Zeitschrift: Orion: Zeitschrift der Schweizerischen Astronomischen Gesellschaft

Herausgeber: Schweizerische Astronomische Gesellschaft

Band: 48 (1990)

Heft: 241

Artikel: L'éclipse totale de soleil du 11 juillet 1991

Autor: Nitschelm, Christian / Sarrazin, Michel

DOI: https://doi.org/10.5169/seals-898901

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 29.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

L'éclipse totale de soleil du 11 juillet 1991

Christian Nitschelm(1,2), Michel Sarrazin(2)

- (1): Observatoire de Genève
- (2): Société astronomique de France

L'éclipse totale du Soleil du 11 juillet 1991 sera la plus spectaculaire et la plus longue avant de très nombreuses années. Elle sera visible comme totale le long d'une bande de plus de 150 km de large, bande créée par le mouvement du cône d'ombre de la Lune par rapport à la surface de la Terre et traversant successivement l'archipel d'Hawaï (figure 1), la Basse Californie (figures 2 et 3), le Mexique continental (figure 2), certains pays d'Amérique Centrale (le Guatemala, le Salvador, le Nicaragua, Costa Rica et Panama, figure 2), la Colombie et l'Amazonie brésilienne. La plupart de ces pays étant soit d'accès très difficile (Amazonie), soit en guerre civile latente ou active (la Colombie et toute l'Amérique centrale, sauf le Mexique et le Costa Rica), le choix des sites devient assez restreint. Pour des questions de météorologie, nous ne parlerons pas du Costa Rica et du Brésil, les perspectives n'étant pas très bonnes.

La grande île de l'archipel d'Hawaï, USA, où se trouve l'observatoire franco- canadien du CFHT, sera entièrement dans l'ombre de la Lune durant l'éclipse (figure 1). La durée de l'éclipse sera de 4 mn 13 s au sommet du Mauna Kea, un volcan éteint, à l'altitude de 4215 mètres et site de l'observatoire. Le maximum de l'éclipse se produira à 17 h 30 mn 18 s temps universel (TU). Le Soleil sera alors à 21° de hauteur au dessus de l'horizon, en direction de l'est. La grandeur maximale de l'éclipse, au même instant, sera de 1.034. Il n'est évidemment pas nécessaire de mentionner l'énorme intérêt scientifique d'un tel événement se déroulant dans un tel site

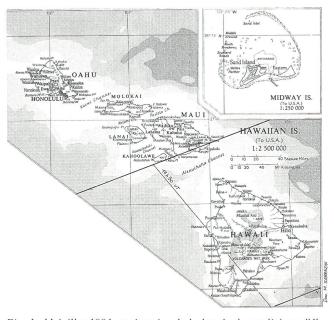


Fig. 1: 11 juillet 1991: trajectoire de la bande de totalité sur l'île d'Hawaï.

astronomique situé à une telle altitude, avec une couverture nuageuse nulle! Attention tout de même, l'accès de l'observatoire ne sera possible que pour quelques rares privilégiés. Les prédictions météorologiques ne sont évidemment pas aussi bonnes pour les sites côtiers, ce qui rend ce choix de site peu intéressant, au vu de la difficulté probable à se rendre à Hawaï les semaines précédant l'éclipse, tous les avions et les hôtels étant déjà réservés...

La bande de totalité de l'éclipse de 1991 passe presque centralement sur la ville de Mexico, capitale du Mexique (figure 4). La durée de l'éclipse y est de 6 mn 42 s, ce qui est exceptionnel pour une si grande ville. Le maximum de l'éclipse se produira à 19 h 24 mn 17 s TU. Le Soleil sera alors à 80° de hauteur au dessus de l'horizon, donc à seulement 10° du zénith. La grandeur maximale de l'éclipse, au même instant, sera de 1.033. La même éclipse sera également visible comme totale depuis nombre de sites précolombiens, avec une durée de l'ordre de 6 mn (voir les tables 1 et 2). Amateurs d'archéo-astronomie ou d'exotisme observationnel, à vos instruments!

Cependant, les prédictions météorologiques ne sont pas très favorables pour le plateau central mexicain à cette époque de l'année. Les photographies prises par satellite montrent très fréquemment une couverture nuageuse assez épaisse sur le Mexique continental, couverture que les plus hauts sommets, culminants à plus de 5000 mètres, ne percent même pas. Notons tout de même que cette couverture nuageuse n'est pas systématique et que le beau temps sera possible ce jour-là. Par exemple, le 11 juillet 1989, deux ans jour pour jour avant l'éclipse, le ciel a été clair sur tout le Mexique...

La meilleure solution nous paraît être la Basse Californie ou, à défaut, le golfe de Californie au sud de Mazatlan, ville côtière proche de Guadalajara (figure 3 et table 3). Les prédictions météorologiques pour la Basse Californie sont en effet bien meilleures que celles concernant le plateau, la couverture nuageuse devant être très faible, voire absente, au vu des photographies prises par satellite. La probabilité de beau temps reste importante sur la façade Pacifique du Mexique, tout en n'étant pas aussi bonne que celle concernant la Basse Californie. Attention, la Basse Californie n'est pas facile d'accès (il faut prendre un ferry depuis Mazatlan), c'est une région désertique pauvre et peu peuplée. Il semble nécessaire d'organiser une véritable expédition, avec matériel de camping, eau, vivres et essence. De plus, il y aura un afflux énorme de touristes américains, astronomes amateurs ou non, venus spécialement pour observer le phénomène. Les quelques hôtels locaux affichent complets pour cette période depuis déjà un certain temps...

Le champ stellaire de l'éclipse du 11 juillet 1991 est donné en figure 5 pour Mexico. Remarquons que l'étoile x des Gémeaux – Wasat – de magnitude 3.53 et de type spectral F2IV est à environ 15' pour Hawaï et 20' pour Mexico du bord solaire, c'est-à-dire à moins d'un diamètre. De plus, le champ est riche en étoiles faibles, car proche de la Voie Lactée. Une mesure de l'effet Einstein est donc envisageable si des moyens corrects sont employés. Une étude de la position des planètes durant la totalité a été menée. Un beau groupement de quatre planètes sera visible à une trentaine de degrés à l'Est du Soleil.

Mercure et Jupiter, à 4° l'une de l'autre, et Mars et Vénus, séparées de 3°, feront ainsi une jolie <double-double> bien visible durant la totalité, les deux groupes étant séparés d'environ 14°. Saturne ne sera pas visible durant la totalité, étant proche de son opposition (Figure 6).

Cette éclipse a lieu en période de maximum solaire, ce qui promet une couronne très active et tourmentée. Les observations seront donc de grande importance pour l'étude de la structure coronale...

Attention, les heures sont données en temps universel. Les éléments de Bessel utilisés sont ceux donnés par le Bureau des Longitudes, Paris.

Table 1

Circonstances de l'éclipse pour le Mauna Kea et pour Mexico

Mauna Kea, Hawaï

 $(4215 \text{ m}, \varphi = + 19^{\circ}49' \text{ Nord}, \lambda = + 155^{\circ}28' \text{ Ouest})$:

=> 16 h 30 mn 46 s Premier contact => 17 h 28 mn 12 s Deuxième contact Maximum (G=1.034) => 17 h 30 mn 18 s

=> Durée de la totalité: 4 mn 13s

=> 17 h 32 mn 25 s Troisième contact => 18 h 37 mn 43 sQuatrième contact

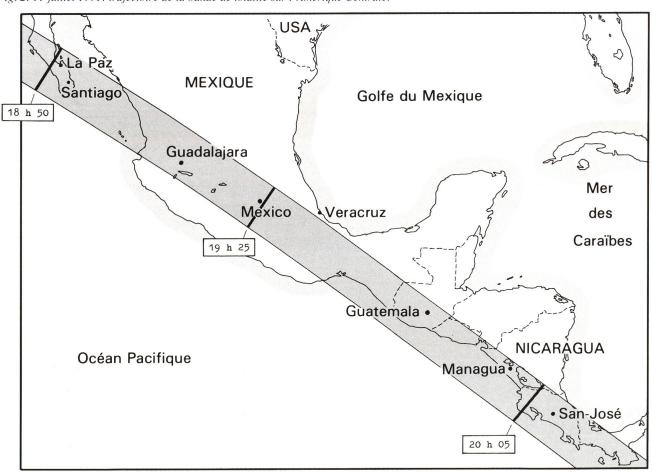
Maximum: le Soleil est à 21°17' de hauteur au dessus de l'horizon, en direction de l'est.

Centre de Mexico City

 $(2278 \text{ m}, \varphi = + 19^{\circ}26' \text{ Nord}, \lambda = + 99^{\circ}10' \text{ Ouest})$:

Premier contact => 17 h 54 mn 04 s => 19 h 20 mn 56 s Deuxième contact Maximum (G=1.033) => 19 h 24 mn 17 s

=> Durée de la totalité: 6 mn 42s


=> 19 h 27 mn 38 s Troisième contact => 20 h 47 mn 41 s Quatrième contact

Maximum: le Soleil est à 79°47' de hauteur au dessus de

l'horizon (à environ 10° du zénith!).

A 20 kilomètres au sud de Mexico, grandeur de 1.040 et durée de 6 mn 50 s.

Fig. 2: 11 juillet 1991: trajectoire de la bande de totalité sur l'Amérique Centrale.

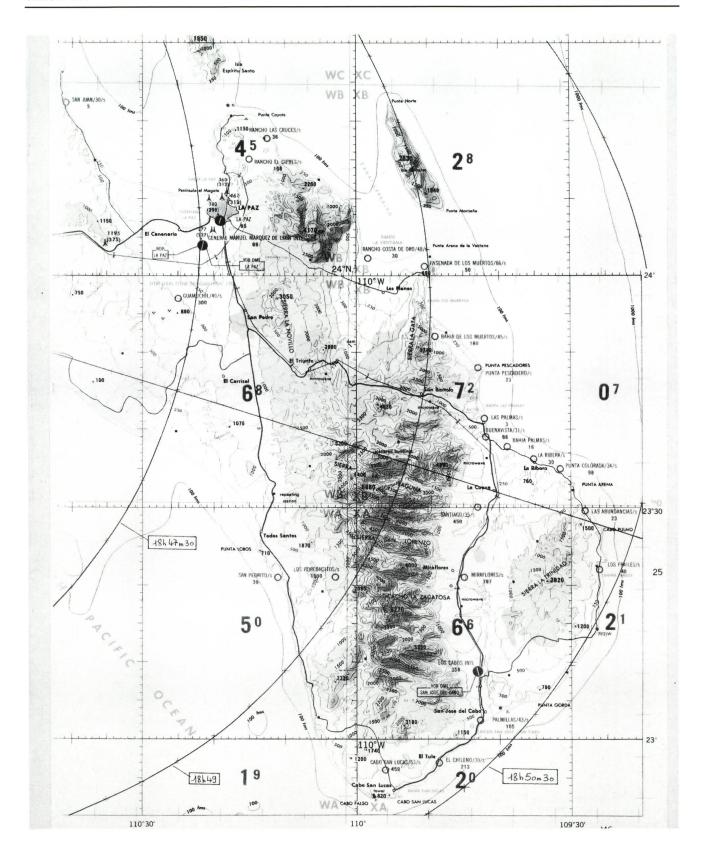
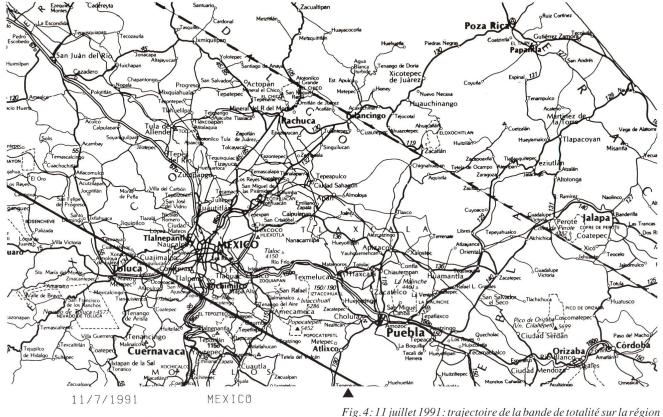



Fig. 3: 11 juillet 1991: trajectoire de la bande de totalité sur la Basse Californie.

FIELD CENTRE (1991.5) :

 $RA = 7^{\text{H}} 22^{\text{M}} 15.9^{\text{s}}$

 $DEC = +22^{\circ} 5'42''$

EPØCH: 1950.0

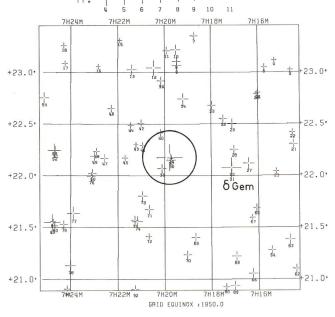
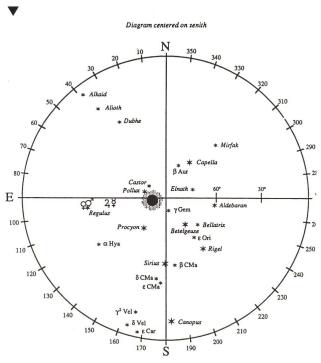



Fig. 4:11 juillet 1991 : trajectoire de la bande de totalité sur la région de Mexico. (ligne de centralité et limite nord)

◆ Fig. 5: 11 juillet 1991: Champ stellaire autour du Soleil vu depuis Mexico.

Fig. 6: 11 juillet 1991: Champ stellaire vu depuis La Paz, Baja California (US Naval Observatory Circulars no 174).

Étoiles du champ stellaire vu depuis Mexico (figure 5)

Field MEXICO Field Width = 3.00 Degrees

Galactic Coordinates: b = 16.49 1 = 196.15 Ecliptic Coordinates ($195\emptyset.0\%$):Lat. = $\emptyset.0\%$ Long. = 103.42

Output positions for Equinox 1950.00 Epoch 1950.00

(Co-ordinates are in mm., Relative to South Eastern Corner of actual plate (not emulsion))

Number of CSI Catalogue stars found = 95

	HD	DM		Spec V Mag	B Mag	R.A. Dec. (1950.00)	Offsets From Centre	Identifications
1 2 3 4 5	56565	BD +23 BD +23 BD +23 BD +23 BD +23	1653 1654 166Ø 1665 1667	A2 (10.2 KØ (10.8 KØ (11.0 AØ 9.6	10.3	7 13 32.7 +23 33 38 7 13 37.7 +23 34 2 7 14 35.8 +23 1 24 7 15 16.7 +23 7 7 7 15 24.4 +23 33 33	-5151 5017 -5083 5041 -4299 3074 -3733 3412 -3614 4997	AGK,YZ,SAO AGK AGK AGK AGK
6 7 8 9	57513 57512	BD +23 BD +23 BD +23 BD +23 BD +23	1568 1685 169Ø 1691 1692	GØ (1Ø.6 KØ (9.7 G 8.7 A3 (9.4 A3 8.5	10.8	7 15 42.6 +23 3 11 7 18 43.3 +23 21 13 7 19 27.6 +23 4 3 7 19 28.3 +23 6 21 7 19 3Ø.4 +23 13 7	-3377 3173 -881 4245 -271 3213 -261 3352 -231 3757	AGK AGK,YZ,SAO AGK,YZ,SAO AGK,YZ,SAO AGK,YZ,SAO
1 1 1 2	57744	BD +23 BD +23	1694 1698	A3 (9.8 AØ 6.Ø	10.0	7 19 54.8 +23 12 32 7 20 28.0 +23 2 35	1Ø5 3722 563 3126	AGK,YZ,SAO AGK,YZ,Boss,SAO,GCRV,YBS,N3Ø,JSK,A+B,
13 14 15	57953	BD +23 BD +23 BD +23	17Ø4 17Ø3 17Ø6	F5 8.6 K7 (9.8 GØ (11.3		7 21 24.7 +23 1 36 7 21 24.7 +23 30 53 7 21 54.9 +23 18 35	1346 3Ø68 1341 4826 176Ø 4Ø89	KDY,uvby,Bay,USNP,U+F AGK,YZ,Boss,SAO,N3Ø AGK,YZ,SAO AGK
16 17 18 19 20 21 22 23 24 25		BD +23 BD +23 BD +23 BD +23 ** +22 BD +22 BD +22 BD +22 BD +22 BD +22	17Ø9 1715 1717 1719 7135 1633 1634 1636 1639b 1639a	A2 (11.2 GØ (10.7 K5 (10.6 GØ (11.6 KØ (11.9 FØ (9.3 KØ (10.7 F8 (10.6 G5 (10.6 G5 (10.7	11.3 12.0 11.7 13.0 9.7 11.9 11.2	7 22 5Ø.3 +23 3 18 7 24 15.1 +23 5 16 7 24 18.1 +23 15 4Ø 7 24 44.8 +23 32 26 7 13 32.8 +22 1Ø 56 7 14 29.7 +22 18 19 7 14 32.3 +22 25 17 7 15 14.1 +22 2 36 7 15 59.6 +22 48 16	2528 3175 3697 338Ø 3734 3925 4095 4935 -5201 53 -4407 488 -4366 906 -3797 -460 -3797 -460 -3148 2275 -314Ø 2276	AGK AGK AGK AGK AGK AGK, YZ,SAO AGK AGK,IDS AGK,ADS
26 27 28 29 3Ø	5679Ø	BD +22 BD +22 BD +22 BD +22 BD +22	1639c 1642 1643 1644 1645b	GØ (10.9 G5 7.9 AØ (9.4 KØ (8.9 K6 (8.2	8.7 9.5 1Ø.1	7 16 3.7 +22 47 34 7 16 24.6 +22 7 3 7 17 7 9 +22 15 12 7 17 6.5 +22 30 14 7 17 8.2 +22 4 34	-3090 2234 -2816 -199 -2294 287 -2227 1190 -2210 -351	AGK AGK,YZ,Boss,SAO,GCRV,N3Ø,A+B AGK,YZ,SAO,ADS AGK,YZ,SAO,N3Ø ADS,GCRV,A+B
31	56986	BD +22	1645a	FØ 3.5	3.9	7 17 8.2 +22 4 33	-22Ø9 -352	AGK,Boss,SAO,ADS,GCRV,YBS,N3Ø,FK4,JSK, A+B,KDY,uvby.Bay,USNP,GCTP,UBV,IRC,GEN,
32 33 34 35	57449	BD +22 BD +22 BD +22 BD +22	1647 165Ø 1655 1658c	MØ (9.5 KØ (9.4 KØ 8.Ø (13.4	1Ø.6 9.2	7 17 29.2 +22 33 1 7 17 58.4 +22 40 47 7 19 12.3 +22 44 31 7 19 42.7 +22 10 2	-1911 1355 -1505 1820 -482 2041 -63 -28	U+F.SB AGK.YZ.SAO AGK.YZ.SAO AGK.YZ.SAO,IDS ADS
36 37 38 39 4Ø	5759Ø 57673	BD +22 BD +22 BD +22 BD +23 BD +22	1658b 1658a 1661 1695 1662	KØ (8.8 AØ 9.5 B8 8.9 A3 (9.5 KØ (9.8	9.1 8.9 9.7	7 19 42.9 +22 9 1 7 19 44.0 +22 10 18 7 20 7.2 +22 4 4 7 20 8.7 +22 55 5 7 20 10.2 +22 24 56	-59 -89 -44 -12 278 -386 297 2675 32Ø 866	AGK AGK,YZ,SAO,ADS AGK,YZ,SAO AGK,YZ,SAO AGK,YZ,SAO
41 42 43 44 45		BD +22 BD +22 BD +22 BD +22 3D +22	1663 1664 1665 1666	F5 (10.5 F8 (10.1 F5 (11.0 KØ (10.5 KØ (10.5	10.7	7 20 56.7 +22 17 39 7 21 0.8 +22 30 23 7 21 14.1 +22 18 0 7 21 27.6 +22 29 9 7 21 41.9 +22 10 19	964 43Ø 1Ø21 1194 12Ø6 452 1392 1121 1594 -8	AGK, IDS AGK AGK AGK AGK
46 47 48 49 5Ø	58337	BD +22 BD +22 BD +22 BD +22 BD +22	1673 1675 1676 1678 1679	F5 (10.0 F8 (9.7 K2 (10.2 F8 (9.1 R5 9.5	10.3	7 22 17.0 +22 38 57 7 22 34.5 +22 10 9 7 22 54.7 +22 14 7 7 23 0.0 +22 11 17 7 23 5.1 +22 1 17	2074 1712 2324 -15 2603 223 2678 55 2752 -546	AGK,YZ,SAO AGK AGK AGK,ADS GCRV,JSK,A+B,USNP
51 52 53 54 55	58712 588ø8	BD +22 BD +22 BD +22 BD +22 BD +23	1687b 1687a 1687c 1689 1723	A5 (9.3 K5 6.8 (12.1 KØ 8.3 K7 (9.7	9.2	7 24 38.9 +22 14 43 7 24 41.5 +22 14 38 7 24 41.7 +22 14 47 7 25 8.5 +22 45 18 7 25 28.7 +22 58 31	4Ø51 269 4Ø87 264 4Ø9Ø 274 4445 21Ø8 4717 29Ø5	AGK,YZ,ADS AGK,YZ,Boss,SAO,ADS,IRC ADS AGK,YZ,SAO AGK,YZ,SAO
56 57 58 59 6Ø	58989	BD +22 BD +22 BD +23 BD +21 BD +22	169Ø 1692 1727 1559 1631	A3 (9.6 F2 (10.3 A2 8.9 A0 (10.0 K0 (10.4	1Ø.7 9.7 1Ø.1	7 25 36.5 +22 21 1 7 25 42.1 +22 37 21 7 25 52.2 +22 55 9 7 13 49.4 +21 31 59 7 13 52.3 +21 59 34	4847 654 4915 1635 5044 2705 -4993 -2287 -4936 -632	AGK,YZ,SAO AGK,YZ,SAO AGK,YZ,SAO,N3Ø AGK AGK
61 62 63 64 65	56199 56389	BD +21 BD +21 BD +21 BD +21 BD +21	1568 1565 1566 1567 1569	G5 8.9 KØ (9.4 K2 8.5 K2 (9.8 GØ (9.9	9.6 11.0	7 13 57.7 +21 5Ø 4Ø 7 14 25.2 +21 5 52 7 14 4Ø.3 +21 22 48 7 15 26.2 +21 16 5Ø 7 16 4.6 +21 41 18	-4866 -1167 -4508 -3859 -4287 -2845 -3649 -3208 -3103 -1743	AGK,YZ,SAO AGK,YZ,SAO AGK,YZ,SAO AGK,YZ,SAO AGK

HD	DM	Spe	ec V Mag	B Mag	R.A. Dec. (195ø.øø)	Offsets From Centre	Identifications
66 5676 67 68 5694 69 7Ø	BD +21	1574 AØ 158Ø K5	(10.6)	1Ø.6 8.6 1Ø.6	7 16 14.6 +21 3 15 7 16 15.6 +21 35 42 7 16 56.9 +21 13 18 7 18 4\mathrm{\emptyselength}{\text{7}} 8 4\mathrm{\emptyselength}{\text{8}} 8 +21 24 11 7 19 2.1 +21 14 4	-2977 -4027 -2952 -2080 -2381 -3427 -928 -2779 -631 -3386	AGK,YZ,SAO,N3Ø AGK AGK,YZ,SAO AGK,YZ,SAO AGK
71 72 73 74 579Ø.	BD +21 BD +21 BD +21 BD +21 BD +21 BD +21	1587 G5	(9.1) (10.3) (8.8) (8.8) (9.2)	11.2 9.7 7.8	7 2Ø 4Ø.Ø +21 4Ø 22 7 2Ø 41.3 +21 24 47 7 2Ø 57.Ø +21 48 11 7 21 1Ø.5 +21 33 22 7 21 17.3 +21 34 9	736 -18Ø7 756 -2743 972 -1338 1162 -2227 1258 -218Ø	AGK,YZ,SAO AGK AGK,YZ,SAO AGK,Boss,SAO,ADS ADS
76 5836 77 5855 78 79 8Ø				8.1 9.9 1Ø.5	7 23 7.8 +21 59 29 7 23 53.0 +21 38 14 7 24 0.1 +21 7 56 7 24 17.3 +21 31 43 7 24 39.7 +21 31 4	279Ø -653 3428 -1925 3539 -3743 377Ø -2313 4Ø83 -2351	AGK,YZ,SAO,GCRV,JSK,A+B,USNP AGK,YZ,Boss,SAO,GCRV,YBS,N3Ø,A+B,KDY, uvby,USNP,GCTP,UBV,U+F AGK,YZ,SAO AGK,YZ,SAO ADS
81 82 5872 83 5889 84 85 5896	BD +21 BD +21 BD +21 BD +22	1602b 1602a F5 1606 G5	11.Ø 5.3 6.5 2 (9.2)	12.3 5.7 7.Ø 9.7	7 24 44.5 +21 32 35 7 24 46.3 +21 32 56 7 25 26.9 +21 39 11 7 25 41.2 +21 57 18 7 25 46.2 +21 46 55	4148 -2202 4174 -2237 4737 -1858 4926 -768 50002 -1390	ADS, USNP AGK, YZ, Boss, SAO, ADS, GCRV, YBS, JSK, A+B, uvby, Bay, USNP, GCTP, UBV, GEN, U+F, SB AGK, YZ, Boss, SAO, N3Ø, USNP, UBV AGK, YZ, SAO AGK, YZ, SAO
86 5899 87 5629 88 89 9ø	Ø BD +22	1694 KØ 1564 G5 1761 KØ 1575 GØ	7.9	9.2 8.6 11.6 9.5	7 25 53.8 +21 55 29 7 14 21.1 +20 50 6 7 15 3.4 +20 43 10 7 17 1.2 +20 56 4 7 17 23.3 +20 55 30	51Ø2 -875 -4574 -48Ø5 -3983 -5227 -2327 -4462 -2Ø17 -4497	AGK,YZ,SAO AGK,YZ,SAO AGK AGK,YZ,SAO AGK
91 5774 92 93 94 95	BD +2Ø BD +21 BD +21 BD +21 BD +21	1598 K2 16Ø4b MØ	9.4)	10.1 11.5 11.5	7 2Ø 25.8 +2Ø 48 24 7 21 16.6 +2Ø 54 4 7 24 8.2 +2Ø 54 21 7 25 5.5 +2Ø 51 45 7 25 1Ø.Ø +2Ø 48 37	542 -4927 1253 -4585 3658 -4557 4463 -4707 4528 -4895	AGK,YZ,SAO AGK,YZ,SAO AGK AGK AGK

Table 2

Circonstances de l'éclipse pour certains sites précolombiens (à 2000 m en moyenne)

```
Theotihuacan (\phi = 19^{\circ}42' Nord, \lambda = + 98^{\circ}52' Ouest):
```

Deuxième contact => 19 h 21 mn 40 s Maximum (G=1.020) => 19 h 24 mn 37 s

=> Durée de la totalité: 5 mn 54s

Troisième contact => 19 h 27 mn 34 s

Huexotla ($\varphi = + 19^{\circ}29'$ Nord, $\lambda = + 98^{\circ}53'$ Ouest):

Deuxième contact => 19 h 21 mn 40 s Maximum (G=1.027) => 19 h 24 mn 53 s

=> Durée de la totalité: 6 mn 25s

Troisième contact => 19 h 28 mn 05 s

Cholula ($\varphi = + 19^{\circ}04'$ Nord, $\lambda = + 98^{\circ}18'$ Ouest):

Deuxième contact => 19 h 23 mn 34 s Maximum (G=1.030) => 19 h 26 mn 51 s

=> Durée de la totalité: 6 mn 34s

Troisième contact => 19 h 30 mn 08 s

Yecapixtla ($\varphi = + 18^{\circ}53'$ Nord, $\lambda = + 98^{\circ}53'$ Ouest):

Deuxième contact => 19 h 22 mn 21 s Maximum (G=1.036) => 19 h 25 mn 45 s

=> Durée de la totalité: 6 mn 47s

Troisième contact => 19 h 29 mn 08 s

Tepoztlan ($\varphi = + 19^{\circ}00'$ Nord, $\lambda = + 99^{\circ}06'$ Ouest):

Deuxième contact => 19 h 21 mn 39 s Maximum (G=1.036) => 19 h 25 mn 03 s

=> Durée de la totalité: 6 mn 46s

Troisième contact => 19 h 28 mn 27 s

Malinalco ($\varphi = + 18^{\circ}57'$ Nord, $\lambda = + 99^{\circ}29'$ Ouest):

Deuxième contact => 19 h 20 mn 57 s Maximum (G=1.028) => 19 h 24 mn 13 s

=> Durée de la totalité: 6 mn 32s

Troisième contact => 19 h 27 mn 29 s

Xochicalco ($\varphi = + 18^{\circ}48'$ Nord, $\lambda = + 99^{\circ}19'$ Ouest):

Deuxième contact => 19 h 21 mn 36 s Maximum (G=1.027) => 19 h 24 mn 49 s

=> Durée de la totalité: 6 mn 27s

Troixième contact => 19 h 28 mn 03 s

Chalcatzingo ($\varphi = + 18^{\circ}39'$ Nord, $\lambda = + 98^{\circ}47'$ Ouest):

Deuxième contact => 19 h 23 mn 00 s Maximum (G=1.031) => 19 h 26 mn 17 s

=> Durée de la totalité: 6 mn 37s

Troisième contact => 19 h 29 mn 37 s **Tula** (ϕ = + 20°03' Nord, λ = + 99°21' Ouest): Deuxième contact => 19 h 20 mn 14 s

Maximum (G=1.017) => 19 h 23 mn 02 s

=> Durée de la totalité: 5 mn 36s

Troisième contact => 19 h 25 mn 50 s

Table 3

Circonstances de l'éclipse pour certains sites de Basse Californie

La Cueva

 $(75 \text{ m}, \varphi = + 23^{\circ}32'00" \text{ Nord}, \lambda = + 109^{\circ}40'35" \text{ Ouest}):$

 Premier contact
 => 17 h 24 mn 56 s

 Deuxième contact
 => 18 h 49 mn 35 s

 Maximum (G=1.040)
 => 18 h 53 mn 05 s

=> Durée de la totalité: 6 mn 59s

Troisième contact => 18 h 56 mn 34 s Quatrième contact => 20 h 21 mn 03 s

(La Cueva, à l'intérieur des terres, se trouve placé sur la ligne de centralité).

Las Abundancias

 $(0 \text{ m}, \varphi = + 23^{\circ}29'35" \text{ Nord}, \lambda = + 109^{\circ}28'00" \text{ Ouest})$:

Premier contact => 17 h 25 mn 26 s Deuxième contact => 18 h 50 mn 10 s Maximum (G=1.040) => 18 h 53 mn 39 s => Durée de la totalité: 6 mn 59s

Troisième contact => 18 h 57 mn 09 s Quatrième contact => 20 h 21 mn 35 s

(Las Abundancias, près de la côte, est à 2 km au nord de la ligne de centralité).

Intersection route et ligne de centralité, à 3 km au sud-est de Las Abundancias

 $(0 \text{ m}, \varphi = + 23^{\circ}28'08" \text{ Nord}, \lambda = + 109^{\circ}27'11" \text{ Ouest})$:

Premier contact => 17 h 25 mn 28 s Deuxième contact => 18 h 50 mn 13 s Maximum (G=1.040) => 18 h 53 mn 43 s

=> Durée de la totalité: 6 mn 59s

Troisième contact => 18 h 57 mn 12 s Quatrième contact => 20 h 21 mn 38 s

(Le Soleil est à plus de 83° de hauteur, c'est-à-dire à moins de 7° du zénith)

La Paz, centre ville

 $(0 \text{ m}, \varphi = + 24^{\circ}08'15" \text{ Nord}, l\lambda = + 110^{\circ}18'45" \text{ Ouest})$

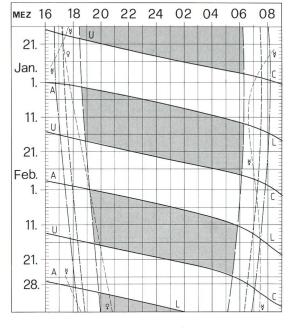
Premier contact => 17 h 23 mn 19 s Deuxième contact => 18 h 47 mn 39 s Maximum (G=1.027) => 18 h 50 mn 55 s

=> Durée de la totalité: 6 mn 32s

Troisième contact => 18 h 54 mn 11 s Quatrième contact => 20 h 18 mn 49 s

(La Paz, sur la côte, est à 45 km au nord de la ligne de centralité)

Feriensternwarte CALINA CARONA


Calina verfügt über folgende Beobachtungsinstrumente:

Newton-Teleskop ø30 cm Schmidt-Kamera ø30 cm Sonnen-Teleskop

Den Gästen stehen eine Anzahl Einzel- und Doppelzimmer mit Küchenanteil zur Verfügung. Daten der Einführungs-Astrophotokurse und Kolloquium werden frühzeitig bekanntgegeben. Technischer Leiter: Hr. E. Greuter, Herisau.

Neuer Besitzer: Gemeinde Carona
Anmeldungen: Feriensternwarte Calina
Postfach 8, 6914 Carona

Sonne, Mond und innere Planeten

Grundmuster AN (Normaljahr) Jan./Feb. ORION Nr.

Soleil, Lune et planètes intérieures

Aus dieser Grafik können Auf- und Untergangszeiten von Sonne, Mond, Merkur und Venus abgelesen werden.

Die Daten am linken Rand gelten für die Zeiten vor Mitternacht. Auf derselben waagrechten Linie ist nach 00 Uhr der Beginn des nächsten Tages aufgezeichnet. Die Zeiten (MEZ) gelten für 47° nördl. Breite und 8°30' östl. Länge.

Bei Beginn der bürgerlichen Dämmerung am Abend sind erst die hellsten Sterne — bestenfalls bis etwa 2. Grösse — von blossem Auge sichtbar. Nur zwischen Ende und Beginn der astronomischen Dämmerung wird der Himmel von der Sonne nicht mehr aufgehellt.

Les heures du lever et du coucher du Soleil, de la Lune, de Mercure et de Vénus peuvent être lues directement du graphique.

Les dates indiquées au bord gauche sont valables pour les heures avant minuit. Sur la même ligne horizontale est indiqué, après minuit, le début du prochain jour. Les heures indiquées (HEC) sont valables pour 47° de latitude nord et 8°30' de longitude est.

pour 47° de latitude nord et 8°30' de longitude est.

Au début du crépuscule civil, le soir, les premières étoiles claires — dans le meilleur des cas jusqu'à la magnitude 2 — sont visibles à l'œil nu. C'est seulement entre le début et la fin du crépuscule astronomique que le ciel n'est plus éclairé par le Soleil.

	Sonnenaufgang und Sonnenuntergang
	Lever et coucher du Soleil
	Bürgerliche Dämmerung (Sonnenhöhe -6°)
	Crépuscule civil (hauteur du Soleil -6°)
	Astronomische Dämmerung (Sonnenhöhe -18°)
	Crépuscule astronomique (hauteur du Soleil -18°
A L	Mondaufgang / Lever de la Lune
	Monduntergang / Coucher de la Lune
	Monduntergang / Coucher de la Lune

Kein Mondschein, Himmell vollständig dunkel Pas de clair de Lune, ciel totalement sombre