme in der Existenz einer
bis iiber die Saturnbahn reichenden,
ausgedehnten Sonnenatmosphére, de-
ren Eigenschaften er aus den Charakte-
ristiken der irdischen Atmosphére ablei-
tet, im wesentlichen aus der barometri-
schen Hohenformel. Dies glaubt er tun
zu diirfen, weil alle Himmelskorper (so
auch der Mond!) Atmosphéren mit ver-
gleichbaren Eigenschaften beséssen.
Die Sonnenatmosphire besteht nach
seiner Vorstellung aus einem sehr subti-
len, elastischen Fluidum (vergleichbar
mit der irdischen Luft), das sich mit der
Sonne einmal in 25, Tagen um ihre
Achse dreht. Die Rotationsgeschwindig-
keit der Sonnenatmosphére wachse im
wesentlichen proportional mit der Di-

stanz von der Sonne, nehme aber durch
den Reibungswiderstand an der Atmo-
sphédrengrenze mit der Entfernung von
der Sonne leicht ab. Die Reibung werde
durch eine an unsere Sonnenatmosphé-
re angrenzende, unbekannte Atmosphéi-
re verursacht. Die resultierende «diffe-
rentielle Rotation» der Sonnenatmo-
sphire entspreche aber nicht den Rota-
tionen jener «Cartesischen» Wirbel, die
nach dem dritten Keplerschen Gesetz
die Planeten um die Sonne herum tra-
gen, wie dies sein Vater in seiner Preis-
schrift von 1730 gezeigt habe (Figur 17).
Im Gegenteil: die Rotationsgeschwin-
digkeit der angenommenen Sonnenat-
mosphére iibertreffe an den jeweiligen
Bahnradien der Planeten jene der Wir-
bel: «<Enfin, la remarque la plus essen-
tielle pour notre dessein est, que ce flui-
de solaire doit necessairement faire ses
révolutions autour de 'axe du Soleil, &
méme que toutes ses parties ne man-
queroient pas de faire le tour ensemble
avec le Soleil dans 25"/ jours de temps,
st le mouvement n’'étoit pas empéché
dans les limites de l'atmosphére; cet
empéchement fera que les temps pério-
diques de la matiere croitront vers les
limites. Je présume pourtant que mal-
gré celte diminution de mouvement,
les vitesses (qui sans cela suivroient la
proportion des distances de l'axe du
Soleil) ne laissent pas d’étre plus gran-
des, quand les distances dudit axe sont
plus grandes». Damit versuchte DANIEL
BernouLLl zwei Effekte zu erkliren. Ei-
nerseits bewirke die hohere Geschwin-
digkeit des Fluidums auf den sonnenab-
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gewandten Seiten der Planeten, dass
ihre Rotations- und Revolutionsbewe-
gungen gleichsinnig erfolgen. Anderer-
seits erzeuge der Geschwindigkeits-
iiberschuss des Fluidums gegeniiber
den Planetenbewegungen, dass deren
Bahnneigungen langsam in die Ebene
des Sonnendquators gedriickt und ihre
elliptischen Bahnen immer kreisformi-
ger wiirden. Betrachten wir diese Theo-
rie etwas genauer.

Unter Annahme der Giiltigkeit des
Gravitationsgesetzes leitet BERNOULLI
eine «barometrische Hohenformel» her,
mit der er die Druckverteilung der Son-
nenatmosphére in Abhingigkeit von der
Sonnenentfernung berechnen kann.
Wiirden die Parameter so gesetzt, dass
das Maximum der Druckverteilung sich
im Abstand der Marsbahn befindet, er-
halte er folgende Zahlenwerte: Druck an
der Oberfldche der Sonne = 1, bei Mer-
kur = 4170, Venus = 8910, Erde = 12300,
Mars = 14400, Jupiter = 1310 und Saturn
= 15. Diese Druckverteilung erachte er
als plausibel. DaNIEL BERNOULLI betont
ausdriicklich, dass die rotierende Son-
nenatmosphére nicht mit den «Cartesi-
schen Wirbeln» identifiziert werden diir-
fe, weil sie nicht die den Wirbeln
zugeschriebenen Eigenschaften erfiil-
len kénne, insbesondere nicht mit jener,
welche die Planeten in ihren Bahnen
halte. Als Griinde fiihrt er u.a. das dritte
Keplersche Gesetz an, wonach die Um-
laufszeit eines (fiktiven) Planeten dicht
an der Sonnenoberflidche nur 3 Stunden
betragen wiirde, wihrend die Atmo-
sphére, welche die Sonnenoberfliche
beriihrt, fiir einen Umlauf 25/, Tage be-
notige. Er zweifelt, ob die Wirbel den
Zentrifugalkréften entgegenwirken bzw.
diesen die Waage halten konnen. Es
miisse deshalb noch einen anderen
Grund dafiir geben, dass die Planeten
auf ihren Bahnen gehalten werden,
ndmlich die Schwerkraft der Sonne.
BERNOULLI nennt sie «pesanteur solaire,
qui contrebalance la force centrifuge, &
qui pousse continuellement les Plane-
tes & la Terre vers le centre du Soleil».
Wie diese Schwerkraft zustande kommt,
lasst er offen, bekriftigt jedoch, «que
tous les Physiciens sont en ces temps-
¢t d’accord, que toutes les Planetes ont
une pesanteur mutuelle qui pousse
l'une vers Uautre». Wir erkennen in sei-
nen Aussagen erste Ansitze einer Ab-
kehr von den nahwirkenden Wirbeln
und eine Zuwendung zur fernwirkenden
Gravitation. Mit dieser Ansicht schien er
damals, nach seiner eigenen Meinung,
nicht der einzige gewesen zu sein. Den-
noch ist er vorsichtig und zeigt sich vor-
erst davon iiberzeugt, dass in irgend ei-
nem subtilen Medium bzw. «un grand
nombre de Tourbillons d’une matiere
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Fig. 13: Titelseite der Preisschriften der
Pariser Akademie fir 1734, gedruckt 1735.

subtile gravifique, se traversant libre-
ment & sur differens axes, qui passent
tous par le centre du Soleil» die Ursache
fiir die Schwere zu suchen sei. Als Argu-
ment nennt er die Theorie des Lichtes,
welche die Existenz eines subtilen Me-
diums erfordere. Somit seien zwei Ef-
fekte zur Erkliarung der Planetenbewe-
gungen zu berilicksichtigen: 1) die
rotierende Sonnenatmosphire, die be-
wirke, dass die Bahnneigungen langsam
aber stetig abnehmen und sich der
Aquatorebene der Sonne (oder einer
Ebene parallel dazu) ndhern, und 2) die
Schwerkraft der Sonne, die den Zentri-
fugalkriften entgegenwirke, sie ausglei-
che und damit bewirke, dass sich die
Planeten stets in Ebenen bewegen wiir-
den, die durch das Zentrum der Sonne
gehen.

BernouLLl beschreibt nun seine
Grundidee, wie der aus dem Zusammen-
spiel dieser beiden Effekte entstehende
Mechanismus eine Verringerung der
Bahnneigungen hervorrufen kann. Dazu
fiihrt er die noeuds solaires als Knoten-
punkte zwischen den Planetenbahnebe-
nen und der Aquatorebene der Sonne ein
und betrachtet einen Planeten in einem
dieser Knoten. Das Fluidum der schnel-
ler rotierenden Sonnenatmosphire er-
teile ihm eine kleine Bewegung parallel
zur Aquatorebene der Sonne, was ein
stetes Vorwéartsdrehen der Knoten- und
Apsidenlinien zur Folge habe. Da die Pla-
netenbahn an dieser Stelle gegeniiber
dem Sonnendquator am stidrksten ge-
neigt sei, resultiere eine Bewegung in
Richtung der Aquatorebene der Sonne.

Dasselbe geschehe im anderen Knoten.
Dagegen erfolge in den Punkten 90° zu
den Knoten keine Wirkung, weil dort die
Planetenbewegung parallel zur Rotati-
onsbewegung der Sonnenatmosphéire
verliefe. BErNouLLI bemerkt, dass dersel-
be Mechanismus auch dann noch wirk-
sam bleibe, wenn die Rotationsge-
schwindigkeit der Sonnenatmosphéire
Kleiner ist als die Bahngeschwindigkeit
des betrachteten Planeten. BERNOULLI
scheint mit seiner Theorie nicht nur zei-
gen zu konnen, dass die Exzentrizititen
der Planetenbahnen langsam abnehmen
miissen, sondern auch, weshalb Kome-
tenbahnen sehr grosse Exzentrizititen
erreichen konnen. Er schliesst aus sei-
nen Uberlegungen, dass die Bahnneigun-
gen der Planeten vor sehr langer Zeit we-
sentlich grosser gewesen sein miissen
und sich sukzessive auf den beobachte-
ten Wert verkleinert hitten. Je nach
Dichte der Sonnenatmosphire und Be-
wegungszustand der Planeten verlaufe
dieser Prozess unterschiedlich schnell.
Nach langer Zeit wiirden jedoch alle
Bahnebenen mit der Ebene des Sonnen-
dquators zusammenfallen. Aus der Tat-
sache, dass man seit der Antike keine
messbare Anderung festgestellt habe,
schliesst er, dass die Sonnenatmosphire
aus einem &dusserst subtilen Medium be-
stehen miisse und dass somit die Abnah-
me der Bahnneigungen nur sehr langsam
fortschreiten konne. Angesichts der klei-
nen Bahnneigungen der Planeten folge,
dass die Welt vor sehr langer Zeit ent-
standen sein miisse und daher einem
Entwicklungsprozess unterworfen sei:
«...Je ne crois pas qu’il y ail personne,
qui soutienne encore les corps célestes
n’'étre sujets a aucuns changements; car
le monde n’est pas depuis l'éternité, ni
ne durera éternellement, ni ne demeu-
rera enfin toljours dans le méme état,
tant qu’il dure».

Fig. 14: Titelseite der Preisschrift von
JOHANN | BERNOULLI.
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des Orbites des Planetes par rapport au plan de
TEquateur du Soleil. e :

PIECE DE M. JEAN BERNOULLI,
De L’AcADEMIE RoYALE DES SCIENCES,
& do celles de Londres, Poerflourg, érc. Et Profefleur
de Mathemaique eu !'Univerfieé de Bile.
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DISQUISITIONES

PHYSICO-ASTRONOMICA
PROBLEMATIS

AB
INCLYTA SCIENTIARUM ACADEMIA REGIA,
QUA PARISIIS FLORET,

LLERUMIRBROPOSTTIL

Quelle cft la caufe phyfique de linclinaifon des plans des Orbites
des Planctes par rapport au plan de I'E'quateur de Ja revolution
du Soleil autour de fon axe; Et d’olt vient que les inclinaifons
de ces Orbites font differentes entre elles.

SIVE
Queenam eft caufa phyfica inclinationis planorum, in quibus
Planetee Orbitas fuas perficiunt ad planum quatoris,
vertigini Solis circa axem fium refpondentis; Et qui fit
ut inclinationes iftarum Orbitarum fint inter fe diverfe.

Authore DAN. BERNOUL LI, Acad. Petrop. & Bonon. Socio,
in Acad. Bafilienfi Anar. & Bot. Profeffore.

Fig. 15: Titelseite der lateinischen Version der
Preisschrift von DANieL BERNOULLI.

Im folgenden versucht BERNOULLIL
seine Theorie anhand der beobachteten
Bahnneigungen der Planeten, Satelliten
und Kometen, teils mit physikalischen
(nach seiner Theorie), teils mit statisti-
schen Uberlegungen, noch einmal zu be-
kraftigen. Er bemerkt zwar, dass nach
seiner Theorie die Knoten- und Apsiden-
linien beziiglich der Ebene des Sonnen-
dquators vorwirts (!) schreiten sollten,
genau diesen Sachverhalt verifiziert er
aber nicht anhand der Beobachtungen.
Er hitte sonst feststellen konnen, dass
die Bahnknoten der Planeten (ausser
fiir Jupiter) eine retrograde Bewegung
von etwa 5” — 20” / Jahr aufweisen: ein
Resultat, das EuLer 15 Jahre spéter aus
theoretischen Uberlegungen herleiten
konnte. DANIEL BErNOULLI bestimmt eine
mittlere Bahnneigung der Planeten be-
ziiglich der Ebene des Sonnenédquators
zu 5° 11’. Da er diesen Wert als unsicher
erachtet, berechnet er die Neigung des
Sonneniquators beziiglich der Ekliptik
derart, dass die Abweichungen der
Bahnneigungen aller anderen Planeten
von dieser Ebene minimal wird und er-
hilt dafiir einen Wert von 3° 22’. Unter
der Annahme, dass der Sonnenéiquator
mit der Ekliptik diesen Winkel von 3° 22’
bildet (iibrigens ein Wert, der nach
BernouLLis verwendeten Keplerschen
Tafeln zufilligerweise (?) mit der Bahn-
neigung der Venus gegeniiber der Eklip-
tik iibereinstimmt), berechnet er die
Bahnneigungen der Planeten beziiglich
dieser Aquatorebene der Sonne und fin-
det fiir Saturn 1°51’, fiir Jupiter 2°7’, fiir
Mars 2°4’, fiir die Erde 3°22’, fiir Venus
0°20’ und fiir Merkur 4°34’. Er findet
eine Bestiitigung seiner Theorie in der
Tatsache, dass die mittlere Bahnnei-
gung der Planeten beziiglich dieser
Aquatorebene der Sonne nur 2°23’ be-

~ GESCHICHTE DER ASTRONOMIE
HiSTOIRE DE L’/ASTRONOMIE

trage, withrend sich die mittlere Bahn-
neigung der Kometen gemiss HALLEYS
Angaben (siehe Figur 12) zu 43°39’ er-
gibt. Er interpretiert diese Resultate da-
hin, dass die Neigungen der elliptischen
Planetenbahnen periodisch iiber sehr
lange Zeit ein wenig verkleinert wurden.
Den Grund fiir die irregulére Verteilung
der als parabolisch oder hyperbolisch
angenommenen Kometenbahnen sieht
er in der kleinen Dichte der Sonnenat-
mosphire, in der sich die Kometen vor-
wiegend aufhalten. Daher ergebe sich
ein Mittelwert nahe dem «Erwartungs-
wert einer isotropen Verteilung» von 45°
(de facto betrigt dieser 57°18’), wie wir
heute sagen wiirden. Eine weitere Be-
stitigung findet er in der Tatsache, dass
die Bahnneigungen und Exzentrizitdten
der Planetenbahnen entsprechend sei-
ner Theorie korreliert zu sein scheinen.
Bahnneigung und Exzentrizitdt seien
bei der Venus sehr klein, wihrend sie
bei Merkur grosse Werte hitten. Dies ist
iibrigens eine Feststellung, die EULER of-
fenbar mit dem (berechtigten) Hinweis
kritisierte, dass diese scheinbare Korre-
lation stark von der Wahl der mittleren
Bahnebene abhiinge (siehe die Klam-
mer-Bemerkung zur Bahneigung von Ve-
nus), wie aus der Reaktion BERNOULLIS in
einem spiteren Brief vom 25. Januar
1737 an EuLer hervorgeht. Darin wirft er
EuLER vor, dass er sein Mémoire offen-
bar nur oberflichlich und in héchster
Eile gelesen haben konne. Es sei ihm
niemals in den Sinn gekommen, die Ebe-
ne des Sonneniquators so abzuindern,
dass die Inklinationen in der Ordnung
der Exzentrizititen fortschreiten. Er
habe nur angemerkt, dass — weil diese
Aquatorebene noch nicht feststehe -
man durchaus untersuchen konne, wie
diese zu platzieren sei, damit das arith-
metische Mittel aller Inklinationen mini-
mal sei. Dies habe er getan, ohne es zu
bereuen. Im folgenden Brief vom 16.
Miérz 1737 gibt BernouLLI noch einmal
sein Unverstindnis gegeniiber dem Vor-
wurf EuLers zum Ausdruck, er hitte die
Aquatorebene der Sonne derart verin-
dert, um den Exzentrizititen Geniige zu
tun. Seine Theorie trage doch in sich,
dass keinerlei Beziehung zwischen den
Exzentrizititen und den Inklinationen
vermutet werden konne und miisse. Sei-
ne Bemerkungen bestiinden nur darin,
dass, wenn man die Aquatorebene auf
die von ihm angegebene Art dndern wiir-
de, die Summe der Inklinationen mini-
mal wiirde.

Offenbar war sich DANIEL BERNOULLI
bewusst, dass seine Hypothese mit den
Beobachtungen nur schwer zu unter-
mauern ist. Einige Jahre spéter, in einem
Brief vom 4. September 1743, schrieb er
an EULER, er habe im 7. Band der (Peters-

burger) Kommentare verschiedene Ab-
handlungen von EuLkr tiber die Plane-
tenbahnen gesehen. Darin habe EuLEr
viele alte astronomische Beobachtun-
gen durchgerechnet und diese mit dem
heutigen Stand der Bahnen verglichen.
Er mochte nun von EULER wissen, ob
dieser nicht gefunden habe, dass die Ex-
zentrizititen wie auch die Schiefe der
Bahnen beziiglich einer gewissen mittle-
ren Ebene nach und nach ein wenig ab-
nehmen. Seine Vermutung dariiber, war-
um die Planeten nahezu in Kreisbahnen
und die Kometen etwa in parabolischen
Bahnen laufen und die ersteren unge-
fahr in derselben Ebene, die letzteren je-
doch in allen moglichen Bahnneigungen
vorkommen, diinke ihn noch immer bei
weitem die wahrscheinlichste unter al-
len Hypothesen zu sein. Es scheint, als
habe BEerNouLLI seinerseits EULERS Ab-
handlungen nur fliichtig gelesen. In De
motu planetarum et orbitarum deter-
minatione entwickelte EULER ein Ndhe-
rungsverfahren zur analytischen Losung
der Keplergleichung und bestimmte die
wahren Anomalien des Mars. Weiter lei-
tete er Gleichungen her zur Bestimmung
der Form und Lage der Bahnellipse ei-
nes Planeten bei gegebener Umlaufszeit
und drei beobachteten heliozentrischen
Ortern und berechnete die Apsidenlinie
und Exzentrizitat der Erdbahn aus Be-
obachtungen von 1716. In der Abhand-
lung Orbitae solaris determinatio, die
sich inhaltlich an die vorige anschliesst,
bestimmte EvLker die Erdbahn aus drei
beobachteten Sonnendrtern nebst den
Zwischenzeiten nach der in der vorigen
Abhandlung gegebenen Methode. Er
verwendete dazu Beobachtungen von
FramsteED aus dem Jahre 1690 und be-
stimmte damit die mittleren Sonnenor-
ter, die «grosste Gleichung» sowie die
mittlere und wahre Anomalie der Erd-
bahn. In der dritten Abhandlung Solutio
problematum quorundam astronomi-
corum des angesprochenen Bandes
handelt es sich um praktische Regeln
zur vereinfachten Berechnung der Ex-
zentrizitat sowie der mittleren Anoma-
lie. Diese Arbeiten EuLErs bezeugen
zwar seine meisterhafte Beherrschung
des Zweikorper-Problems, sie enthalten
jedoch nicht die von DANIEL BERNOULLI
erhofften Resultate. Im Zusammenhang
mit dem Problem des Prinzips der klein-
sten Wirkung und dem Grund fiir die Ke-
gelschnitte als Bahnformen weist DaNI-
EL BERNOULLI in einem Brief an EuLer
vom 25. Dezember 1743 noch einmal auf
ein mogliches Missverstidndnis seiner
Theorie hin. Dass die Umlaufbahnen der
Planeten mehr und mehr kreisférmig
wiirden, die Kometenbahnen nahezu pa-
rabolisch, habe er nicht aus den wider-
stehenden Mitteln (dem Fluidum der
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RECHERCHES

PHYSIQUE'S
ET ASTRONOMIQUES

SUR LE PROBLEME PROPOSE
POUR LA SECONDE FOIS

Par I'Academie Royale des Sciences de Paris:

Quelle oft la caufe phyfique de Uinclinaifon des Plans des Orbites
des Plancees par rapport au plan de I'E quareur de la revo-
Lution du Soleil auiour de fon axe; Er d'o} vient que les
inclinaifons de ces Orbites fone differentes entre elles.

PIECE DE M. DANIEL BERNOULLI,
DEs AcADEMIES DE PETERSBOURG, DE BOLOGNE, &¢,
& Profefleur TANATOMIE & de BOoTANIQUE
en P'Univerfité de Bale.
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Taduite en Frangois par fon Autheur.

Fig. 16: Titelseite der korrigierten
franzésischen Version der Preisschrift von
DaANiIEL BERNOULLI.

Sonnenatmosphire) deduziert, sondern
aus quasi hinfiihrenden, indem er diese
Mittel nicht im Ruhezustand, sondern
als sehr schnell um die Sonne bewegt
betrachtete. Seine Erklarungen wiirden
ihm noch immer sehr gut gefallen, ohne
glauben zu miissen, dies sei durch Ei-
genliebe beeinflusst.
Zusammenfassend erwdhnen wir
drei wichtige Aspekte dieser Abhand-
lung: 1) DanieL BErRNoOULLI verwendete
statistische Argumente, was eigentlich
nicht verwundert, war doch sein Onkel
JakoB mit der 1713 publizierten Ars con-
Jectandi ein Mitbegriinder der Statistik.
2) Als eine Folgerung aus seiner Theorie
vermutete DANIEL BERNOULLI, dass unser
Sonnensystem einerseits himmelsme-
chanischen Entwicklungsprozessen un-
terworfen sein muss, und andererseits,
dass diese in Zeitskalen ablaufen miis-
sen, die wesentlich grosser sind als das
damals immer noch akzeptierte bibli-
sche Weltalter von etwa 5000 Jahren.
Damit begriindete er die Wissenschaft
der Kosmogonie, die im Laufe des 18.
Jahrhunderts von LamBerT, Kant und La-
PLACE weiterentwickelt wurde. 3) Aus
Danier BernouLLis Theorie folgt, dass die
Bahnelemente der Planeten iiber grosse
Zeitskalen séikularen Anderungen unter-
worfen sein miissen. Damit nahm er
eine Erkenntnis vorweg, die erst 15 Jah-
re spiter, zumindest was langperiodi-
sche Anderungen anbelangt, ihre him-
melsmechanische Rechtfertigung durch
die grundlegenden Arbeiten EuLERs fin-
den sollte. Nach dem Urteil seiner Kor-

respondenten wird die Abhandlung von

DanieL BErNOULLI als einer seiner besten
Beitrédge zur Astronomie bezeichnet. Of-
fensichtlich war er ebenfalls stolz auf
seine Arbeit.

GESCHICHTE DER ASTRONOMIE
HISTOIRE DE L’ASTRONOMIE

Die Grosse Ungleichung von
Jupiter und Saturn

Schon KepLEr bemerkte 1625 eine
scheinbare Anomalie in den mittleren
Bewegungen von Jupiter und Saturn.
Der Grund dieser Anomalie liegt in den
gegenseitigen Storungen dieser Plane-
ten, die jeweils zur Zeit ihrer Konjunk-
tionen besonders ausgepragt sind. Die-
se Anndherungen fiihren zu kurz- und
langperiodischen Stérungen in den mitt-
leren Bewegungen. Die Konjunktionen
zwischen Jupiter und Saturn treten alle
19.86 Jahre auf. Die mittlere Bewegung
des Jupiter betragt 30.35° pro Jahr, jene
des Saturn 12.22° pro Jahr. In der Zeit
zwischen zwei Konjunktionen bewegt
sich Saturn daher um 242.70°. Ware die-
ser Wert exakt 240°, dann wiirden sich
alle Konjunktionen stets an drei glei-
chen Stellen im Zodiak ereignen, jeweils
um 120° voneinander getrennt. Die Kon-
junktionsstellen wiirden somit ein
gleichseitiges Dreieck bilden. Der
«Uberschuss» von 2.70° bewirkt, dass
die Konjunktionen nach jeweils 3-19.86
= 59.58 Jahren um 3.-2.70° = 8.1° weiter
ostlich im Tierkreis stattfinden. Das
Dreieck dreht somit in 120°-59.58 / 8.1°
= 882.7 Jahren um 120°. Diese Periode

Fig. 17: Die «Cartesische» Wirbeltheorie nach
JoHann | Bernoutl. S stellt die Sonne dar. Die
um S konzentrischen Kreise L, M, N, O stellen
Grenzlinien der Wirbel A, B, C dar. Der
Abstand der Grenzlinien voneinander wird
als differentiell klein (Strecke t) betrachtet.
Diese Wirbel bewegen sich nicht mit
derselben Winkelgeschwindigkeit um S,
sondern vollfihren eine differentielle
Rotation. Die Kurve RTVPF ist der
geometrische Ort aller Wirbelpartikel, die
sich vor einer bestimmten Zeit auf der Linie
ES befunden haben. Die differentielle
Rotation erfolgt nach dem dritten
Keplerschen Gesetz.

nennt man die Grosse Ungleichung. Das
Problem bestand nun darin, die Grosse
Ungleichung aus den gegenseitigen Sto-
rungen in den Bewegungen von Jupiter
und Saturn aufgrund des Gravitations-
gesetzes herzuleiten. Es beschiftigte
die besten Mathematiker des 18. Jahr-
hunderts, unter ihnen D’ALEMBERT,
CLAIRAUT, EULER, LAGRANGE und LAPLACE.
Die Académie Royale des Sciences de
Paris stellte dieses Problem als Preis-
aufgabe fiir die Jahre 1748, 1750 und
1752. Fiir 1750 wurde kein Preis zuge-
sprochen. Die anderen beiden Preise
gingen an EULER, wobei zu bemerken ist,
dass er mit seinen Arbeiten zu diesem
Thema die planetare Storungstheorie
begriindete. Das Problem blieb jedoch
lange ungelost. Erst im Jahre 1785 konn-
te Laprace die Losung bekanntgeben.
Auch DanieL BErnouLL beteiligte sich
an den Preisausschreiben fiir 1748 und
1752 und erhielt fiir ersteres das Pridi-
kat proxime accessit, was dem zweiten
Preis entspricht. Leider wurde seine Ar-
beit nie publiziert. Man weiss aber, dass
seine Abhandlung CrarauT, der in der
Preiskommission vertreten war, sehr
beeinflusst hat. Wie aus der von EuLEr
eingereichten Preisschrift hervorgeht,
ging es bei der Preisaufgabe um «Une
Théorie de Saturne et de Jupiter, par
laquelle on puisse expliquer les inéga-
lités que ces deux Planetes paroissent
se causer mutuellement, principale-
ment vers le tems de leur conjunction».
Es war aus verschiedenen Griinden eine
ausserst anspruchsvolle Aufgabe. Ge-
geniiber der Mondtheorie, an der eben-
falls seit Mitte der 1740er Jahre insbe-
sondere von CLAIRAUT gearbeitet wurde,
handelt es sich hier um eine himmels-
mechanisch vollig neue Situation. Wih-
rend beim Dreikorper-Problem Erde —
Mond - Sonne die Storkrifte der Sonne
auf den Mond wegen seiner Entfernung
zur Sonne immer etwa gleich gross blei-
ben, konnen sich die Abstinde zwi-
schen Jupiter und Saturn im Laufe ihrer
Bewegung um die Sonne (von Oppositi-
on zu Konjunktion) um einen Faktor 3
und die Storkrifte von Jupiter auf Sa-
turn bei Konjunktion (aufgrund der un-
terschiedlichen Exzentrizitdten) um ei-
nen Faktor 1.6 dndern. Was die Sache
nicht einfacher machte, war der Um-
stand, dass zu dieser Zeit an der exakten
Giiltigkeit des Gravitationsgesetzes ge-
zweifelt wurde. Neben der scheinbaren
sdkularen Beschleunigung des Mondes
konnte vor allem seine Apsidendrehung
vorerst nicht aus dem 1/r* — Gesetz her-
geleitet werden. Es wurden daher
gleichzeitig alternative Kraftgesetze dis-
kutiert. Letztlich ging es der Akademie
darum, mit ihrer Preisaufgabe auch hin-
sichtlich dieses Problems Klarheit zu
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schaffen, wie sich aus den Arbeiten Eu-
LERs folgern ldsst. Insbesondere hoffte
man, dass mit den Losungen vielleicht
etwas Licht in die Streitfrage um die Ur-
sache der Gravitation als Nah- oder
Fernwirkungsprinzip gebracht werden
konnte.

Die Schwierigkeiten des Problems
kommen in der von DANIEL BERNOULLI am
6. Juli 1747 eingereichten Arbeit sowie
in den Briefen an EuLer deutlich zum
Ausdruck. Aus einem Brief vom 21. Ja-
nuar 1747 an EuLEr wird ersichtlich,
dass sich BernouLLI bereits zu Beginn
dieses Jahres mit dem Problem beschéf-
tigt haben muss. Die Idee zu dessen Lo-
sung kam ihm vermutlich im Zusam-
menhang mit der Absicht, die Bewegung
des Mondapogidums zu bestimmen, um
damit verbesserte Mondtafeln herstel-
len zu konnen. Wie er EULER mitteilte,
bestehe sein Losungsansatz darin, dass
man die Ungleichheiten in der Bewe-
gung des Saturn auf eine und dieselbe
natiirliche, nicht gestorte Umlaufbahn
beziehen solle. Er nannte sie in der Fol-
ge die natiirliche Bahn und meinte da-
mit jene Ellipse, die entstehen wiirde,
wenn samtliche Storkrifte verschwin-
den wiirden. Dafiir hat sich spiter der
Begriff der «oskulierenden Bahn» eta-
bliert. Leider ging er in seinem Mémoire
von zwei falschen Annahmen aus, die
sich als verhangnisvoll erweisen sollten
und deren Folgen im Briefwechsel mit
EuLEr in tragischer Weise sichtbar wer-
den. Einerseits setzte er voraus, dass die
Sonne unbeweglich sei, andererseits be-
trachtete er die ungestorten Bahnen von
Jupiter und Saturn als kreisférmig und
konzentrisch zur Sonne. Die Sonne als
stillstehend zu betrachten, rechtfertigte
er im erwahnten Brief damit, dass dies
die Storungen des Saturn seiner Defini-
tion gemaiss nicht andern kdnne, wenn-
gleich auch die Sonne eine kleine Bahn
um den gemeinsamen Schwerpunkt be-
schreiben wiirde. Letzteres brachte ihn
zur Ansicht, dass die natiirliche Umlauf-
bahn des Saturn (von jeder Wirkung Ju-
piters auf den Saturn abgesehen) keine
Ellipse mehr wire, wie sie von den
Astronomen definiert werde, weder be-
ziiglich des Sonnenzentrums noch des
gemeinsamen Schwerpunktes. Saturns
und Jupiters natiirliche Bahnen als
Kreisbahnen anzunehmen, bedeutete
aber eine schwerwiegende Einschrin-
kung, die letztlich nur mit der mathema-
tischen Vereinfachung des Problems be-
griindet werden kann. Dazu veranlasst
wurde BErNouLLI méglicherweise durch
das Verfahren, mit dem er das Problem
zu bewiltigen erhoffte. Es gleicht einer
numerischen Integration, bei der gewis-
se Randbedingungen erfiillt sein miis-
sen, die BErNouLL zur Vereinfachung des

- GESCHICHTE DER ASTRONOMIE
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Problems setzte. Wie aus dem Brief her-
vorgeht, schien er erste Ergebnisse mit
jenen EuLErs verglichen und erhebliche
Abweichungen festgestellt zu haben.
Das ist nicht weiter erstaunlich, wéhlte
EuLer doch einen grundlegend anderen
und wesentlich allgemeineren Zugang.
BernouLLl scheint das knifflige Pro-
blem in seiner ganzen Tragweite (viel-
leicht inspiriert durch EuLEr) erkannt zu
haben. Etwas resigniert schrieb er am
29. April 1747 an EuLEr, dass ihm die
Theorie des Saturn sehr verleidet sei,
weil sie so penibel (empfindlich) und
letzten Endes noch immer vielen Zwei-
feln unterworfen sei. Wenn das Zentrum
der Sonne nicht als fest betrachtet wer-
den konne, dann geniige es nicht, die
Wirkung des Jupiter auf die Sonne von
derjenigen auf den Saturn abzuziehen
oder sie zu addieren (wie EULER dies in
seiner Theorie tut), sondern man miisse
—um eine wahre Theorie des Saturn auf-
stellen zu kénnen - die wahre und voll-
stindige Theorie der Sonnenbewegung
um den gemeinsamen Schwerpunkt
kennen. Wolle man die Exzentrizititen
der Bahnen des Saturn und des Jupiter
gemaiss genuinen Gesetzen betrachten,
so erfordere diese Untersuchung wieder
uniiberwindliche Miihe. Die damit ver-
bundenen Approximationsrechnungen
seien sehr heikel. Zudem kénne man —
weil die Orter der Aphelien beziiglich
der Konjunktionsorter verinderlich sei-
en — keine fortlaufenden Tafeln anferti-
gen. BErNouLLI nahm an, dass auch ande-
re sich in dieser scheinbar ausweglosen
Situation befanden und war deshalb ge-
spannt zu wissen, wie EuLEr wohl das
Problem angepackt hatte. Aus dem nur

liickenhaft iiberlieferten Briefwechsel
der beiden Freunde (viele Briefe von
EuLer an BEernouLLl gingen verloren)
wird nicht klar, wie ausfiihrlich EuLEr
seine Theorie darlegte, oder ob er ledig-
lich Ergebnisse bekannt gab. BERNOULLI
erwihnte in seinem Antwortbrief vom
16. August 1747 nur, dass sein eigenes
Mémoire lange nicht so ausgearbeitet
sei wie es EULER von dem seinigen mel-
de. Er war aber in der Lage, seine Resul-
tate mit den Werten von EULER zu ver-
gleichen.

Tatsichlich war EuLers Theorie we-
sentlich allgemeiner und stellte sich we-
gen der eingefiihrten neuen Methoden
fiir die weitere Entwicklung der Sto-
rungstheorie als tiberaus fruchtbar her-
aus. Ausgehend von den in drei Dimen-
sionen formulierten Bewegungsglei-
chungen leitete EULER in einer vorgingi-
gen Arbeit Storungsgleichungen fiir den
Radiusvektor, die wahre Anomalie, die
Knotenlénge sowie die Bahnneigung
des Saturn her, die er dann in seinem
Mémoire integrierte, indem er vereinfa-
chende Einschriankungen bzgl. Bahnfor-
men und Neigungen der beiden Plane-
ten schrittweise lockerte. Es ist anzu-
nehmen, dass BernouLLl die EuLERsche
Theorie in groben Ziigen kannte, denn
er schrieb im erwihnten Brief, dass sich
in allen seinen (eigenen) Berechnungen
gewisse Verschlingungen und Wahr-
heitsmerkmale zeigten, die ihn auf einen
guten Fortschritt hoffen liessen, wenn
er nicht wiisste, dass EULER die Sache
ganz anders befunden habe. Nicht nur,
weil BErnouLLI bis dato noch keine Emp-
fangsbestitigung fiir sein eigenes Mé-
moire erhielt, sondern vor allem auch

Fig. 18: Originalseite aus dem Manuskript tber die «Grosse Ungleichung», das DAnieL BERNOULLI
als Preisschrift fir das Jahr 1749 der Académie Royale des Sciences de Paris einreichte und

wofdr er den zweiten Preis erhielt.
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TH ORIE

DU MOUVEMENT

DES COMETES

Drms lague/le on a egmd aux almazwrzs
que* lewrs orbites éprouvenr par
7 ac'?zo/z des Planéces. -
Avec 1applxcmon de certe Théorgie i la
Comete quia été obfervée dans les années
- 1531,1607,1682 & 1759

E
Par M. CLairavT, des Académies des Sciences |
de France, J'An%lm/re de Pruffe , de .Rl{ﬂt-,

il

de Bologne & &

A PARIS,

Chez Micuegr LAMBERT, Im| rI,mmeur Libraire ,
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Fig. 19: Titelseite von Crairauts Arbeit zur
numerischen Berechnung der
Periheldurchgangszeit des Kometen Halley.

deshalb, weil er von EuLers glinzender
Theorie beeindruckt gewesen sein mus-
ste, schrieb er im selbigen Brief etwas
vergramt, dass ihn der mutmassliche
Verlust seines Mémoires nicht beson-
ders gereue. EULER konne also diesmal
doppelt sicher sein, den Preis nicht mit
ihm teilen zu miissen. Es sollte sich er-
weisen, dass dies nicht der Grund war,
weshalb EuLer den Preis erhielt.
BernouLLis Mémoire traf vor jenem Eu-
LERS in Paris ein und wurde unter der
Nummer 1 kotiert. Nachdem BERNOULLI
seine Abhandlung abgeschickt hatte,
schilderte er EuLer in den folgenden
Briefen ausfiihrlich seine Theorie und
seine Resultate. Wir fassen seine Ab-
handlung sowie die relevanten Textstel-
len aus seinen Briefen an EULER zusam-
men.

Uberzeugt davon, dass sein Mémoire
verschiedene gute Teilstiicke enthalte,
legte DanIEL BErnOULLI im Brief an EvLEr
vom 16. August noch einmal seine Aus-
gangslage dar. Nach reiflicher Erwi-
gung aller Umsténde halte er sich an die
Hypothese, dass die Sonne in einem
Punkt fixiert sei, gleich wie wenn ihre
Masse eine unendliche Tragheit hitte.
Danach betrachte er eine gewisse Kon-
junktion zwischen Sonne, Jupiter und
Saturn, die er erste Konjunktion nenne.
Fiir diese Konjunktion betrachte er die
Geschwindigkeit des Saturn, dessen Ab-

stand von der Sonne und den Winkel

zwischen der Tangente und dem Radius-
vektor (das sind die sog. Anfangsbedin-
gungen). Dann nenne er natiirliche
Bahn diejenige Bahn, welche Saturn ge-
maéss der Keplerschen Hypothese ohne
eine Einwirkung des Jupiters beschrei-
ben wiirde. Auf diese natiirliche Bahn
beziehe er alle Storungen. (Man beach-
te, dass dies nicht mit der Vorausset-
zung in seinem Mémoire tibereinstimmt,
wo er die natiirliche Bahn als kreisfor-
mig und konzentrisch zur Sonne an-
nahm.) Waren die Umlaufzeiten von Sa-
turn und Jupiter genau im Verhéltnis 5:2,
so zeige er, dass nach drei aufeinander-
folgenden Konjunktionen die fritheren
Storungen wieder beginnen wiirden,
und deshalb habe er seine Tafeln von
der ersten bis zur vierten Konjunktion
ausgedehnt. Nach dieser Periode wiir-
den sich die Exzentrizitat, das Aphel
und alles Ubrige wieder herstellen.
BerNouLLI leitet in seinem Mémoire zu-
erst eine Differentialgleichung zweiter
Ordnung fiir die radiale Abweichung o
Saturns von seiner Kreisbahn her. Er
nennt sie im Brief numerische Funda-
mentalgleichung. Diese Gleichung ist
unter den getroffenen Annahmen nur
nidherungsweise giiltig. Als unabhéngige
Variable fiihrt er den heliozentrischen
Winkel o zwischen den beiden Planeten
ein. Die Gleichung enthélt aber auch die
lineare Distanz z zwischen Jupiter und
Saturn in der Form 1/z und 1/2°. Nun be-
ginnen die mathematischen bzw. nume-
rischen Schwierigkeiten. Um diese Fak-
toren in Funktion von ¢ ausdriicken zu
konnen, berechnet er zuerst die numeri-
schen Werte von 1/z und 1/2° in Interval-
len zu 10°, ausgehend von der Konjunk-
tion bis zur Opposition. Dann leitet er
Interpolationsformeln her zur Bestim-
mung der dazwischenliegenden Werte
in Potenzen von o fiir die sechs 30°-In-
tervalle zwischen Konjunktion und Op-
position. Dies fiihrt ihn auf sechs Diffe-
rentialgleichungen fiir ¢, die er mit der
Methode der unbestimmten Koeffizien-
ten 16st. Als Resultat erhilt er Polynom-
ausdriicke in ¢ als Funktion von Poten-
zen in ¢ und multipliziert mit numeri-
schen Koeffizienten fiir jedes der sechs
Intervalle. Jeder Fehler wirkt sich ku-
mulativ aus, weil die Genauigkeit eines
Ausdruckes fiir ein 30°-Intervall vom
vorhergehenden abhsngt. BERNOULLI be-
merkt in seinem Brief an EvuLgr, dass er
gesehen habe, wie gefihrlich es wiire,
die Integration von Grad zu Grad auszu-
fiihren, da sich die Fehler masslos auf-
summieren wiirden. Dies zeigt sich be-
reits bei der Elongation von 180°. An
dieser Stelle bewegt sich Saturn (ge-
méss Rechnung) noch von der Sonne
weg und die erste Ableitung do von oist

nicht Null. Trotzdem miissen die um-
fangreichen Rechnungen fortgesetzt
werden, da noch kein Anzeichen irgend
einer Periodizitdt erkennbar ist. Obwohl
DanieL BernouLLl diese mithsame Arbeit
am liebsten aufgegeben hitte, fiihrt er
sie dennoch zu Ende. Gliicklicherweise
féllt ihm ein Trick ein, mit dem er den
Rechenaufwand verringern kann. Er
wéhlt die Steigung do/donach der 180°-
Elongation derart, dass die radialen Ab-
weichungen o symmetrisch zu den vor-
hergehenden zu liegen kommen (das
sind die sog. Randbedingungen). In sei-
nem Brief schrieb BerNouLLI jedoch, er
habe seine Fundamentalgleichung von
30 zu 30 Grad durch Approximation in-
tegriert und es so eingerichtet, dass die
do/dovom Ende der vorangehenden In-
tegration bis zum Anfang der nachfol-
genden unter sich gleich seien. Tatszch-
lich bedeutet diese Massnahme nichts
anderes, als dass Saturns Bahnkreis in
eine exzentrische Lage beziiglich der
Sonne verschoben wird. Dies hat jedoch
zur Folge, dass er die dadurch entstan-
denen Anderungen im Bahnradius wie-
der beriicksichtigen muss. Damit kann
er aber die Werte von ¢ fiir die folgen-
den Intervalle einfacher berechnen. Fi-
gur 18 zeigt den Graphen von o von der
ersten Konjunktion (C”) bis zur vierten
(C™). Zur Interpretation der in die Figur
eingetragenen numerischen Werte von
o ist anzumerken, dass BeErNouLLI den
Wert von 1 zu 211 fiir das Verhaltnis der
Kraft von Jupiter auf Saturn beziiglich
Jjener der Sonne auf Saturn aus der zwei-
ten Ausgabe von Newtons Principia
entnahm. Die angegebenen Werte von o
sind, wenn durch 211 dividiert, in
Bruchteilen des urspriinglich fiir Saturn
angenommenen Kreisradius zu verste-
hen. Die gestrichelte Linie repriasentiert
die als Folge der geforderten Randbe-
dingungen stetige Fortsetzung der Ab-
weichungen. In der vierten Konjunkti-
on, etwa 59 bis 60 Jahre nach der ersten,
sind sowohl « als auch do fast Null.
BernouLLI glaubt daher, eine fundamen-
tale Periode gefunden zu haben. Mit be-
kanntem o kann er nun Saturns Bahnge-
schwindigkeit und somit die Positionen
beziiglich des Jupiter berechnen.

DanieL BErnouLL war sich sehr wohl
bewusst, dass die Annahme von Kreis-
bahnen in seinem Mémoire falsch war,
glaubte jedoch, dass der Dissens zwi-
schen seinen und EuLers Werten von
den verschiedenen Methoden komme,
den Ubergang von einer Integration zur
néchsten in Teilschritten zu vollziehen.
Er erkannte nicht, dass unter der Vor-
aussetzung von exzentrischen Kreisbah-
nen seine vermeintlich gefundene Peri-
ode verschwindet, obwohl ihn EuULEr
vermutlich darauf aufmerksam gemacht
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haben musste. Im nichsten Brief vom
22. September 1747 an EvLER rechtfer-
tigte sich BernouLL damit, dass er die
Periode der Ungleichheiten nach drei
aufeinanderfolgenden Konjunktionen,
die EuLer angreife, erst kiirzlich in der
Neuausgabe der Institutions astrono-
maiques von LE MONNIER gelesen habe als
etwas, das man aus Beobachtungen ab-
geleitet habe. In diesem Brief schien
sich BernouLLl der Unzulidnglichkeiten
seines Mémoires bewusst zu werden,
insbesondere von der Annahme der
Kreisbahnen. Dennoch: er fange an, von
seiner Methode eine gute Meinung zu
bekommen. Hitte er sich dazu ent-
schliessen konnen, die Exzentrizitdten
zu betrachten und die Approximationen
niher auszugestalten, sei er sicher, dass
er eine exakte Theorie gefunden haben
wiirde. BErNouLLl glaubte, EuLErs Ein-
wand entkriften zu konnen, indem er
ihn noch einmal darauf aufmerksam
machte, dass sich die Storungen des Sa-
turn (und daher BernouLLIS vermeintlich
gefundene Periode) nach seiner Theorie
von einer Konjunktion zur nichsten auf
die jeweilige natiirliche Bahn bezdgen.
Bei seiner Theorie sei somit zu beach-
ten, dass seine Gleichungen nicht so zu
verstehen seien, als miissten oder konn-
ten sie auf die bis heute herausgegebe-
nen astronomischen Tafeln angewandt
werden, da deren Grundannahmen
nicht mit der Bewegung, die er die natiir-
liche nenne, iibereinstimmen wiirden.
Denn zuerst miisse man die natiirliche
Bewegung berechnen, was man — wie er
zeige — tun konne mittels mehrerer Be-
obachtungen, deren Zeiten man zuerst
korrigieren miisse. Nachher miisse man
Tafeln dieser natiirlichen Bewegung
konstruieren und dazu seine Gleichun-
gen verwenden. Ob BernouLL nach die-
sem umstéindlichen Vorgehen seine Pe-
riode in LEMONNIERS Institutions auch
wirklich bestétigt fand, bleibt dahinge-
stellt. In einem Punkte hatte BERNOULLI
allerdings vollig recht. Wahrend er das
Dreikorper-Problem rein numerisch zu
losen versuchte, strebte EULER, soweit
es ging, stets eine analytische Losung
an. Diesen Zugang hielt BERNOULLI flr
problematisch, denn wolle man die Son-
ne als beweglich betrachten, so halte er
die gewohnliche (analytische) Methode
fiir etwas schliipfrig und er glaube fast,
dass die ganze Mathematik in der Welt
nicht ausreiche, um alle Ungleichheiten
genau z2u berechnen, weil es nicht er-
laubt sei, die Theorien der Himmelskor-
per von einander zu trennen und es
gleichsam unmoglich sei, die Ungleich-
heiten im ganzen gleichzeitig betrachte-
ten System zu bestimmen. Was BErNOUL-
L1 hier vermutete, ist jedoch nicht die
Tatsache, dass das Dreikérper-Problem

Fig. 20: Danier Bernoutll zur Zeit des Erscheinens des Kometen Halley.

analytisch tiberhaupt nicht exakt 10sbar
ist, sondern er brachte damit zum Aus-
druck, dass das Problem seine Fiahigkei-
ten iiberstieg. Ein «Unmoglichkeitsbe-
weis» wurde erst viel spiter erbracht.
BerNoULLI musste die Méangel in seinem
Mémoire erkannt haben, denn im fol-
genden Brief vom 9. Mérz 1748 an EULER
gestand er, dass ihm die Theorie des Sa-
turn noch viel zu schaffen mache. Er
konne nicht begreifen, wie EULER mit
der Annahme einer festen Sonne eine
Gleichung von nur 9’ finden kénne, wo
er auf etwas mehr als 30’ komme. Wire
ihm Eurers Tiefgang nicht so gut be-
kannt, so wiirde er meinen, EULER hitte
seine Integrationsmethode nicht den
Umstinden angepasst. Er sei neugierig
darauf, wo er einen Fehler gemacht
habe, und er wiinsche, dass sein Mé-
moire anonym gedruckt wiirde, damit
ihn EuLer korrigieren konne. Noch ein-
mal versuchte BErRNOULLI in einem Brief
vom Juli 1748 EvLer von den Vorteilen

seiner Theorie zu iiberzeugen. Mit der
Hypothese, dass die Sonne vollkommen
still steht und also eine gleichsam un-
endliche Triagheit hat, berechnete er
eine Tafel, die Korrekturterme in Ab-
hingigkeit von den Elongationen zwi-
schen Jupiter und Saturn enthilt. Die
aufgefiihrten zeitlichen Terme entspre-
chen Korrekturen in der mittleren Be-
wegung des Saturn, die beziiglich einer
beliebig wihlbaren ersten Konjunktion
angebracht werden miissen. BERNOULLI
beklagte sich in diesem Brief, dass er
seine Theorie mangels Beobachtungen
nicht mit der tatsichlichen Bewegung
des Saturn vergleichen konnte. Wie er
im nichsten Brief an EULER vom 3. Sep-
tember 1748 berichtete, habe man ihn
sehr ermutigt, zu seinem Mémoire iiber
den Saturn noch einen Kommentar zu
verfassen, doch konne er sich nicht
dazu entschliessen. Um eine sichere
Theorie bilden zu koénnen, sollte man
viele Irregularititen aus Beobachtungen
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bestimmt haben, um sehen zu kdénnen,
ob die Theorie damit {ibereinstimmen
wiirde, da doch die Astronomen von die-
sen Ungleichheiten nur vage reden wiir-
den. Kédme es nur auf die rein mathema-
tischen Berechnungen an, wiirde er sich
schon zutrauen, nach verschiedenen
Hypothesen alles auszurechnen und zu
ermitteln, welche Hypothese mit der
Natur tibereinstimme.

Vielleicht beabsichtigte er sogar, die-
se Arbeit unter realistischeren Annah-
men zu wiederholen. In einem im Jahre
1749 verfassten Brief an EuLER schrieb
er jedoch entmutigt, dass er viel weniger
Hoffnung habe denn je, die Irregularita-
ten des Saturn mittels mechanischer
Prinzipien eruieren zu konnen. Er kon-
ne aber EULER versichern, dass er genii-
gend Einsicht in diese Materie habe, um
die Hoffnung zu hegen, mit gleicher
Miihe ebensoviel wie Andere heraus-
bringen zu konnen. Eine exakte Losung
sei unmoglich, und alle Approximatio-
nen seien so gefiahrlich, dass es uniiber-
windliche Anstrengungen erforderte,
die Irregularititen mit hinreichender
Genauigkeit und Gewissheit bestimmen
zu konnen. Er wundere sich sogar (zu
Recht!) tiber EULER, dessen Autoritit er
sonst sehr respektiere, dass EULER mit
so grossem Vertrauen beanspruche, die-
ses Problem mit dusserster Prizision
gelost zu haben. Im Brief vom 26. Janu-
ar 1750 kritisierte BerNouLLI EULERS
Preisschrift und liess gleichzeitig die
Enttduschung iiber sein eigenes Schei-
tern deutlich erkennen. Der Brief gibt
Zeugnis eines sehr unzufriedenen Dani-
EL BErRNOULLI, der sich als Rechtfertigung
seines Scheiterns dazu verleiten liess,
EuLErs Arbeit — nicht immer zu Recht —
zu disqualifizieren. Er habe EuLers Mé-
moire iiber den Saturn gesehen und es
fliichtig gelesen. Dieser Gegenstand
wiirde ihm schier zum Hals heraushéin-
gen, sonst hitte er es mit aller Aufmerk-
samkeit gelesen. Er hitte darin viel vor-
treffliche Kunstfertigkeit bemerkt, doch
im Wesentlichen glaube er, dass notwe-
nigerweise Fehlschliisse darin versteckt
sein miissten. Unter der Hypothese der
Nichtexzentrizitit halte er es fiir gewiss,
dass die Ungleichheiten nicht von der
einfachen Elongation abhingen noch
nach den einzelnen Konjunktionen wie-
derkehren wiirden. Wire dies der Fall,
so wire seine Arbeit zu 90% leichter ge-
worden. Doch es sei gewiss nicht so,
sondern die Periode der Ungleichheiten
betrage drei Konjunktionen, und auch
dann nur in Ndherung. Auch seien die
Ungleichheiten unter dieser Hypothese
sicher viel grosser als EULER meinte. Fer-
ner sei es unbegreiflich, dass die Exzen-
trizitat eine so grosse Wirkung zeitigen
konne - die blosse Vorstellung sei
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schockierend. In Paris gestehe man nun
ein, dass sich seine Theorie besser hal-
ten liesse als jene von EULER, und seine
Freunde hitten alles versucht, damit er
wieder konkurriere, doch die miihseli-
gen Arbeiten seien nichts fiir ihn. Er
glaube nun einmal, dass es nicht még-
lich sei, dem Problem anders als schritt-
weise (d.h. durch numerische Integrati-
on) gerecht zu werden, weil die
Ungleichheiten von den von beiden Pla-
neten beschriebenen Bogen und allen
Bahnelementen dieser zwei durchlaufe-
nen Bogen abhingen wiirden. Wollte
man eine allgemeine Reihe bilden (wie
EuLEr dies zu bevorzugen pflegte), so
miisste diese durch alle Dimensionen
von beiden Bogen und nicht eines einzi-
gen allein laufen. Er glaube noch immer,
dass etwas in EuLErs Approximationen
stecke, das nicht richtig sei. EULER solle
alles nochmals mit grosster Aufmerk-
samkeit und Skepsis untersuchen, denn
niemand in der Welt konne dies tun aus-
ser EULER selbst. Fiir seine eigene Arbeit
konne BErNoULLI nicht garantieren, da er
eine Methode verwendet habe, wo ein
einziger numerischer Fehler alles zu-
nichte machen wiirde, aber diese seine
Methode halte er fiir unfehlbar. Er hitte
auch die Riickwirkung auf die Sonne
nicht vernachlissigen diirfen, wie er es
getan habe, bloss um seine bereits aus-
gefiihrten Rechnungen nicht wiederho-
len zu miissen. Schliesslich solle EuLER
ihm nicht iibel nehmen, dass er so frei
rede und sich diesmal so viel herausneh-
me. Das geschehe gewiss, ohne die Ver-
ehrung zu verletzen, die er fiir EULERS
Verdienste — besonders in der reinen
Mathematik — habe.

Beide Abhandlungen, jene von DanI-
EL BERNOULLI wie auch jene von LEONHARD
EuLER, haben ihre Mingel, enthalten
aber auch fruchtbare Ideen. Beide mus-
sten mit Ndherungen und Vereinfachun-
gen arbeiten, um das Problem meistern
zu konnen. Wihrend die Approximatio-
nen bei EuLER in seinen Reihenentwick-
lungen zu suchen sind, liegen sie bei
BernouLL in seinen ungliicklich gewéhl-
ten Anfangs- sowie in den Tiicken und
Folgen seiner Randbedingungen. Wih-
rend EULER in seiner Arbeit geniale ma-
thematische Methoden entwickelte, er-
kannte BernouLLr die Bedeutung der
numerischen Integration. Beides sollte
sich fiir die kiinftige Himmelsmechanik
in der allgemeinen und speziellen Sto-
rungsrechnung als dusserst fruchtbar
erweisen. Wie bereits erwidhnt, war
CLAIRAUT nicht umsonst beeindruckt von
BernouLLis  Preisschrift. Vermutlich
nahm CrarauT aufgrund dieser Arbeit
die Idee auf, mit Hilfe der numerischen
Integration die im Méarz 1759 erwartete
Periheldurchgangszeit des Halleyschen

Kometen zu berechnen. Er fiihrte zu-
sammen mit LALANDE und Madame Lg-
PAUTE die erste umfangreiche numeri-
sche Integration durch und konnte die
Periheldurchgangszeit auf einen Monat
genau bestimmen. Dass zu jenen Zeiten
eine numerische Integration (trotz be-
scheidener Genauigkeit) mit immenser
Rechenarbeit verbunden war, belegt
nicht nur DanierL BernouLLis Versuch,
sondern auch die Tatsache, dass
Crairaut seine Resultate erst nach mehr-
jahriger Rechenzeit im Jahre 1761 publi-
zieren konnte, zwei Jahre nach Erschei-
nen des Kometen (Figur 19). Der von
Danier BernouLu (Figur 20) gewéhlte Zu-
gang sollte sich jedochIm Kindergarten
des Sonnensystems erst mit der Erfin-
dung der Rechenmaschinen fiir die Him-
melsmechanik als dusserst niitzlich und
effizient erweisen.

Der Vollstindigkeit halber erwidhnen
wir noch jene Arbeiten von DANIEL
BernouLL, die ebenfalls dem Gebiet der
Himmelsmechanik zugeordnet werden
konnen. Es sind dies die in Paris im Jah-
re 1741 gedruckte Preisschrift Traité
sur le Flux et Reflux de la Mer fiir das
Jahr 1740 sowie die fiir den Preis des
Jahres 1728 eingereichte, aber unverof-
fentlichte Abhandlung Discours sur la
cause et la nature de la pesanteur.
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