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Wandel der Problemstellungen °BEUTLE"

und Lösungsmethoden in der Himmelsmechanik
während der letzten 400 Jahre

Der vorliegende Aufsatz entstand als Manuskript zu einem
Vortrag vor der philosophisch-naturwissenschaftlichen
Fakultät der Universität Bern vom 5. Mai 1983. Er ist in 6
Abschnitte unterteilt:

1. Allgemeine Umschreibung der Aufgaben
2. Tycho Brahe und Kepler
3. Beschreibung des Planetensystems von Newton bis New-

comb
4. Kleinplaneten oder die klassische Bahnbestimmung
5. Raumfahrt- und Computerära
6. Beobachtung heute

1. Allgemeine Umschreibung der Aufgaben
Mit Ausnahme von Tycho Brahe haben alle hier auftretenden
Akteure ihren Untersuchungen das heliozentrische Weltbild
zu Grunde gelegt.

In diesem System müssen wir die Begriffe Bahn eines
Planeten und Beobachtung eines Planeten definieren.

Die Bahn ordnet dem Planeten für jeden Zeitpunkt t genau
einen heliozentrischen Ortsvektor r(t) zu. Den Ortsvektor des

Planeten Erde bezeichnet man normalerweise mit R(t) (siehe
Figur 1). Unter der Beobachtung eines Planeten war bis etwa
in die Mitte des 20. Jahrhunderts die Messung der Richtung
von einem Beobachter auf der Erde zum Planeten zu einer
bestimmten Zeit zu verstehen. Gemessen wurden also die
Einheitsvektoren ëp(t) (Richtungen Beobachter-Planet) und
auch die Einheitsvektoren es(t) Richtungen Beobachter-Sonne).

Diese Messungen wurden im Laufe der Monate und Jahre
immer wieder wiederholt, so dass schliesslich für die Planeten
resp. für die Sonne Messreihen folgender Art zur Verfügung
standen:

tj, e'pj: Messung von ep(tj),j 1,2,...,nbp

tj.e'sj: Messung vones(tj),j= l,2,...,nbs

nb. ist dabei die Anzahl der Beobachtungen des betreffenden

Himmelskörpers.
In der Himmelsmechanik ging und geht es immer darum,

die Bahnen der Himmelskörper unseres Planetensystems zu
bestimmen. Bei einer Bahnbestimmung geht es offenbar darum,

aus den Messreihen (1) die heliozentrische Bahn r(t) zu
bestimmen: Es muss also ein Algorithmus angegeben werden,

der es erlaubt, für beliebige Zeiten t den Ortsvektor r(t)
des Planeten zu berechnen. Dabei müssen alle in diesem Al¬

gorithmus auftretenden Grössen allein aus den Messreihen
(1) folgen.

s

Fig. 1: S : Sonne, E : Erde, P : beobachteter Planet, R(t) : Ortsvektor
von E, r(t) : Ortsvektor von P, ep(t) : beobachteter Einheitsvektor E
-> P, es(t) : beobachteter Einheitsvektor E -» S.

2. Tycho Brahe und Kepler
Diese Epoche lässt sich zeitlich durch die Lebensdaten der
Akteure fixieren:

Tycho Brahe(1546-1601)
Johannes Kepler (1571-1630)
Es ist natürlich eine grobe Vereinfachung, diese beiden

Wissenschaftler isoliert zu betrachten: Sie hatten ihre
Vorgänger und Mitstreiter. Es lässt sich aber nicht übersehen,
dass von ihnen die wesentlichen Beiträge zur Beschreibung
des Planetensystems jener Zeit ausgingen.
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Tycho Brahe hat in der astronomischen Beobachtungstechnik

neue Massstäbe gesetzt, und man darf sagen, dass er
dem astronomischen Beobachter zu dem hohen Ansehen
verhalf, das er noch heute besitzt. Zunächst in Dänemark
(1576-1597), anschliessend in Prag (1599-1601), haben er
und seine Gehilfen die Planeten und die Sonne mit einer für
jene Zeit beispiellosen Genauigkeit beobachtet.

Man darf nun nicht glauben, dass Tycho Brahe diese
Beobachtungen als Selbstzweck betrieb. Er hat sie sehr wohl als

Entscheidungsgrundlage für die Richtigkeit verschiedener
Modelle des Planetensystems betrachtet. Dass ihm eine
befriedigende Interpretation der Messreihen nicht gelang, ist
bekannt.

Johannes Kepler war vor 1600 als «Landschaftsmathematiker»
in Graz tätig. Seine Neigung zur Himmelsmechanik

bewies er mit seinem Werk «Mysterium Cosmographicum», in
welchem er mit mässigem Erfolg versuchte, die Bahnradien
der bekannten Planeten mit In- und Umkugeln der regulären
Polyeder in Relation zu bringen. Wichtiger als der Inhalt
jenes Werkes ist der Umstand, dass Tycho auf ihn aufmerksam
wurde und ihn einlud, in Prag an der Auswertung der
Beobachtungen mitzuwirken.

«Auswertung der Beobachtungen» konnte aber nichts
anderes heissen, als die Gesetze der Planetenbewegung formulieren.

Als schliesslich Kepler im Jahre 1600 dieser Einladung
folgte, war er 28jährig und voller Optimismus. Es ist überliefert,

dass er eine Wette annahm, der Schwierigkeiten in 8

Tagen Herr zu werden. Er hat die Aufgabe gelöst, allerdings
nicht ganz in der vorgesehenen Zeit: die Resultate wurden in
der «Astronomia Nova» im Jahre 1609 veröffentlicht.

Dass die Lösung so viel Zeit in Anspruch nahm, ist keineswegs

verwunderlich: Kepler darf für sich in Anspruch
nehmen, wohl das schwierigste Bahnbestimmungsproblem der
Geschichte gelöst zu haben.

Rufen wir uns die Schwierigkeiten in Erinnerung:

- Kepler kannte die Unbekannten der Aufgabe nicht! Heute
wissen wir, dass - jedenfalls in guter Näherung - die Bahn
eines jeden Planeten durch sechs Grössen, die Bahnelemente,

eindeutig bestimmt ist. Kepler kannte weder die
Zahl, noch die Art der Unbekannten.

- Kepler hatte die Aufgabe, die Bahn des Planeten Mars aus
dessen Beobachtungen zu bestimmen. Da aber diese
Beobachtungen von der Erde aus gemacht wurden, deren Bahn
um die Sonne damals auch nicht bekannt war, blieb Kepler
nichts anderes übrig, als zusätzlich die Erdbahn zu bestimmen.

Diese Aufgabe konnte nur dank der 24jährigen
Beobachtungsreihen von Mars und Sonne von Tycho Brahe gelöst
werden.

bekannt. Unter dieser Voraussetzung gelingt Kepler eine von
weiteren Hypothesen freie Lösung der Aufgabe.

Die Lösung ist einfach und anschaulich, sie erfolgt in zwei
Schritten:

1. Rekonstruktion der Erdbahn aus den Beobachtungen von
Sonne und Mars

2. Bestimmung der Marsbahn bei bekannter Erdbahn.

Das Prinzip seiner Analyse sei hier unter der vereinfachenden

Annahme erklärt, dass die Bahnebenen von Mars und
Erde übereinstimmen:

1. Erdbahn: Aus den Beobachtungen von Sonne und Mars
bestimmt Kepler den genauen Zeitpunkt einer Opposition,
also den Zeitpunkt, für den es(t0) -

Diese Situation ist in Figur 2a wiedergegeben. Diese Figur
ist für Kepler insofern nicht realistisch, als dort der Ortsvektor

der Erde als bekannt vorausgesetzt wird (der Ortsvektor
von Mars darf beibehalten werden; dies definiert den Massstab

der Zeichnung).

R(tn)

E

M

Î (ts o

e (tm o

?<V

Fig. 2a: Marsopposition zur Zeit tQ. S : Sonne, M : Mars, E : Erde,
R(t0): Erdposition z. Z. tö, r(t0): Marsposition z. J- tQ, es ftp),
em fto) Einheitsvektor Erde - Sonne resp. Erde - Mars z. Z. der
Opposition.

Prinzip der Lösungsmethode
Man liest heute hin und wieder, dass Kepler die Bahn des

Mars völlig hypothesenfrei bestimmte. Dem ist zu widersprechen:

Kepler ging nämlich von der Annahme aus, dass die
Bahnkurven der Planeten in dem durch die Fixsterne
definierten Raum streng periodisch sind. Heute wissen wir, dass
dies nur näherungsweise richtig ist. Für die Genauigkeit der
damaligen Beobachtungen und für das von ihm untersuchte
Zeitintervall (Beobachtungen über 24 Jahre) war aber diese
Annahme gerechtfertigt.

Die Umlaufszeiten von Erde und Mars aber konnte er nicht
direkt aus den Beobachtungen bestimmen, sie waren ihm also

Nun setzt Kepler ja voraus, dass die Bahn von Mars periodisch

ist. Er weiss also, dass sich Mars nach

U 687 Tagen

wieder an genau der gleichen Stelle im Raum befinden wird.

Es gilt also: r(t0 + U) r(t0)

Aus den Beobachtungen Tychos nun rekonstruiert Kepler
die Richtungen Sonne - Erde - es(t0 + U)) und Mars -»
Erde - em(t0 + U)) zur Zeit t0 + U. Der Erdort zu dieser Zeit
folgt jetzt einfach als Schnittpunkt der durch S, - es(tG + U)
und M, -em(t0 + U) definierten Geraden (siehe Figur 2b).
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heute unter Bahnbestimmung versteht: Bestimmen von r(t)
unter der Voraussetzung, dass die Bahn des Beobachters
bekannt ist. Kepler wendet im wesentlichen die gleiche Methode

wie bei der Erdbahn an: Er geht von einer andern Opposition

t0* aus. Er weiss, dass r(t0*) r(t0* + U) auf der durch
R(t0*) und em(t0*) definierten Geraden und auf der durch
R(t0* + U) und em(t0* + U) definierten Geraden liegen muss!
Auf diese Art kann Kepler für jede Marsopposition genau
einen Bahnpunkt von Mars konstruieren (siehe Figur 2c).

Der Rest war einfach und nicht mehr aufzuhalten: Kepler
fand seine beiden ersten Gesetze und veröffentlichte sie in
dem fundamentalen Werk Astronomia Nova. Das dritte
Gesetz, das hier vollständigkeitshalber mit aufgeführt wird,
fand er erst wesentlich später (publiziert wurde es 1619):

\ '

\:
V

^
r (t*+k'U) ,k=0,1

Fig. 2b: Rekonstruktion der Erdbahn aus Beobachtungen von Sonne
und Mars zu den Zeiten t^: t0 + k U, k l,2,..., U : siderische
Umlaufszeit von Mars, em(t0+U) : beobachteter Einheitsvektor
Erde-Mars *), ës(tfxf U) : beobachteter Einheitsvektor Erde - Sonne

*), *) z. Z.t0+U,R(t0+ U) : Erdposition z. Z. tQ + U.

Das gleiche Verfahren kann nun sinngemäss für die Zeiten
t0 + k • U, k (1),2,3,... gebraucht werden: jedesmal erhält
man einen Punkt der Erdbahn.

Das Resultat war einfach: In ausgezeichneter Näherung
war die Erdbahn ein Kreis, wobei die Sonne nicht ganz im
Zentrum stand. Da auch die Bahn der Erde nach Voraussetzung

periodisch ist, konnte Kepler jedem beobachteten
Einheitsvektor (Erde-Sonne) den Betrag des Radiusvektors
(Erde-Sonne) zuordnen (siehe Figur 2c).

2. Marsbahn
Damit hatte Kepler die Aufgabe auf das reduziert, was man

Fig. 2c: S : Sonne, Z : Zentrum des Kreises der Erdbahn, t0*:
Zeitpunkt einer Marsopposition t0*^t0.

I: Die Planetenbahnen sind Ellipsen, in deren einem
Brennpunkt die Sonne steht

II: Die Verbindungslinie «Sonne-Planet» über¬
streicht in gleichen Zeiten gleiche Flächen

III: Die Quadrate der Umlaufzeiten verhalten sich wie
die Kuben der grossen Halbachsen, oder:
a3/U2 const für jeden Planeten.

(2)

Mit diesen Gesetzen war auch die Parametrisierung der
Aufgabe gegeben: Grösse und Form einer Ellipse werden z.B.
durch die grosse Halbachse und die numerische Exzentrizität
festgelegt, die Stellung der Bahnebene im Raum wird durch
zwei Lagewinkel, die Stellung der Ellipse innerhalb der
Bahnebene durch einen weiteren Lagewinkel definiert. Kepler

hat dann noch gezeigt, dass man durch eine weitere Angabe,

die Periheldurchgangszeit, sehr einfache Formeln ange-
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ben kann, mit denen man r'(t) zu beliebigen Zeiten berechnen
kann.

3. Besehreibung des Planelensystems
von Newton bis Newcomb

Isaak Newton publizierte seine «Philosophiae Naturalis
Principia Mathematica» im Jahre 1687. Ihre Bedeutung für
die Entwicklung der Physik und Mathematik ist allgemein
bekannt und anerkannt, so dass wir uns hier auf einige wenige
Bemerkungen beschränken können:

Aus seinen Axiomen der Mechanik, seinem Gesetz der
universellen Gravitation und aus dem Superpositionsprinzip der
Kräfte folgen auf elementarste Weise die Gleichungen, die
die Bewegung der Planeten um die Sonne definieren. In
moderner Schreibweise lauten diese:

q(2) y • (m0 + mj) • Y '
N
I

1 1

j*i
mj •

11 j i

i 1,2,...,N

Wobei: N: Anzahl Planeten, y: Gravitationskonstante

m0: Sonnenmasse, mj,i 1,2,,.,N: Planetenmassen

r'j(t): Ortsvektoren der Planeten, f;(k),k =1,2,...
deren Ableitungen nach der Zeit (i 1,2,..,N).

Durch die Differentialgleichungen (3) sind die Planetenbahnen

noch nicht eindeutig festgelegt. Dies ist erst dann der
Fall, wenn zusätzlich die Ortsvektoren r0j und die
Geschwindigkeitsvektoren vQj zu einem Zeitpunkt Ta gegeben sind:

n(Ta) - r"oi

n^(Ta) v0i
,i= 1,2,...,N (3a)

Sind nun die rechten Seiten der Gleichungen (3a) sowie alle
Massen m;,i 0,1,... ,N bekannt, können im Prinzip die Ortsund

die Geschwindigkeitsvektoren der Planeten für jeden
beliebigen Zeitpunkt t ohne weitergehende Analysen berechnet
werden. Die Technik, die dies leistet, ist die der Numerischen
Integration.

Die Bahnen der Planeten unseres Planetensystems bestimmen,

heisst nach Newton somit offenbar, alle Massen

mj,i 1,2,...,N sowie alle Orts- und Geschwindigkeitsvekto-
ren auf der rechten Seite von (3a) bestimmen. Es sind also für
jeden Planeten insgesamt 7 Grössen zu bestimmen*).

Dass es im Prinzip nicht erlaubt ist, die Bahnen eines
Planeten unabhängig von den anderen zu bestimmen, folgt
direkt aus der Struktur der Gleichungen (3): Ändert man
beispielsweise die Masse des i-ten Planeten, ändern auch die
Bahnen aller übrigen Planeten. Gegenüber der Keplerschen
Aufgabe ist die «Bahnbestimmung nach Newton» einerseits
komplizierter, da alle 7 • N Bahnparameter simultan
bestimmt werden sollten, sie ist andererseits wesentlich einfacher,

da man mit den Methoden von Kepler schon sehr gute
Näherungen für die Anfangsbedingungen (3a) angeben
konnte. Man konnte sich daher mit Bahnverbesserungsmethoden

begnügen, welche die Beobachtungen als lineare
Funktionen der Parameter darstellen.

*) Gravitationskonstante und Sonnenmasse können allein aus
Richtungsbeobachtungen nicht bestimmt werden.

Newton zeigte übrigens, dass die Keplerschen Gesetze aus
seinem Gravitationsgesetz folgen, wenn man im Planetensystem

sämtliche Massen mit Ausnahme der Sonnenmasse
vernachlässigt. An Stelle von (3) erhält man dann N voneinander
unabhängige Differentialgleichungssysteme:

fj(2) - y i 1,2,...,N (4)

Insbesondere konnte er die im 3. Kepler'schen Gesetz
auftretende Konstante angeben:

a3/U2 4 • 7t2 • y • m0 (5)

+ -J-)

Dieses Gesetz - das in der Näherung (4) für die Bewegung
der Planeten um die Sonne gilt - kann sinngemäss für die
Bewegung von Monden um einen Planeten verwendet werden.
Da man die linken Seiten von (5) aus den Beobachtungen
berechnen kann, hatte Newton damit ein Mittel in der Hand,
um die Verhältnisse mj/m0 für jene Planeten zu berechnen,
die bekannte Monde hatten. Die Masse von Jupiter bestimmte

Newton nach diesem Verfahren mit einer Genauigkeit von
ca. 2% zu

mjup/m0 1/1033 (heutiger Wert: 1/1047).

Dass die korrekte Beschreibung (3) des Planetensystems
die mit elementaren Funktionen exakt lösbare Näherung (4)
besitzt, war sowohl für die Entwicklung der Analysis, als
auch für die Entwicklung der Analytischen Mechanik von
grösster Bedeutung: Hier sind die Wurzeln der Störungsrechnung

zu suchen. Der Zeit weit vorauseilend beschränken wir
uns hier darauf, zwei der grössten Triumphe dieser Methode
aufzuführen:
- Die Entdeckung von Neptun aus der Analyse von Uranus-

Beobachtungen (entdeckt von Galle 1846, auf Grund von
Rechnungen von Adams und Leverrier).

- Beschreibung des gesamten Planetensystems durch Simon
Newcomb um die Jahrhundertwende 1900.

4. Kleinplaneten oder die klassische Bahnbestimmung
Mit der Entdeckung des ersten Kleinplaneten Ceres in der
Neujahrsnacht 1800/01 durch Piazza begann ein neuer
Abschnitt in der Geschichte der Himmelsmechanik.

Es zeigte sich nämlich bald, dass die verfügbaren, auf Euler
und andere zurückgehenden Bahnbestimmungsverfahren
nicht imstande waren, die neue Aufgabe zu lösen.

Welches war diese neue Aufgabe?
Piazzi entdeckte die Ceres während der Opposition. Er

konnte sie anschliessend nur während 42 Tagen - vom 1.

Januar bis zum 11. Februar-insgesamt 19 mal beobachten.
Danach liessen die Verhältnisse (Helligkeit der Ceres, Beobachtung

in der Dämmerung) keine weiteren Beobachtungen zu.
42 Tage - dies entspricht ca. 1/40 der Umlaufszeit dieses

Himmelskörpers um die Sonne! Die zur Verfügung stehende
Zeitbasis war also extrem kurz. (Erinnern wir uns der Methode

Keplers: diese setzt voraus, dass der Planet in verschiedenen

Oppositionen beobachtet wurde.)
Diese kurze Zeitbasis war ein wichtiger Grund für das

Versagen der damals bekannten Methoden. Der andere Grund
war der, dass jene Verfahren nicht ohne einschneidende
Hypothesen auskamen: Bei Kometen wurde meistens angenommen,

dass die Bahnkurve eine Parabel war, bei der Berechnung

einer ersten Bahn für den 1781 entdeckten Planeten
Uranus wurde diese als Kreis angesetzt. Häufig wurde zudem
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angenommen, dass die Bahnebene die Ekliptik war.
Solche Voraussetzungen waren physikalisch nicht zu

begründen, sie waren - zufälligerweise - im Falle der Ceres bei
weitem nicht erfüllt: Ihre Exzentrizität war mit .08 relativ
hoch, ihre Neigung gegen die Ekliptik war mit 10°.6 die
grösste aller damals bekannten Planeten.

Gauss hat seine auf die Ceres angewandte
Bahnbestimmungsmethode in einer vor der bekannten, ausgefeilten
«Theoria Motus Corporum Coelestium in Sectionibus Coni-
cis Solem Ambientium» entstandenen Arbeit «Summarische
Übersicht der zur Bahnbestimmung der beiden neuen
Hauptplaneten angewandten Methode» wie folgt charakterisiert:
«Die von Kreis- und Parabel-Hypothesen unabhängige
Bestimmung der Bahn eines Himmelskörpers aus einer kurzen
Reihe von Beobachtungen beruht auf zwei Forderungen:

I. Muss man Mittel haben, die Bahn zu finden, die drei
gegebenen Beobachtungen Genüge thut.

II. Muss man die so gefundene Bahn so verbessern können,
dass die Differenzen der Rechnung von dem ganzen Vorrath

der Beobachtungen so gering als möglich werden.»
Die erste Teilaufgabe ist das, was wir heute als «Gauss'sche

Bahnbestimmung» schlechthin bezeichnen, das zweite stellt
sich in wesentlichen Zügen als das heraus, was man heute als
Methode der kleinsten Quadrate bezeichnet

Als Anekdote sei vermerkt, dass Gauss im konkreten Fall
die zweite Teilaufgabe nicht ganz lupenrein gelöst hat; er
schreibt nämlich:

«Es lässt sich zwar eine ganz methodische Anweisung geben,
diese Werthe durch Rechnung zu finden; allein ein gewisser
Tact wird immer ebenso sicher leiten.»

Dass in der Zwischenzeit die Methode der kleinsten
Quadrate in allen möglichen Gebieten die bedeutendste
Approximationsart ist, braucht nicht besonders betont zu werden.

Wenden wir uns der Lösung der ersten Teilaufgabe zu:
Zunächst leuchtet es ohne weiteres ein, dass man für dieses kurze

Zeitintervall (42 Tage) die Ceres-Bahn durch ein
Differentialgleichungssystem der Art (4) beschreiben kann:

?(2)= -k2 ~,k2:=y • m0 (6)
k: Gauss'sche Konstante

Als nächstes muss Gauss die Unbekannten der Aufgabe,
die Bahnparameter wählen. Hier hat man - wie man sich
leicht überzeugt - viele Freiheitsgrade: Beispielsweise könnte
man die Komponenten der Orts- und Geschwindigkeitsvektoren

zur Zeit Ta [siehe (3a)] zu bestimmen versuchen; man
könnte auch direkt die Kepler'schen Bahnelemente einführen).

Gauss geht einen anderen Weg, der es ihm im Endeffekt
gestattet, die Zahl der Unbekannten von 6 auf 2 zu reduzieren!

Er formuliert die Aufgabe als Randwertaufgabe: Anstatt
den Orts- und den Geschwindigkeitsvektor zu einem
Zeitpunkt Ta zu suchen, sucht er die Ortsvektoren zu zwei
verschiedenen Zeiten T, und T2.

Über diese Zeiten Tk,k 1,2 verfügt er sodann wie folgt:

T, : t., T2 : t3 ,ti,t3 : 1. und 3. Beobachtungszeit (6)

Gesucht sind somit zwei Ortsvektoren rj und r3:

Damit scheint zunächst überhaupt nichts gewonnen: Nach
wie vor suchen wir sechs Parameter (z.B. die Komponenten
der Vektoren F|<,k= l,k 3 bez. eines Koordinatensystems),
wir haben lediglich ein Anfangswert- mit einem Randwertproblem

vertauscht. Entscheidend ist aber der Umstand, dass
wir die Randvektoren je als Linearkombination des bekannten

Ortsvektors des Beobachters zur Beobachtungszeit und
des bekannten beobachteten Einheitsvektors schreiben können

(vergleiche Figur 3):

fk R(tfc) + Ak • ek',k=l,k 3 (8)

In den Gleichungen (8) sind nur die topozentrischen
Distanzen A, und A3 nicht bekannt. Gauss braucht also nur
noch diese beiden Parameter so zu variieren, dass auch die
mittlere Beobachtung exakt dargestellt wird. Dies könnte er
im Prinzip durch Probieren erreichen, er gab jedoch zur
Lösung einen unerhört kompakten, häufig verwendeten, jedoch
einigermassen undurchsichtigen Iterationsprozess an.

Der Erfolg war total: Mit Hilfe der Gauss'schen Bahn
gelang die Wiederentdeckung der Ceres am 7. Dezember 1801.

Fig. 3: S: Sonne, : Erde, Planet z.Z. tt/ç,k= 1,(2),3 :
Beobachtungszeiten, /)..• r(tfc),k= 1,(2),3 : Ortsvektor des Planeten
z.Z. tfc, /?£•' R(tk): Ortsvektor des Beobachters z.Z. t
e/(,k 1,(2),3 : beobachtete Einheitsvektoren z.Z. t^, A^ ; Distanz
Beobachter - Planet z.Z. t/c.

rk Rk + &k A
k 1,2,3.

A dresse des A utors:
G. Beutler, Astronomisches Institut, Sidlerstrasse 5, 3012 Bern.

r(t,) r, r(t3) r3 (7) (Fortsetzung in der nächsten Nummer)
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