Zeitschrift: Orion: Zeitschrift der Schweizerischen Astronomischen Gesellschaft

Herausgeber: Schweizerische Astronomische Gesellschaft

Band: 54 (1996)

Heft: 276

Artikel: Partielle Sonnenfinsternis am 12. Oktober 1996 über ganz Mitteleuropa

Autor: Baer, T.

DOI: https://doi.org/10.5169/seals-898144

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 30.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Partielle Sonnenfinsternis am 12. Oktober 1996 über ganz Mitteleuropa

T. BAER

Sonnen- und Mondfinsternisse sind kosmische Schattenspiele, die seit jeher die Menschen in ihren Bann gezogen und stets grosse Beachtung gefunden haben. Noch heute stossen diese nicht alltäglichen Himmelsereignisse auf reges Interesse in der Bevölkerung. Nicht nur Astronomen und Sternfreunde schenken Sonnenfinsternissen ihre besondere Aufmerksamkeit; auch in Laienkreisen zeigt man sich diesen Ereignissen gegenüber aufgeschlossen und wünscht, fachkundig informiert zu werden. Der 12. Oktober 1996 gibt Anlass dazu.

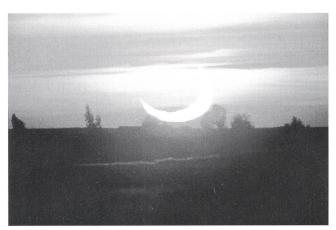
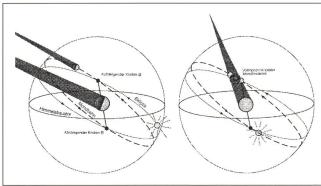


Abbildung 1: Ein spektakulärer Sonnenuntergang konnte am 10. Mai 1994 von Marokko aus beobachtet werden. Kurz nach Ende einer ringförmigen Sonnenfinsternis verschwand die Sonnensichel am Horizont. (Aufnahmedaten: Teleobjektiv 800 mm, 4/00 sec., Blende 22 (ohne Schutzfilter) auf Kodachrom 64: Foto: Thomas Baer).


Wann sind Sonnenfinsternisse überhaupt möglich?

Drei Himmelskörper sind es, die bei der Entstehung einer Sonnenfinsternis beteiligt sind: Sonne, Mond und Erde. Wie uns aus der Schulzeit noch bekannt sein dürfte, umkreist der Erdtrabant seinen Mutterplaneten in 27 1/3 Tagen einmal. Diese Zeitspanne nennen wir siderischen Umlauf, weil der Mond in Bezug auf einen Stern (lat. «sidus») wieder in denselben Längenabschnitt zurückkehrt. Da die Sonne während eines siderischen Mondumgangs auf der Ekliptik aber rund 27° rechtläufig (ostwärts) weitergewandert ist, dauert es von Vollzu Vollmond oder von Neu- zu Neumond durchschnittlich 2 1/5 Tage länger. Der Mond legt ja bekanntlich in einer Stunde ziemlich genau seinen scheinbaren Durchmesser zurück, was im Schnitt eine tägliche Wanderschaft von etwa 13° ergibt. Die 29 ¹/₂ Tage dauernde Periode heisst synodische Umlaufszeit und ist die Zeitdauer zwischen zwei gleichen, aufeinanderfolgenden Mondphasen.

Mindestens einmal pro Kalendermonat zieht der Erdnachbar zwischen Sonne und Erde durch, womit wir auf seine unbeschienene, sonnenabgewandte Nachtseite blicken; wir haben Leer- oder Neumond. Allerdings kommt es nicht bei jedem Neumond zu einer Sonnenfinsternis. Grund dafür ist die geringe Neigung der Mondbahn (5° 09') gegenüber der scheinbaren jährlichen Sonnenbahn, auch Ekliptik genannt. Normalerweise zieht der Erdnachbar während sechs Monaten über, dann wieder unter der Sonne weg, ohne sie zu bedecken. Zwei-, in seltenen Fällen sogar dreimal im Jahr sind die geometrischen Voraussetzungen für das Zustandekommen einer Sonnenfinsternis erfüllt, dann nämlich, wenn Neumond in oder nahe eines Schnittpunktes zwischen Mondbahn und Ekliptik eintritt. Diese Mondknoten oder Drachenpunkte, welche sich diametral gegenüberliegen, werden durch die sogenannte Knotenlinie miteinander verbunden (vgl. dazu auch Abbildung 2). Überstreicht die Knotenlinie das Zentralgestirn, kommt es zu Finsternissen. Infolge der scheinbaren Sonnen- und Mondgrösse, kombiniert mit der Schräglage der Mondbahn, ergibt sich ein Spielraum von 37 1/2 Tagen, innerhalb dessen Sonnen- und Mondfinsternisse zwingend eintreten müssen. Weshalb? Diese 37 ¹/₂-tägige «Finsternisperiode» ist länger als ein synodischer Mondmonat. Folglich fällt immer mindestens ein Voll- und Neumond in diese Zeitspanne hinein. Je nach dem, wie die Syzygien gelegen sind, kommt es zuerst zu einer Sonnen-, 14 Tage später bei Vollmond zu einer Mondfinsternis oder umgekehrt.

Tritt eine Sonnenfinsternis ziemlich am Anfang oder am Ende einer Finsternisperiode ein, so ist der zeitliche Abstand zwischen dem Knotendurchgang und der genauen Neumondstellung (geozentrische Konjunktion mit der Sonne) verhältnismässig gross. Dies bedeutet: Im Anfangs- bzw. Schlussabschnitt der Finsternisperiode sind *nur partielle Sonnenfinsternisse möglich*, weil die Mondschattenachse den Erdglobus verfehlt. Wird das zeitliche Intervall zwischen Neumond und Knotendurchlauf kürzer, verbessern sich die geometrischen Bedingungen; die Mondschattenachse trifft

Abbildung 2: Die Mondbahn ist gegenüber der Ekliptik geneigt. Daher wandert der Neumond im Normalfall meistens über oder unter der Sonne durch, ohne sie zu verfinstern. Wenn die Knotenlinie hingegen auf die Sonne gerichtet ist, kommen die drei Himmelskörper mehr oder weniger auf eine Gerade zu stehen.

die Erdoberfläche, und es kommt, je nach Entfernung des Trabanten, irgendwo auf unserem Planeten zu einer ringförmigen oder totalen Sonnenfinsternis. Am optimalsten, d. h. zentral, sind Sonnenfinsternisse, welche genau in der Mitte einer Finsternisperiode, also nach 18 ³/₄ Tagen stattfinden. Ein Paradebeispiel hierfür wäre die totale Sonnenfinsternis vom 11. Juli 1991 gewesen, welche in den Äuatorgebieten nahezu 7 Minuten lang total war. Begleitet wurde diese zwei unscheinbaren Halbschattenvon Mondfinsternissen 14 Tage vor (27. Juni) und nach dem Neumond (26. Juli). Die Halbschattenfinsternisse sind wiederum kein Zufall, denn sie fanden praktisch mit Beginn, bzw. kurz vor Ende der Finsternisperiode statt! Wir sehen also; drei Finsternisse in der gleichen Periode sind möglich, mehr nicht. Genau die umgekehrte Situation hatten wir 1982. Damals kam es am 21. Juni im Südpolargebiet zu einer partiellen Sonnenfinsternis, exakt in der Mitte der Finsternisperiode am 6. Juli zu einer perfekten zentralen, totalen Mondfinsternis und am 20. Juli noch einmal zu einer partiellen Sonnenfinsternis, welche auf die nördliche Erdhemisphäre fiel und in Europa sichtbar war.

Normalerweise gibt es pro Jahr vier Finsternisse, je zwei Sonnen- und Mondfinsternisse, verteilt auf die halbjährlich auseinanderliegende «Finsternisperiode». Das Jahr 1996 wäre ein solcher Fall. Treten hingegen jene speziellen Verhältnisse wie 1982 oder 1991 ein, können finsternisreiche Jahre entstehen. 1982 beispielsweise gab es drei totale Mondfinsternisse und vier partielle Sonnenfinsternisse (total sieben Finsternisse), 1991 drei Halbschatten-Mondfinsternisse, eine partielle Mondfinsternis, sowie je eine ringförmige und eine totale Sonnenfinsternis (total sechs Finsternisse). Mehr als sieben Finsternisse in einem Jahr sind unmöglich, genauso wie die Finsterniszahl nie unter vier sinken kann!

Diesen Herbst beginnt die «Finsternisperiode» Mitte September und endet um den 22. Oktober. Der Vollmond vom 27. September unterzieht sich einer totalen Verfinsterung und am Samstagnachmittag, 12. Oktober 1996, 21 Stunden und 45 Minuten nachdem der Mond den absteigenden Knoten seiner leicht exzentrischen Bahn durchlaufen hat, kommt es zu einer für den europäischen Kontinent optimal plazierten, partiellen Sonnenfinsternis. Obwohl die Knotenpassage schon am 11. Oktober 1996 gegen 18:29 Uhr MESZ erfolgt, reicht die Länge des Intervalls noch, damit wenigstens ein grosses Stück des Mondhalbschattens die Erdoberfläche streift, innerhalb dessen eine beachtliche Teilverfinsterung der Sonne erlebt werden kann.

Nirgendwo wird an diesem Tag eine vollständige Bedeckung der Sonne zu sehen sein, weil der zentrale Kernschatten des Mondes knapp über das Nordpolargebiet hinwegschiesst. Die grösste Annäherung an den Erdglobus erreicht er um 16:02.0 Uhr MESZ nordöstlich des europäischen Nordkaps in der Barents-See. Von hier aus ist im Maximum immerhin eine Finsternis der Grösse 0.758 zu sehen, was einer 68,4%igen Bedeckung der Sonnenscheibenfläche entspricht.

Die Sonnenfinsternis bei uns...

Global betrachtet trifft der Mondhalbschatten um 13:59.5 Uhr MESZ erstmals im Ostteil der Hudson Bay auf die Erdoberfläche. Dort ist Morgen, Lokalzeit 06:59.5 Uhr, das Tagesgestirn ist vor wenigen Augenblicken aufgegangen. In der Folge weitet sich der Mondschatten rasch nach Osten aus und erreicht schon wenige Minuten später Neufundland und den nahen Atlantik. In Europa ist von der Sonnenfinsternis vorerst noch nichts zu bemerken. Erst in den späteren

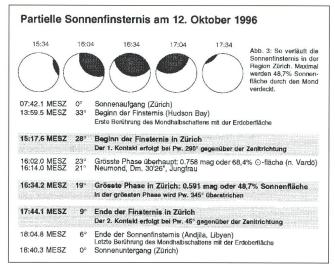


Abbildung 3: Verlauf der Sonnenfinsternis für Zürich.

Nachmittagsstunden, wenn das Zentralgestirn auf seiner scheinbaren Tagesbahn den Kulminationspunkt durchschritten und sich deutlich gegen den westlichen Horizont gesenkt hat, überfährt die Schattenfront um 15:00 Uhr MESZ die europäische Atlantikküste; in Friesland, Holland und der Normandie nimmt die Sonnenfinsternis ihren Lauf. Um 15:17.6 Uhr MESZ erfasst der Mondschattenrand, aus Nordwesten herannahend die Schweiz. Durch ein mit einem Schutzfilter ausgerüsteten Teleskop entdeckt der Beobachter am rechten Sonnenrand sofort eine Einbuchtung, die unaufhaltsam wächst und schon bald deutlich als dunkler Rand des Mondes hervortritt (Abbildung 3).

In der Region Zürich steht die Sonne noch 19° hoch über dem Horizont, wenn sich um 16:34.2 Uhr MESZ die grösste Verfinsterung einstellt. Genau 48,7% der Sonnenfläche, also knapp die Hälfte, sind dann durch den Neumond abgeschirmt, was den Himmel wenig dunkler werden lässt. Schon ab 16:00 Uhr MESZ sollte an einem wolkenlosen Herbstnachmittag das Schwinden des Sonnenscheins wahrzunehmen sein. Schatten werden fahler, und die Landschaft nimmt mit zunehmender Dauer jene seltsame Beleuchtung an, die Adalbert Stifter so trefflich zu beschreiben verstand. «...die Schwalben wurden unruhig, der schöne, sanfte Glanz des Himmels erlosch, als liefe er von einem Hauche matt an, ein kühles Lüftchen hob sich und stiess gegen uns, über den Auen starrte ein unbeschreiblich seltsames, aber bleischweres Licht, ...». Dieses Eindämmern habe ich bei idealen Verhältnissen am 10. Mai 1994 in Marokko selber miterlebt, und es überkommt mich jedesmal ein Schaudern, wenn ich mir das unirdische Licht vor Augen führe, welches an jenem Abend über die Weite der Tadla-Ebene hereinbrach. Schon als ein Drittel der Sonnenscheibenfläche hinter dem Mond verschwunden war, konnte man die Lichtverminderung mühelos ausmachen. Die beiden Vergleichsaufnahmen (Abbildungen 4 und 5) zeigen deutlich den Unterschied der Beleuchtungsverhältnisse vor und während der partiellen Finsternis. Speziell achte man auf die Färbung des Himmels; er ist nicht etwa orange, sondern grünlichgrau! In der Tat ist man aufgrund der sonderbaren Beleuchtung geneigt, die Sonne irgendwo am Horizont suchen zu wollen, obwohl diese noch ordentlich hoch vom Himmel herabscheint.

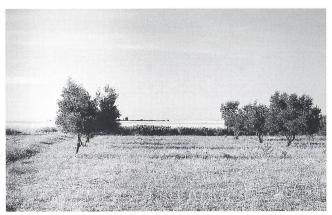


Abbildung 4: Olivenhain vor Eintritt der Sonnenfinsternis am 10. Mai 1994. Die Belichtungszeit betrug bei Blende 8 1/125 Sekunde.

Abbildung 5: Olivenhain nach etwa einem Drittel der Finsternis. Zu diesem Zeitpunkt waren etwas mehr als 30% der Sonnenscheibenfläche durch den Mond abgedeckt. Deutlich ist das fahle Licht und die grünlich-graue Himmelsfärbung sichtbar. Gleiche Belichtungszeit wie Abbildung 4.

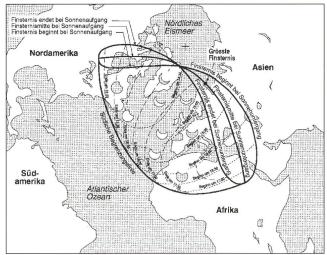
Wenngleich das Finsterwerden natürlich nicht mit dem einer totalen Sonnenfinsternis verglichen werden kann, sollte man am 12. Oktober auf die speziellen Lichtverhältnisse achten. Selbst bei bedecktem Himmel ist, wenn auch nicht so markant, ein vorübergehender Lichtschwund wahrzunehmen. Immerhin erhalten wir gegen 16:34 Uhr MESZ nur noch die Hälfte des vollen Sonnenscheins!

...und im übrigen Europa

Über dem europäischen Kontinent nimmt der Sonnenbedekkungsgrad von Nordosten nach Südwesten hin ab. In Stockholm beträgt er 63,4%, in Hamburg 56,6%, in Konstanz 49,1% und in Madrid lediglich noch 29,1%. Aus der abgebildeten Karte (Abbildung 6) kann man für beliebige Orte den Beginn und das Ende der Finsternis herauslesen. Die feinen Linienzüge im Finsternisgebiet geben die Lage des Mondhalbschattens in 30-Minuten-Intervallen wieder. Die Schattenfront ist entsprechend signiert, kurzgestrichelt, wo die Finsternis beginnt, langestrichelt, wo sie endet. Der Anfang der Finsternis wird häufig als «1. Kontakt» bezeichnet, weil der unsichtbare Neumond die Sonnenscheibe soeben berührt. Langsam gleitet der Trabant von Westen her kommend nach Osten über den Sonnenball hinweg. Das Ende der Finsternis ist beim «2. oder letzten Kontakt» gekommen: Der Mond tangiert gerade noch

die Sonnenscheibe, Sekunden später hat er sich von ihr gelöst; die Finsternis ist vorüber. Für alle Orte im deutschsprachigen Gebiet endet das Himmelsereignis noch vor Sonnenuntergang, in Zürich beispielsweise bei einem Sonnenstand von 9°. Somit ist in unseren Gegenden der gesamte Verlauf dieses kosmischen Schattenspiels zu verfolgen, sofern keine Wolken die Sicht versperren.

Auch dunkle Sonnenbrillen bieten keinen ausreichenden Schutz


Wer die Sonnenfinsternis beobachten will, muss grosse Vorsicht walten lassen. Die geringste Leichtfertigkeit kann verheerende Folgen haben. Man darf **niemals** mit einem Fernglas oder Teleskop ohne ausreichende Schutzmassnahmen **in die grelle Sonne sehen(!)**, selbst wenn ein grosser Teil durch den Mond abgedeckt ist. Auch von einem Blick mit blossem Auge sei dringend abgeraten. Ebenfalls keinen ausreichenden Schutz bieten dunkel getönte Sonnenbrillen. Fernrohrbesitzer, die zur Sonnenbeobachtung Okularfilter verwenden, sollen diese nur bei Teleskopen geringer Öffnung (bis maximal 10 cm) anwenden und das Rohr nicht länger als eine Minute auf die Sonne gerichtet haben. Diese Filter können sich nämlich rasch erhitzen und platzen! Das Beobachterauge würde augenblicklich schwer geschädigt, bis hin zur völligen Erblindung.

Laien wird sehr empfohlen, sich von erfahrenen Sonnenbeobachtern beraten zu lassen oder die Finsternis in einer der nächstgelegenen, öffentlichen Sternwarte zu beobachten, wo die Teleskope fachmännisch ausgerüstet sind. Die Astronomische Gesellschaft Zürcher Unterland veranstaltet übrigens vom 7. bis 11. Oktober 1996 im Hinblick auf die Sonnenfinsternis eine «Woche des offenen Daches», anlässlich derer eingehend über das Ereignis berichtet wird. Aus spezieller Filterfolie können die Besucherinnen unter Anleitung Sonnen-Schutzbrillen anfertigen.

Am Finsternisnachmittag ist die Schul- und Volkssternwarte Bülach ab 15:00 Uhr MESZ rechtzeitig zur Beobachtung des Bedeckungsvorgangs für die interessierte Besucherschaft geöffnet.

THOMAS BAER Bankstrasse 22, CH-8424 Embrach

Abbildung 6: Die Karte zeigt das Sonnenfinsternisgebiet am 12. Oktober 1996. Fein eingezeichnet ist die Ausbreitung des Mondhalbschattens in 30-Minuten-Intervallen. (Grafik: Thomas Baer)

