Zeitschrift: Orion : Zeitschrift der Schweizerischen Astronomischen Gesellschaft
Herausgeber: Schweizerische Astronomische Gesellschaft

Band: 42 (1984)

Heft: 202

Artikel: Wandel der Problemstellungen und Losungsmethoden in der
Himmelsmechanik wahrend der letzten 400 Jahre

Autor: Beutler, G.

DOl: https://doi.org/10.5169/seals-899276

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 07.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-899276
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

104

ORION 202

Wandel der Problemstellungen

G. BEUTLER

und Losungsmethoden in der Himmelsmechanik
wahrend der letzten 400 Jahre

Der vorliegende Aufsatz entstand als Manuskript zu einem
Vortrag vor der philosophisch-naturwissenschaftlichen Fa-
kultit der Universitdt Bern vom 5. Mai 1983. Er ist in 6 Ab-
schnitte unterteilt:

1. Allgemeine Umschreibung der Aufgaben

2. Tycho Brahe und Kepler

3. Beschreibung des Planetensystems von Newton bis New-
comb

4. Kleinplaneten oder die klassische Bahnbestimmung

5. Raumfahrt- und Computeriara

6. Beobachtung heute

1. Allgemeine Umschreibung der Aufgaben

Mit Ausnahme von Tycho Brahe haben alle hier auftretenden
Akteure ihren Untersuchungen das heliozentrische Weltbild
zu Grunde gelegt.

In diesem System miissen wir die Begriffe Bahn eines Pla-
neten und Beobachtung eines Planeten definieren.

Die Bahn ordnet dem Planeten fiir jeden Zeitpunkt t genau
einen heliozentrischen Ortsvektor r(t) zu. Den Ortsvektor des
Planeten Erde bezeichnet man normalerweise mit R(t) (siche
Figur 1). Unter der Beobachtung eines Planeten war bis etwa

in die Mitte des 20. Jahrhunderts die Messung der Richtung -

von einem Beobachter auf der Erde zum Planeten zu einer be-
stimmten Zeit zu verstehen. Gemessen wurden also die Ein-
heitsvektoren ép(t) (Richtungen Beobachter-Planet) und
auch die Einheitsvektoren €g(t) Richtungen Beobachter-Son-
ne).

Diese Messungen wurden im Laufe der Monate und Jahre
immer wieder wiederholt, so dass schliesslich fiir die Planeten
resp. fiir die Sonne Messreihen folgender Art zur Verfiigung
standen:

tj,é"pj:Messungvon é'p(tj),jzl,Z,...,nbp a
tj, €'sj: Messung von €g(tj), j=1,2,...,npg

np. . ist dabei die Anzahl der Beobachtungen des betreffen-
den Himmelskorpers.

In der Himmelsmechanik ging und geht es immer darum,
die Bahnen der Himmelskorper unseres Planetensystems zu
bestimmen. Bei einer Bahnbestimmung geht es offenbar dar-
um, aus den Messreihen (1) die heliozentrische Bahn r(t) zu
bestimmen: Es muss also ein Algorithmus angegeben wer-
den, der es erlaubt, fiir beliebige Zeiten t den Ortsvektor r(t)
des Planeten zu berechnen. Dabei miissen alle in diesem Al-

gorithmus auftretenden Grossen allein aus den Messreihen
(1) folgen.

Fig. 1:S: Sonne, E : Erde, P : beobachteter Planet, R (t) : Ortsvektor
von E, F(t) : Ortsvektor von P, é,(t) : beobachteter Einheitsvektor E
— P, éy(t) : beobachteter Einheiisvektor E = S.

2. Tycho Brahe und Kepler
Diese Epoche lésst sich zeitlich durch die Lebensdaten der
Akteure fixieren:

Tycho Brahe (1546-1601)

Johannes Kepler (1571-1630)

Es ist natiirlich eine grobe Vereinfachung, diese beiden
Wissenschaftler isoliert zu betrachten: Sie hatten ihre Vor-
gianger und Mitstreiter. Es ldsst sich aber nicht iibersehen,
dass von ihnen die wesentlichen Beitrige zur Beschreibung
des Planetensystems jener Zeit ausgingen.
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Tycho Brahe hat in der astronomischen Beobachtungs-
technik neue Massstabe gesetzt, und man darf sagen, dass er
dem astronomischen Beobachter zu dem hohen Ansehen ver-
half, das er noch heute besitzt. Zunichst in Danemark
(1576-1597), anschliessend in Prag (1599-1601), haben er
und seine Gehilfen die Planeten und die Sonne mit einer fiir
jene Zeit beispiellosen Genauigkeit beobachtet.

Man darf nun nicht glauben, dass Tycho Brahe diese Beob-
achtungen als Selbstzweck betrieb. Er hat sie sehr wohl als
Entscheidungsgrundlage fir die Richtigkeit verschiedener
Modelle des Planetensystems betrachtet. Dass ihm eine be-
friedigende Interpretation der Messreihen nicht gelang, ist
bekannt.

Johannes Kepler war vor 1600 als « Landschaftsmathema-
tiker» in Graz titig. Seine Neigung zur Himmelsmechanik be-
wies er mit seinem Werk «Mysterium Cosmographicumy, in
welchem er mit massigem Erfolg versuchte, die Bahnradien
der bekannten Planeten mit In- und Umkugeln der reguldaren
Polyeder in Relation zu bringen. Wichtiger als der Inhalt je-
nes Werkes ist der Umstand, dass Tycho auf ihn aufmerksam
wurde und ihn einlud, in Prag an der Auswertung der Beob-
achtungen mitzuwirken.

«Auswertung der Beobachtungen» konnte aber nichts an-
deres heissen, als die Gesetze der Planetenbewegung formu-
lieren. Als schliesslich Kepler im Jahre 1600 dieser Einladung
folgte, war er 28jahrig und voller Optimismus. Es ist {iberlie-
fert, dass er eine Wette annahm, der Schwierigkeiten in 8 Ta-
gen Herr zu werden. Er hat die Aufgabe gelost, allerdings
nicht ganz in der vorgesehenen Zeit: die Resultate wurden in
der «Astronomia Novay im Jahre 1609 veroffentlicht.

Dass die Losung so viel Zeit in Anspruch nahm, ist keines-
wegs verwunderlich: Kepler darf fiir sich in Anspruch neh-
men, wohl das schwierigste Bahnbestimmungsproblem der
Geschichte gelost zu haben.

Rufen wir uns die Schwierigkeiten in Erinnerung:

- Kepler kannte die Unbekannten der Aufgabe nicht! Heute
wissen wir, dass - jedenfalls in guter Naherung - die Bahn
eines jeden Planeten durch sechs Grossen, die Bahnele-
mente, eindeutig bestimmt ist. Kepler kannte weder die
Zahl, noch die Art der Unbekannten.

- Kepler hatte die Aufgabe, die Bahn des Planeten Mars aus
dessen Beobachtungen zu bestimmen. Da aber diese Beob-
achtungen von der Erde aus gemacht wurden, deren Bahn
um die Sonne damals auch nicht bekannt war, blieb Kepler
nichts anderes librig, als zusdtzlich die Erdbahn zu bestim-
men.

Diese Aufgabe konnte nur dank der 24jahrigen Beobach-
tungsreihen von Mars und Sonne von Tycho Brahe gelOst
werden.

Prinzip der Losungsmethode
Man liest heute hin und wieder, dass Kepler die Bahn des
Mars vollig hypothesenfrei bestimmte. Dem ist zu widerspre-
chen: Kepler ging ndmlich von der Annahme aus, dass die
Bahnkurven der Planeten in dem durch die Fixsterne defi-
nierten Raum streng periodisch sind. Heute wissen wir, dass
dies nur nidherungsweise richtig ist. Fiir die Genauigkeit der
damaligen Beobachtungen und fiir das von ihm untersuchte
Zeitintervall (Beobachtungen iiber 24 Jahre) war aber diese
Annahme gerechtfertigt.

Die Umlaufszeiten von Erde und Mars aber konnte er nicht
direkt aus den Beobachtungen bestimmen, sie waren ihm also

bekannt. Unter dieser Voraussetzung gelingt Kepler eine von
weiteren Hypothesen freie Losung der Aufgabe.

Die Losung ist einfach und anschaulich, sie erfolgt in zwei
Schritten:

1. Rekonstruktion der Erdbahn aus den Beobachtungen von
Sonne und Mars
2. Bestimmung der Marsbahn bei bekannter Erdbahn.

Das Prinzip seiner Analyse sei hier unter der vereinfachen-
den Annahme erklidrt, dass die Bahnebenen von Mars und
Erde iibereinstimmen:

1. Erdbahn: Aus den Beobachtungen von Sonne und Mars
bestimmt Kepler den genauen Zeitpunkt einer Opposition,
also den Zeitpunkt, fiir den €g(tg) = — €m(to) gilt.

Diese Situation ist in Figur 2a wiedergegeben. Diese Figur
ist fiir Kepler insofern nicht realistisch, als dort der Ortsvek-
tor der Erde als bekannt vorausgesetzt wird (der Ortsvektor
von Mars darf beibehalten werden; dies definiert den Mass-
stab der Zeichnung).

» ?(to)

Fig. 2a: Marsopposition zur Zeit t,. S : Sonne, M : Mars, E : Erde,
R(ty): Erdposition z.Z. iy, T(ty): Marsposition z.Z. ty, eg(ty),
e (ty): Einheitsvektor Erde - Sonne resp. Erde - Mars z. Z. der Op-
position.

Nun setzt Kepler ja voraus, dass die Bahn von Mars perio-
disch ist. Er weiss also, dass sich Mars nach

U = 687 Tagen
wieder an genau der gleichen Stelle im Raum befinden wird.
Esgiltalso: 1ty + U) = r(tg)

Aus den Beobachtungen Tychos nun rekonstruiert Kepler
die Richtungen Sonne — Erde (—€g(tg+ U)) und Mars —
Erde (— €m(to + U)) zur Zeit to + U. Der Erdort zu dieser Zeit
folgt jetzt einfach als Schnittpunkt der durch S, —€g(to+ U)
und M, —€m(to+ U) definierten Geraden (siehe Figur 2b).
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Fig. 2b: Rekonstruktion der Erdbahn aus Beobachtungen von Sonne
und Mars zu den Zeiten ty.: =ty + k - U, k=1,2,..., U: siderische
Umlaufszeit von Mars, €, (t,+ U) : beobachteter Einheitsvektor
Erde - Mars *), ég(ty + U) : beobachteter Einheitsvektor Erde - Son-
ne*), ¥)z.Z. to+ U, R(to+ U): Erdpositionz.Z. ty+ U.

Das gleiche Verfahren kann nun sinngemdss fiir die Zeiten
to+k - U,k=(1),2,3,... gebraucht werden: jedesmal erhélt
man einen Punkt der Erdbahn.

Das Resultat war einfach: In ausgezeichneter Nédherung
war die Erdbahn ein Kreis, wobei die Sonne nicht ganz im
Zentrum stand. Da auch die Bahn der Erde nach Vorausset-
zung periodisch ist, konnte Kepler jedem beobachteten Ein-
heitsvektor (Erde-Sonne) den Betrag des Radiusvektors (Er-
de-Sonne) zuordnen (siehe Figur 2c).

2. Marsbahn
Damit hatte Kepler die Aufgabe auf das reduziert, was man

heute unter Bahnbestimmung versteht: Bestimmen von r(t)
unter der Voraussetzung, dass die Bahn des Beobachters be-
kannt ist. Kepler wendet im wesentlichen die gleiche Metho-
de wie bei der Erdbahn an: Er geht von einer andern Opposi-
tion to* aus. Er weiss, dass r(tg*) = r(ty* + U) auf der durch
R(to*) und €y (to*) definierten Geraden und auf der durch
R(to* + U)und €y (to* + U) definierten Geraden liegen muss!
Auf diese Art kann Kepler fiir jede Marsopposition genau ei-
nen Bahnpunkt von Mars konstruieren (siehe Figur 2c).

Der Rest war einfach und nicht mehr aufzuhalten: Kepler
fand seine beiden ersten Gesetze und veroffentlichte sie in
dem fundamentalen Werk Astronomia Nova. Das dritte Ge-
setz, das hier vollstindigkeitshalber mit aufgefiihrt wird,
fand er erst wesentlich spater (publiziert wurde es 1619):

RS e i

Fig. 2c: S : Sonne, Z : Zentrum des Kreises der Erdbahn, ty*: Zeit-
punkt einer Marsopposition t,*#1,.

I: Die Planetenbahnen sind Ellipsen, in deren einem
Brennpunkt die Sonne steht
II: Die Verbindungslinie «Sonne-Planet» iiber-
streicht in gleichen Zeiten gleiche Flachen @
III: Die Quadrate der Umlaufzeiten verhalten sich wie
die Kuben der grossen Halbachsen, oder:
a’/U? = const fiir jeden Planeten.

Mit diesen Gesetzen war auch die Parametrisierung der
Aufgabe gegeben: Grosse und Form einer Ellipse werden z.B.
durch die grosse Halbachse und die numerische Exzentrizitit
festgelegt, die Stellung der Bahnebene im Raum wird durch
zwei Lagewinkel, die Stellung der Ellipse innerhalb der
Bahnebene durch einen weiteren Lagewinkel definiert. Kep-
ler hat dann noch gezeigt, dass man durch eine weitere Anga-
be, die Periheldurchgangszeit, sehr einfache Formeln ange-
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ben kann, mit denen man r(t) zu beliebigen Zeiten berechnen
kann.

3. Beschreibung des Planetensystems

von Newton bis Newcomb
Isaak Newton publizierte seine «Philosophiae Naturalis
Principia Mathematica» im Jahre 1687. [hre Bedeutung fiir
die Entwicklung der Physik und Mathematik ist allgemein be-
kannt und anerkannt, so dass wir uns hier auf einige wenige
Bemerkungen beschranken kénnen:

Aus seinen Axiomen der Mechanik, seinem Gesetz der uni-
versellen Gravitation und aus dem Superpositionsprinzip der
Krifte folgen auf elementarste Weise die Gleichungen, die
die Bewegung der Planeten um die Sonne definieren. In mo-
derner Schreibweise lauten diese:

) r; N I —T; r;
ri(z)z_‘/'(r1flo+r11i)'rTl‘Y' z m"(\i.l r«”ﬁfj)
i =1 R A
J#1
i=1.2,..N

Wobei: N: Anzahl Planeten, y: Gravitationskonstante
mq: Sonnenmasse, mj,i =1,2,..,N: Planetenmassen
ri(1): Ortsvektoren der Planeten, rj(X),k=1,2,...
deren Ableitungen nach der Zeit (i=1,2,..,N).

Durch die Differentialgleichungen (3) sind die Planeten-
bahnen noch nicht eindeutig festgelegt. Dies ist erst dann der
Fall, wenn zusitzlich die Ortsvektoren r; und die Geschwin-
digkeitsvektoren v( zu einem Zeitpunkt T, gegeben sind:

ri(Ta) = Toj

- - d=1,250.:N
ri(l)(Ta) = Voi

(3a)

Sind nun die rechten Seiten der Gleichungen (3a) sowie alle
Massenm;,i=0,1,...,N bekannt, konnen im Prinzip die Orts-
und die Geschwindigkeitsvektoren der Planeten fiir jeden be-
liebigen Zeitpunkt t ohne weitergehende Analysen berechnet
werden. Die Technik, die dies leistet, ist die der Numerischen
Integration.

Die Bahnen der Planeten unseres Planetensystems bestim-
men, heisst nach Newton somit offenbar, alle Massen
mj,i=1,2,...,N sowie alle Orts- und Geschwindigkeitsvekto-
ren auf der rechten Seite von (3a) bestimmen. Es sind also fiir
jeden Planeten insgesamt 7 Grossen zu bestimmen *).

Dass es im Prinzip nicht erlaubt ist, die Bahnen eines Pla-
neten unabhingig von den anderen zu bestimmen, folgt di-
rekt aus der Struktur der Gleichungen (3): Andert man bei-
spielsweise die Masse des i-ten Planeten, dndern auch die
Bahnen aller iibrigen Planeten. Gegeniiber der Keplerschen
Aufgabe ist die «Bahnbestimmung nach Newton» einerseits
komplizierter, da alle 7 N Bahnparameter simultan be-
stimmt werden sollten, sie ist andererseits wesentlich einfa-
cher, da man mit den Methoden von Kepler schon sehr gute
Niherungen fir die Anfangsbedingungen (3a) angeben
konnte. Man konnte sich daher mit Bahnverbesserungsme-
thoden begniigen, welche die Beobachtungen als lineare
Funktionen der Parameter darstellen.

*) Gravitationskonstante und Sonnenmasse kénnen allein aus Rich-
tungsbeobachtungen nicht bestimmt werden.

Newton zeigte {ibrigens, dass die Keplerschen Gesetze aus
seinem Gravitationsgesetz folgen, wenn man im Planetensy-
stem samtliche Massen mit Ausnahme der Sonnenmasse ver-
nachlissigt. An Stelle von (3) erhalt man dann N voneinander
unabhingige Differentialgleichungssysteme:

£ = —y-mg- r: , i=1,2,...,N )
i

Insbesondere konnte er die im 3. Kepler’schen Gesetz auf-
tretende Konstante angeben:

a’/U’=4 -7 - v mg )

Dieses Gesetz — das in der Naherung (4) fiir die Bewegung
der Planeten um die Sonne gilt - kann sinngeméss fiir die Be-
wegung von Monden um einen Planeten verwendet werden.
Da man die linken Seiten von (5) aus den Beobachtungen be-
rechnen kann, hatte Newton damit ein Mittel in der Hand,
um die Verhaltnisse mj/mg fiir jene Planeten zu berechnen,
die bekannte Monde hatten. Die Masse von Jupiter bestimm-
te Newton nach diesem Verfahren mit einer Genauigkeit von
ca. 2% zu

mjyp/Mo = 1/1033 (heutiger Wert: 1/1047).

Dass die korrekte Beschreibung (3) des Planetensystems
die mit elementaren Funktionen exakt losbare Néherung (4)
besitzt, war sowohl fir die Entwicklung der Analysis, als
auch fir die Entwicklung der Analytischen Mechanik von
grosster Bedeutung: Hier sind die Wurzeln der Storungsrech-
nung zu suchen. Der Zeit weit vorauseilend beschranken wir
uns hier darauf, zwei der grossten Triumphe dieser Methode
aufzufiihren:

- Die Entdeckung von Neptun aus der Analyse von Uranus-
Beobachtungen (entdeckt von Galle 1846, auf Grund von
Rechnungen von Adams und Leverrier).

- Beschreibung des gesamten Planetensystems durch Simon
Newcomb um die Jahrhundertwende 1900.

4. Kleinplaneten oder die klassische Bahnbestimmung

Mit der Entdeckung des ersten Kleinplaneten Ceres in der
Neujahrsnacht 1800/01 durch Piazza begann ein neuer Ab-
schnitt in der Geschichte der Himmelsmechanik.

Es zeigte sich namlich bald, dass die verfiigbaren, auf Euler
und andere zuriickgehenden Bahnbestimmungsverfahren
nicht imstande waren, die neue Aufgabe zu losen.

Welches war diese neue Aufgabe?

Piazzi entdeckte die Ceres wiahrend der Opposition. Er
konnte sie anschliessend nur wahrend 42 Tagen - vom 1. Ja-
nuar bis zum 1 1. Februar - insgesamt 19 mal beobachten. Da-
nach liessen die Verhaltnisse (Helligkeit der Ceres, Beobach-
tung in der Ddmmerung) keine weiteren Beobachtungen zu.
42 Tage - dies entspricht ca. 1/40 der Umlaufszeit dieses
Himmelskorpers um die Sonne! Die zur Verfiigung stehende
Zeitbasis war also extrem kurz. (Erinnern wir uns der Metho-
de Keplers: diese setzt voraus, dass der Planet in verschiede-
nen Oppositionen beobachtet wurde.)

Diese kurze Zeitbasis war ein wichtiger Grund fiir das Ver-
sagen der damals bekannten Methoden. Der andere Grund
war der, dass jene Verfahren nicht ohne einschneidende Hy-
pothesen auskamen: Bei Kometen wurde meistens angenom-
men, dass die Bahnkurve eine Parabel war, bei der Berech-
nung einer ersten Bahn fir den 1781 entdeckten Planeten
Uranus wurde diese als Kreis angesetzt. Haufig wurde zudem
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angenommen, dass die Bahnebene die Ekliptik war.

Solche Voraussetzungen waren physikalisch nicht zu be-
griinden, sie waren - zufélligerweise - im Falle der Ceres bei
weitem nicht erfillt: Thre Exzentrizitit war mit .08 relativ
hoch, ihre Neigung gegen die Ekliptik war mit 10°.6 die
grosste aller damals bekannten Planeten.

Gauss hat seine auf die Ceres angewandte Bahnbestim-
mungsmethode in einer vor der bekannten, ausgefeilten
«Theoria Motus Corporum Coelestium in Sectionibus Coni-
cis Solem Ambientium» entstandenen Arbeit «Summarische
Ubersicht der zur Bahnbestimmung der beiden neuen Haupt-
planeten angewandten Methode» wie folgt charakterisiert:
«Die von Kreis- und Parabel-Hypothesen unabhingige Be-
stimmung der Bahn eines Himmelskorpers aus einer kurzen
Reihe von Beobachtungen beruht auf zwei Forderungen:

I. Muss man Mittel haben, die Bahn zu finden, die drei gege-
benen Beobachtungen Geniige thut.

II. Muss man die so gefundene Bahn so verbessern konnen,
dass die Differenzen der Rechnung von dem ganzen Vor-
rath der Beobachtungen so gering als moglich werden.»

Die erste Teilaufgabe ist das, was wir heute als «Gauss’sche

Bahnbestimmung» schlechthin bezeichnen, das zweite stellt

sich in wesentlichen Ziigen als das heraus, was man heute als

Methode der kleinsten Quadrate bezeichnet ... .

Als Anekdote sei vermerkt, dass Gauss im konkreten Fall
die zweite Teilaufgabe nicht ganz lupenrein geldst hat; er
schreibt namlich:

«Es ldsst sich zwar eine ganz methodische Anweisung geben,
diese Werthe durch Rechnung zu finden; allein ein gewisser
Tact wird immer ebenso sicher leiten.»

Dass in der Zwischenzeit die Methode der kleinsten Qua-
drate in allen moglichen Gebieten die bedeutendste Approxi-
mationsart ist, braucht nicht besonders betont zu werden.

Wenden wir uns der Losung der ersten Teilaufgabe zu: Zu-
nichst leuchtet es ohne weiteres ein, dass man fiir dieses kur-
ze Zeitintervall (42 Tage) die Ceres-Bahn durch ein Diffe-
rentialgleichungssystem der Art (4) beschreiben kann:

I

70 = 1

3

e = - Bl ©)
k: Gauss’sche Konstante

Als niachstes muss Gauss die Unbekannten der Aufgabe,
die Bahnparameter wihlen. Hier hat man - wie man sich
leicht iiberzeugt - viele Freiheitsgrade: Beispielsweise konnte
man die Komponenten der Orts- und Geschwindigkeitsvek-
toren zur Zeit Ty [siche (3a)] zu bestimmen versuchen; man
konnte auch direkt die Kepler’schen Bahnelemente einfiih-
ren).

Gauss geht einen anderen Weg, der es ihm im Endeffekt
gestattet, die Zahl der Unbekannten von 6 auf 2 zu reduzie-
ren!

Er formuliert die Aufgabe als Randwertaufgabe: Anstatt
den Orts- und den Geschwindigkeitsvektor zu einem Zeit-
punkt Ty zu suchen, sucht er die Ortsvektoren zu zwei ver-
schiedenen Zeiten T, und T.,.

Uber diese Zeiten T,k = 1,2 verfiigt er sodann wie folgt:

T,:=1t,T,: =t;,t,,t;: 1. und 3. Beobachtungszeit (6)
Gesucht sind somit zwei Ortsvektorenr, und rs:
rtt)=r,, Tr(ty)=r; (@)

Damit scheint zunichst iiberhaupt nichts gewonnen: Nach
wie vor suchen wir sechs Parameter (z.B. die Komponenten
der Vektoren ri,k =1,k =3 bez. eines Koordinatensystems),
wir haben lediglich ein Anfangswert- mit einem Randwert-
problem vertauscht. Entscheidend ist aber der Umstand, dass
wir die Randvektoren je als Linearkombination des bekann-
ten Ortsvektors des Beobachters zur Beobachtungszeit und
des bekannten beobachteten Einheitsvektors schreiben kon-
nen (vergleiche Figur 3):

fk = R(tg) + Ak * &k’ k=1,k=3 (8)

In den Gleichungen (8) sind nur die topozentrischen Di-
stanzen A, und A; nicht bekannt. Gauss braucht also nur
noch diese beiden Parameter so zu variieren, dass auch die
mittlere Beobachtung exakt dargestellt wird. Dies konnte er
im Prinzip durch Probieren erreichen, er gab jedoch zur Lo6-
sung einen unerhort kompakten, hdufig verwendeten, jedoch
einigermassen undurchsichtigen Iterationsprozess an.

Der Erfolg war total: Mit Hilfe der Gauss’schen Bahn ge-
lang die Wiederentdeckung der Ceres am 7. Dezember 1801.

S

Fig.3:S: Sonne, Ey, Py : Erde, Planet z.Z. ty, ty,k=1,(2),3 : Beob-
achtungszeiten, ry: = Fi}),k=1,(2),3 : Ortsvektor des Planeten
z2.Z. I, Rp: = R(ty): Ortsvektor des Beobachters z.Z. ty,
€, k=1,(2),3 : beobachtete Einheitsvektoren z.Z. ty, Ay : Distanz
Beobachter - Planet 7. Z. ty.

P = kk + Ay - €
k=4d4,2,3,
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