Zeitschrift: Orion: Zeitschrift der Schweizerischen Astronomischen Gesellschaft

Herausgeber: Schweizerische Astronomische Gesellschaft

Band: 54 (1996)

Heft: 276

Artikel: Neptun, der errechnete Planet : vor 150 Jahren wurde in Berlin der

achte Sonnentrabant entdeckt

Autor: Griesser, M.

DOI: https://doi.org/10.5169/seals-898142

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 30.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Neptun, der errechnete Planet

Vor 150 Jahren wurde in Berlin der achte Sonnentrabant entdeckt

M. GRIESSER

«Monsieur, den Planeten, dessen Position Sie mir angegeben haben, gibt es wirklich.» Mit diesen historischen Worten teilte der Berliner Astronom Johann Gottfreid Galle (1812-1910) am 25. September 1846 seinem französischen Kollegen und Rechenspezialisten Urbain Jean Joseph Leverrier (1811-1877) mit, dass er in den beiden Nächten zuvor den Planeten Neptun entdeckt hatte. Die nüchternen Zeilen Galles lösten in der breiten Öffentlichkeit einen Begeisterungssturm aus, denn die Position des neuen Planeten war allein mathematisch aus schwerkraftbedingten Bahnabweichungen des Planeten Uranus abgeleitet worden. Die problemlose Erstsichtung anhand von auf dem Papier ermittelten Ortsangaben gilt bis heute als eine überragende Leistung angewandter Wissenschaft.

Es begann mit Uranus

Uranus war eine Zufallsentdeckung des in Hannover geborenen, englischen Amateurastronomen William Herschel gewesen. Am 13. März 1781 stolperte der damals hauptberuflich noch als Musiker tätige Sternfreund bei einem seiner Durchmusterung genannten, systematischen Streifzüge durch den Nachthimmel über das winzige Lichtscheibchen, in dem er zunächst einen Kometen zu erkennen glaubte.

Die Entdeckung eines siebten Planeten in unserem Sonnensystem sprengte das traditionelle Weltbild des Altertums, das über Jahrhunderte hinweg mit der Saturnbahn die äussere Grenze der solaren Welt markiert hatte. Es ist wohl kein Zufall, dass sich Herschel nach dieser Entdeckung hauptsächlich der Erforschung der Sternenwelt zuwandte und folglich die Erfahrungsgrenze seiner geliebten Wissenschaft noch bedeutend weiter hinaus ins All schob. Mit Hilfe seiner riesigen Fernrohre fand und katalogisierte er tausende neuer Doppelsterne und Nebelflecken. Herschel gilt noch heute als der herausragende Pionier der Stellarastronomie.

Ganz anders lagen die Verhältnisse bei Neptun. 1801 hatte der sizillianische Astronom Giuseppe Piazzi mit der 1000 km kleinen Ceres den ersten von bis heute weit über 6000 bekannten Planetoiden entdeckt. Bis 1807 kamen Pallas, Juno und Vesta hinzu, so dass sich zumindest die gelehrte Öffentlichkeit allmählich an die Existenz weiterer neuer Planeten gewöhnte. Dazu hatte ihm Falle der Ceres eine geniale Bahnrechnung des damals erst 23jährigen Braunschweiger Mathematikers Carl Friedrich Gauss (1777-1855) ihre Wiederauffindung am Sternenhimmel ermöglicht. Im Verlaufe des Sommers 1801 war nämlich der Kleinplanet in den Strahlenkranz der Sonne eingetaucht und wegen seiner noch unsicheren Bahn für die beobachtenden Astronomen vorübergehend verlorengegangen. Das erfolgreiche Wiederaufspüren der Ceres anhand einer Bahnberechnung zeigte deutlich, wie nützlich und in der Praxis brauchbar verbesserte himmelsmechanische Rechenmethoden waren.

Mit dem Zahlenlasso auf Planetenfang

Beim Uranus liessen sorgfältige Beobachtungen bald einmal unerklärliche Abweichungen von den rechnerisch ermittelten



Bild1: JOHANN GOTTFRIED GALLE (1812-1910), der Neptun-Entdecker. Das Foto entstand ums Jahr 1857. (Archiv mgr)

Positionen in der Grössenordnung von mehreren Bogenminuten erkennen. Noch deutlicher traten diese Differenzen zu Tage, als es gelang, unbemerkt gebliebene Uranus-Beobachtungen zurück bis ins Jahr 1690 nachzuweisen und diese historischen Positionen des siebten Planeten in die Bahnbestimmungen miteinzubeziehen.

Dass sich dann in den Jahren nach 1840 gleich mehrere Himmelsmechaniker mit dem Uranus-Problem auseinandersetzten, war deshalb kein Zufall. Ans Ziel gelangten aber nur zwei dieser ausdauernden Rechner, die erst noch unabhängig und unbemerkt vom jeweils anderen arbeiteten, trotzdem aber zum gleichen Resultat kamen.

Bild 2: Urbain Jean Joseph Leverrier (1811-1857), der geniale französische Planetenrechner, sagte die Position des Neptun auf rund (Archiv mgr) ein Grad genau voraus.

Der englische Mathematikstudent John Couch Adams (1819-1892) begann in Cambridge 1843 mit ersten rechnerischen Ansätzen zur Lösung des Uranus-Problems. Dabei handelte es sich um eine umgekehrte Störungsrechung: Gegeben waren die beobachteten Störungen des Uranus durch einen mutmasslichen Planeten ausserhalb der Uranus-Bahn. Gesucht waren Masse und die detaillierten Bahnelemente des unbekannten Himmelskörpers. Letztlich hatten die umfangreichen und zeitraubenden mathematischen Ableitungen nur das eine Ziel, den Aufenthaltsort des Planeten vor dem Sternhintergrund zu einem beliebigen Zeitpunkt zu ermitteln und damit eine gezielte Suche einzuleiten.

Erstsichtung eigentlich in England

Was sich hier so leicht niederschreibt, ist in Wirklichkeit ein gewaltiges Stück mathematischer Fleissarbeit, besonders, weil damals die Zahlenbeigerei noch ausschliesslich von Hand und ohne jegliche maschinelle Unterstützung zu geschehen hatte. ADAMS gliederte das Problem in vier Abschnitte: Zunächst bestimmte er die Störungen des Uranus für jeden Zeitpunkt, dann versuchte er, bei den Störungen die bekannten von den unbekannten Einflüssen zu trennen. Es folgte die Formulierung jener Gleichungen, mit denen die Kräfte, deren Ursprung man eben noch nicht kannte, zur Masse und zu den Bahnelementen in Beziehung stehen. Als Krönung folgten schliesslich aus diesen Gleichungen die numerischen Ergebnisse und letztlich die konkreten Ortsangaben des aufzustöbernden Planeten am

Bereits bis zum Oktober 1843 hatte der damals in der Endphase seines Studiums stehende Adams eine erste brauchbare Lösung erarbeitet, doch andere himmelsmechanische Aufgaben und seine neue Tätigkeit als College-Lehrer hinderten ihn vorerst daran, die Ergebnisse weiter zu verfeinern. Im September 1845 waren seine Arbeiten jedoch soweit gediehen, dass er sie mit einer Empfehlung von James Challis (1803-1882), Astronomie-Professor in Cambridge, an George Bid-DELL AIRY (1801-1892), dem damaligen Königlichen Astronomen von England, mit der Bitte überreichen liess, die Suche nach dem unbekannten Planeten am Himmel aufzunehmen.

Hier beginnt die Tragik in der Geschichte von Adams: Der in einer pedantischen Arbeitsweise befangene und dazu chronisch durch seine beruflichen Verpflichtungen überlastete Astronomer Royal hatte einige wenig stichhaltige Einwände gegen Adams Arbeit, gab sich gegenüber dem erst 26jährigen Kollegen recht misstrauisch und war deshalb nicht gewillt, im königlichen Observatorium zu Greenwich einen seiner Gehilfen mit der Suche am Teleskop zu beauftragen. Doch abschliessend beurteilen lässt sich die wenig rühmliche Rolle des Astronomer Royal in dieser Angelegenheit nicht mehr: In den Jahren um 1960 verschwand nämlich auf bis heute ungeklärte Weise der im Royal Greenwich Observatory archivierte Schriftwechsel zwischen ADAMS und AIRY mit zahlreichen unveröffentlichten Dokumenten.

Zum gleichen Zeitpunkt, als Adams in England bereits eine anwendungsreife Lösung präsentierte, legte in Paris Urbain LEVERRIER der «Académie des Sciences» eine erste, noch nicht anwendungsreife Abhandlung über die Theorie des Uranus vor. Bis zum 1. Juni 1846 folgte eine zweite, genauere Arbeit, die auch in England grossen Eindruck machte und sogar zum Anlass für einige erste, allerdings untaugliche Beobachtungsversuche wurde. Auslöser dazu war ausgerechnet der Astronomer Royal: Am 9. Juli 1846 bat George Airy brieflich James CHALLIS in Cambridge, mit dem grossen 28cm-Northumberland-Teleskop die Beobachtungen aufzunehmen, doch die von AIRY vorgeschlagene, breit angelegte Suche in einem Feld mit über 3000 Sternen heller als die 11. Grössenklasse war eher dazu geeignet, einen neuen Sternkatalog zu erstellen, als gezielt nach einem einzelnen, noch unbekannten Objekt Ausschau zu halten.

Der Fehlschlag war so gewissermassen vorprogrammiert: Am 30. Juli 1846, so konnte nachträglich rekonstruiert werden, beobachteten Challis und seine Assistenten den Neptun zwar als letzten Stern einer Beobachtungsserie vor aufziehenden Wolken. Dabei entgingen ihnen aber offenbar in der sich rasch verschlechternden Sicht sowohl der Scheibehencharakter als auch die Eigenbewegung des vermeintlichen Sterns.

Ein Brief nach Berlin

Aus Paris folgte am 31. August von Leverrier die dritte und abschliessende Überarbeitung seiner Uranus-Theorie, erneut ein vielbewundertes Glanzstück mathematischer Korrektheit. Doch wenn sich sein Autor erhoffte hatte, er könne mit seiner genialen Ableitung die an den Teleskopen arbeitenden Berufs-

kollegen an die Okulare bewegen, sah er sich getäuscht: Leverrier machte in Frankreich ganz ähnliche Erfahrungen mit den einheimischen Beobachtern, wie Adams in England: Keine der mit mancherlei königlichen Privilegien verwöhnten, aber sonst reichlich trägen Herrschaften war bereit, die fragliche Himmelsgegend ernsthaft nach einem neuen Planeten abzusuchen.

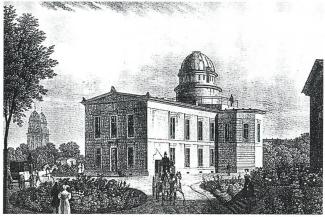
Bild 3: Der Fraunhofer-Refraktor, mit dem Johann Gottfried Galle am 23. September 1846 den Planeten Neptun entdeckte, steht heute als ein wissenschaftshistorisches Prunkstück im Technischen Museum München. (mgr)

In dieser Situation errinnerte sich Leverrier des jungen deutschen Astronomen Johann Gottfried Galle, der ihm vor einem Jahr seine Dissertation, eine Arbeit über Positionsastronomie, geschickt hatte. Leverrier schrieb nun endlich seinen Antwortbrief, lobte Galles Doktorarbeit und kam danach auf sein eigentliches Anliegen zu sprechen: «Im Augenblick würde ich gerne einen ausdauernden Beobachter finden, der den Willen hat, einige Zeit auf die Untersuchung einer Himmelsregion zu verwenden, in welcher möglicherweise ein Planet zu entdecken ist. Ich bin durch die Theorie des Uranus zu dieser Überzeugung gekommen. Eine Zusammenfassung meiner Forschungen wird in den astronomischen Nachrichten erscheinen. Dann, Monsieur, werde ich in der Lage sein, Sie durch ein Schriftstück um Entschuldigung zu bitten, wenn ich meiner Verpflichtung, Ihnen für die interessante Arbeit, die Sie mir schickten, zu danken, nicht schon nachgekommen sein sollte.

Sie werden sehen, Monsieur, dass ich zeige, wie unmöglich es ist, die Beobachtungen des Uranus zu erklären, ohne die Wirkung eines neuen, bis dahin unbekannten Planeten einzuführen; bemerkenswerterweise gibt es nur einen einzigen Ort in der Ekliptik, wo dieser störende Planet lokalisiert werden kann. Hier sind die Bahnelemente, die ich diesem Körper zuordne: (...).»

Die Entdeckung

Galle erhielt den Brief aus Paris am 23. September 1846. Mit einer kleinen Rechnung ermittelte er anhand der ihm von Leverrier übermittelten Bahnelemente den aktuellen Aufenthaltsort und bat noch am gleiche Tag seinen Chef, Johann Franz Encke (1791-1865), den Direktor der Berliner Sternwarte, um die Erlaubnis, nach dem Planeten Ausschau halten zu dürfen. Encke lehnte zunächst ab, als aber Galle auf seinem Vorhaben bestand, gab er seine Einwilligung. Möglicherweise liess sich Encke auch erweichen, weil er an diesem Tag Geburtstag hatte...


Unterstützt durch den 24jährigen Astronomie-Studenten Heinrich Louis d'Arrest (1822-1875) begann Galle am grossen 22,5cm-Fraunhofer-Refraktor, dem leistungsstarken Hauptinstrument der Berliner Sternwarte, seine Suche. Er konnte zunächst in der fraglichen Region im Steinbock, aus der übrigens gerade auch der Planet Saturn leuchtete, nichts auffälliges finden. Plötzlich erinnerte er sich einer neuen, von der Berliner Akademie eben erst in einigen wenigen Exemplaren herausgegebenen Sternkarte. Aus dem Wirrwar einer Schublade holte er sich das fragliche Blatt ans Teleskop. Er hatte zusammen mit D'ARREST erst einige wenige Sterne dieser Karte mit dem Himmelsanblick im Teleskop verglichen, als es zur Entdeckung kam: Der nächste Stern, ein Winzling 8. Grösse, war auf der Karte nicht verzeichnet! Nur gerade 55 Bogenminuten, nicht einmal zwei Vollmonddurchmesser von der vorausberechneten Position entfernt, stand der neue Himmelskörper.

Doch vorerst waren Galle und d'Arrest nicht sicher, ob es sich wirklich um den gesuchten Planeten handelte. Zusammen mit Direktor Encke, den sie inzwischen aus dem Bett gescheucht hatten, glaubten sie zwar, eine Eigenbewegung zu erkennen, doch erst am nächsten Tag stand es zweifellos fest: Der mutmassliche Planet hatte sich um rund 3 Bogensekunden pro Stunde rückläufig verschoben, eine weitere ausgezeichnete Übereinstimmung mit dem Wert, den Leverrier aufgrund seiner Rechnung vorausgesagt hatte. Und auch der am Teleskop zu knapp drei Bogensekunden bestimmte Scheibchendurchmesser kam den von Leverrier vorausgesagten 3,3 Bogensekunden sehr nahe.

Freude und Ärger in Paris und London

LEVERRIER war verständlicherweise begeistert über die gute Nachricht aus Berlin: «Wir sind dank Ihnen buchstäblich im Besitz einer neuen Welt», schrieb er am 1. Oktober euphorisch an Galle. Das Bureau des Longitude und Leverrier hatten sich inzwischen bereits für einen Namen entschieden. Neptun sollte der neue Planet heissen. Der von Galle vorgeschlagene Namen Janus fand keine Gnade. Und noch schlechter goutiert von der internationalen Astronomenzunft wurden später einige

Bild 4: Die sogenannte neue Berliner Sternwarte nach ihrer Eröffnung im Jahre 1835. Unter der Eisenkuppel stand der Stolz des Observatoriums, der 22,5cm-Refraktor. Nach der Verlagerung der Berliner Sternwarte nach Potsdam wurde 1915 das vom berühmten preussischen Architekten Karl F. Schinkel erbaute, klassizistische Gebäude leider abgerissen. (Archiv mgr)

vereinzelte französische Vorschläge, den neuen Himmelskörper «Leverrier» zu nennen und gewissermassen im höflichen Gegenzug an die Adresse der Briten den Planeten Uranus auf «Herschel» umzutaufen. Es blieb beim Namen Neptun, und als Symbol wurde der Dreizack, das Insignum des antiken Meeresgottes, gewählt.

In England wurde der neue Planet bereits am 30. September erstmals beobachtet. Am 14. Oktober schickte George Airy «aufrichtige Glückwünsche zu diesem erfolgreichen Abschluss Ihrer umfassenden und geschickt gelenkten Arbeiten» nach Paris. Der Wortlaut dieser Gratulation ist vielsagend. Seinem Kollegen James Challis in Cambridge schrieb der Astronomer Royal fast gleichzeitig: «Ich wünschte von Herzen, Ihr hättet den Planeten gefunden. Ich meine in den Augen der Öffentlichkeit, denn in meinen Augen habt Ihr es getan.»

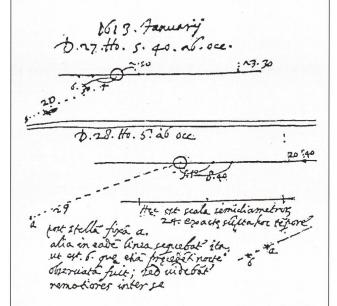
Doch bereits ab Mitte Oktober kam ein mit vielen Emotionen geführter Streit zwischen den Akademien Frankreichs und Englands in Fahrt. Auslöser waren einige ungeschickte Briefe, in denen jeweils die Leistungen von Adams und Leverrier gegeneinander hochgespielt wurden. Es hagelte gegenseitige Vorwürfe, und in den sonst von streng wissenschaftlicher Sachlichkeit geprägten Akademiesitzungen kam es gemäss journalistischen Beobachtern zeitweilig zu tummultartigen Szenen.

Die beiden Hauptbeteiligten Leverrier und Adams selber standen über der Sache und beteiligten sich nicht an die nationalistisch gefärbten Querelen. Im Juni 1847 kam es im Haus von John Herschel, dem Sohn des Uranus-Entdeckers, zu einer ersten direkten und offenbar sehr herzlichen Begegnung zwischen den beiden so genialen Neptun-Rechnern. Auch in den späteren Jahren, in denen sie der Wissenschaft noch manchen guten Dienst erwiesen, blieben sie einander in respektvoller Freundschaft verbunden, frei von jeglicher Eifersucht.

Für die Öffentlichkeit stand ohnehin die Tatsache, dass es allein aufgrund von Rechnungen gelungen war, die Existenz eines weiteren Planeten vorauszusagen, im Vordergrund. Der «errechnete Planet» erschien im aufblühenden Industriezeitalter wie der Wegweiser zu einer neuen Epoche. Die Neptun-Entdeckung trug mit dazu bei, dass die Möglichkeiten der Naturwissenschaften im 19. Jahrhundert massiv überschätzt wurden. So gab es zu Ende des vergangenen Jahrhunderts etliche Fachstimmen, die glaubten, mit den neuen Entdeckungen im Physik und Chemie seien bald einmal die letzten Weltgeheimnisse entschlüsselt. – Sie täuschten sich gewaltig ...

Kein Erfolg bei Pluto

Als bei Neptun bald einmal ebenfalls kleine Unregelmässigkeiten im Bahnablauf festgestellt wurden, glaubten etliche Forscher, bereits einem weiteren planetaren Störefried ausserhalb der Neptun-Bahn auf der Spur zu sein. Nach ihm wurde eifrig gesucht. Vor allem in den wissenschaftlich rasant aufstrebenden USA unternahmen Astronomen grosse Anstrengungen, den noch unbekannten transneptunischen Himmelskörper aufzustöbern. Obwohl dazu bald auch die Himmelsfotografie mit ihren sehr vielversprechenden Möglichkeiten eingesetzt werden konnte, blieb die Suche über Jahrzehnte hinweg erfolglos.


Als CLYDE TOMBAUGHT im März 1930 mit dem Planeten Pluto endlich den langgesuchten Planeten ausserhalb der Neptunbahn entdeckte, passte dieser neue Sonnentrabant überhaupt nicht ins Bild der Himmelsrechungen. Pluto ist mit 2300 Kilometern Durchmesser zumindest aus Sicht

Schon Galileo Galilei beobachtete Neptun

(mgr) Zu Beginn des Jahres 1613 kam es zu einer Bedeckung des Neptun durch den viel helleren Jupiter. Drei Jahre zuvor hatte der italienische Physiker und Fernrohrpionier Galileo Galilei die vier grossen Jupitermonde entdeckt und beobachtete bis weit über 1620 hinaus immer wieder das Spiel «seiner» vier Trabanten.

Am 28. Januar 1613 fertigte Galilei am Fernrohr eine Beobachtungsskizze an, in der er auch die weitere Sternumgebung festhielt. Südöstlich des Jupiter, in einem Abstand von 29 Jupiter-Radien, fielen ihm dabei zwei kleine Sternchen auf, die er mit «a» und «b» bezeichnete. «Hinter dem Stern a», so trug Galilei ergänzend in sein Beobachtungsbuch ein, «folgt in gleicher Richtung ein anderer Stern, der sich seit der vergangenen Nacht weiter entfernt zu haben scheint.» Weshalb Galilei diese Bewegung nicht weiter verfolgte, lässt sich aus heutiger Sicht schwer verstehen. Möglicherweise hinderte ihn eine länger anhaltende Schlechtwetterperiode an weiteren Beobachtungen. Doch es wäre wahrscheinlich selbst für einen routinierten Beobachter der späteren Jahre schwierig geworden, die Verschiebung des vermeintlichen Sterns inmitten des eigenbewegten Jupiters und der ihn seinerseits wieder mit anderen Geschwindigkeiten umsausenden Monde zu erkennen und richtig zu deuten.

Mit Computersimulationen lassen sich heute immerhin Galileis Skizzen und Beschreibungen klar einordnen und bestätigen: Beim Objekt «a» handelt es sich um den Stern SAO 119234, ein Stern 7. Grösse im Sternbild der Jungfrau. Das Objekt «b» hingegen war eindeutig der Planet Neptun!

Am 27. und 28. Januar 1613 fertigte Galileo Galilei zwei Beobachtungsskizzen des Planeten Jupiter an. Das im Text unten und mit der kleinen Skizze rechts beschriebene bewegliche Objekt «b» war der Planet Neptun. (Archiv mgr)

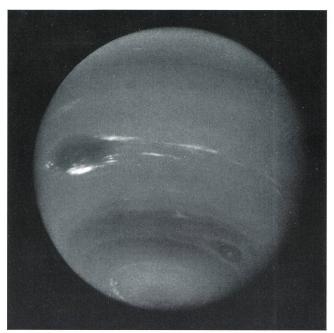


Bild 5: Neptun in einer Aufnahme der amerikanischen Raumsonde Voyager 2 vom Mitte August 1989, etwa eine Woche vor der grössten Annäherung. Der links in der Atmosphäre erkennbare «Grosse dunkle Fleck» ist ein gigantischer Wirbelsturm. (JPL Archiv mgr)

seiner Schwerkraft ein Schwächling. Er kurvt in einer aussergewöhnlich geneigten und erst noch stark ovalen Bahn um die zentrale Sonne. Dies ist übrigens auch der Grund, weshalb Neptun seit September 1979 und noch bis zum August 1998 weiter von der Sonne entfernt steht als der vermeintlich äusserste Planet Pluto. Die über Jahre hinweg gehegte Annahme, es handle sich bei Pluto lediglich nur um einen ausgerissenen Neptun-Mond, hat mit der Entdeckung des Pluto-Mondes Charon durch Christy im Jahre 1978 allerdings ernst zu nehmenden Widerspruch erfahren: Pluto ist und bleibt ein Sonderling im Sonnensystem.

Neptun aus heutiger Sicht

Nur zwei Wochen nach der Entdeckung des Neptun fand WILLIAM LASSELL (1799-1880) mit seinem neuen, grossen Spiegelfernrohr den ersten Neptun-Mond Triton. Die Entdekkung der viel kleineren Nereide folgte erst 1949. Doch Neptun blieb bis in unsere Tage hinein ein Planet, über den man eigentlich herzlich wenig wusste.

Zu einem eigentlichen Schub neuer Erkenntnisse kam es im August 1989 anlässlich des nahen Vorbeiflugs der amerikanischen «Voyager 2»-Sonde. Dabei konnten erstmals Einzelheiten in der wolkengestreiften und sehr aktiven Atmosphäre beobachtet werden, darunter der «Grosse dunkle Fleck», ein etwa erdgrosser, heftiger Wirbelsturm. Hier brausen, durch eine bisher nicht näher bekannte Wärmequelle in der Nepun-Oberfläche angeregt, Wirbelwinde mit Geschwindigkeiten von gegen 2000 km/h um das Sturmzentrum.

Voyager 2 entdeckte auch die inzwischen nach klassischen Gottheiten benannten weiteren Monde Naiad, Thalassa, Galatea, Despina, Larissa und Proteus – allesamt Mini-Trabanten von nur wenigen Kilometern Durchmesser – und dazu ein komplexes Ringsystem. Begeisterung unter den Forschern weckten die Nahaufnahmen der Triton-Oberfläche mit komp-

Neptun steht wieder im Steinbock

(mgr)Neptun benötigt 164,8 Erdenjahre für einen Sonnenumlauf. Seit seiner Entdeckung konnten wir also noch keinen ganzen Sonnenumlauf von ihm beobachten. Momentan bewegt sich der achte Planet im westlichen Teil des Sternbildes Steinbock und ist bis etwa Mitternacht mit mittelgrossen Fernrohren und einer guten Sternkarte problemlos zu beobachten. Im Frühjahr 2002 wird er mit einer ekliptikalen Länge von 324°53' wieder genau in jener Position stehen, in der ihn Johann Gottfried Galle im Herbst 1846 aufgestöbert hat. Die Stelle liegt im östlichen Steinbock, hart an der Grenze zum Wassermann.

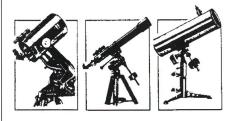
lex geformten Tälern, Kratern, Hügeln sowie mit eisigen Seen aus gefrorenem Ammoniakgas. Sogar Eisvulkane, bei denen aus etwas dunkleren Oberflächenzonen flüssiges Stickstoffgas herausbrodelt, wurden beobachtet. Übrigens: Mit einer Oberflächentemperatur von fast –240°C ist Triton der kälteste bisher bekannte Himmelskörper.

MARKUS GRIESSER Breitenstrasse 2 CH-8542 Wiesendangen E-Mail: griesser@spectraweb.ch

An- und Verkauf • Achat et vente

Zu verkaufen:

Wegen Todesfall zu verkaufen: **Celestron C8 Ultima**, komplett mit Stativ und Koffer, Instrument praktisch ungebraucht, Preis nach Absprache. Auskunft unter Tel. 033/43 12 34.


Zu kaufen gesucht:

Handbuch für Sonnenbeobachter, R. Beck; H. Hilbrecht et al.Vds, ISBN 3-923787-00-6. Baader Okular Gen III, 16.8 mm Brennweite 1 ¹/₄". Angebote an Franz Koller, Hörnliallee 73, 4125 Riehen.

TIEFPREISE für Teleskope und Zubehör

Tel. 031/3112113

Fax 031/3122714

Grosse Auswahl

CELESTRON

Zubehör, Okulare, Filter

AOK

Telrad-Sucher

BORG

Sternatlanten, Astron. Literatur Sirius-Sternkarten

Tele Vue

Astro-Software

Kowa

Kompetente Beratung

PENTAX

Alleinvertrieb für die Schweiz:

PENTAX®

TELESKOPE UND ZUBEHÖR IN PROFESSIONELLER QUALITÄT

Wir laden Sie ein:

Während unserer Ausstellung «FOTOTECH 96», ist die Generalvertretung von Pentax Europe n.V. für Mitteleuropa aus Deutschland bei uns zu Gast!

Dienstag 3. Dezember 1996 - 13.00 h bis 20.00 h Mittwoch, 4. Dezember 1996 - 10.00 h bis 19.00 h Donnerstag, 5. Dezember 1996 - 10.00 h bis 18.30 h im grossen Casino-Saal, Bern

Oktober • Octobre • Ottobre 1996

Wir freuen uns auf Ihren Besuch!

Alleinvertrieb für die Schweiz

Tel. 031/3112113

Fax 031/3122714