Zeitschrift: Orion: Zeitschrift der Schweizerischen Astronomischen Gesellschaft

Herausgeber: Schweizerische Astronomische Gesellschaft

**Band:** 37 (1979)

**Heft:** 171

Artikel: Rätselhafte Venusatmosphäre : erste Ergebnisse der am 8. August

1978 gestarteten "Pioneer-Multiprobe-Sonde"

Autor: Gerber, P.

**DOI:** https://doi.org/10.5169/seals-899600

### Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

#### **Conditions d'utilisation**

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

### Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

**Download PDF:** 12.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Les photographies présentées dans cette note ont été prises le 30 octobre 1978 avec une camera construite par le Laboratoire d'Astromomie Spatiale de Marseille (LAS), embarquée dans la nacelle stratosphérique de l'Observatoire de Genève.

C'est le deuxième vol d'une longue série de lancements qui auront pour but la photographie à 1950 Å de tout le plan galactique et de certaines régions des pôles galactiques Nord et Sud. Plus de 30 clichés sont actuellement en cours d'analyse. Des étoiles B jusqu'à la 13ème magnitude sont observables, des galaxies ont déjà été détectées dans l'UV ainsi que des étoiles bleues du halo galactique. Les trois clichés présentés ici ont un intérêt particulier car ce sont les premières images dans l'UV d'une galaxie spirale, d'un couple d'amas galactiques jeunes et des restes d'une supernova qui a explosé il y a 50 000 ans. Une partie de cette nébulosité est aussi une source de rayonnement X. Pour la première fois une structure fine d'une galaxie spirale est analysable dans l'UV. Le noyau d'Andromède dans l'UV est beaucoup plus petit que sur le cliché pris en lumière visible et représenté parmi les 4 photographies. L'intensité de ce noyau peut être estimée à environ 5.10<sup>-13</sup> erg cm<sup>-2</sup> sec<sup>-1</sup> Å<sup>-1</sup> à 1950 Å.

La caméra se compose d'un objectif Schmidt-Cassegrain, d'un intensificateur convertisseur UV d'images, d'un dérouleur de film de 35 mm.

Voici quelques autres caractéristiques de la caméra et de la nacelle:

Caméra:

Diamètre d'ouverture: 130 mm Focale: 230 mm

Ouverture photo-

Bande passante:

F: 2.10

métrique équivalente: Champ:

6° en diamètre

1900 Å — 2075 Å obtenue par revêtement sélectif des 2 mi-

roirs. Blocage du visible par la cathode Cs-Te du conver-

tisseur d'images.

Film: Kodak 103 aO

Poids: 17 kg.

Nacelle:

Système de l'Observatoire de Genève, construite en coopération avec le Laboratoire d'Astronomie Spatiale de Marseille.

Pointage:

mono axial par sidérostat asservi de

 $300 \times 300 \,\mathrm{mm}$ 

précision de 20 secondes d'arc RMS, domaine de magnitude  $m_B = -2$  à

+6,4

Poids total: 337 kg

Altitude de vol: 40 km, ballon de 350 000 m<sup>3</sup>

GOLAY, Observatoire de Genève DEHARVENG, LAS Marseille HUGUENIN, Observatoire de Genève

Adresse

Observatoire de Genève, CH-1290 Sauverny.

Zusammenfassung

# Erste Fotografien von der Galaxie M 31 (Andromeda) und anderen galaktischen Objekten im Bereich von 1950 Å

Die drei Aufnahmen wurden am 30. Oktober 1978 in 40 km Höhe mit einer Kamera aufgenommen, die vom Laboratoire d'Astronomie Spatiale (LAS) in Marseille hergestellt und in der Stratosphären-Gondel der Universität Genf untergebracht wurde. Es handelte sich um den zweiten Flug einer ganzen Reihe von Flügen, die den Zweck haben, weite Teile der Galaxie im UV-Bereich von 1950 Å aufzunehmen. Etwa 30 Aufnahmen werden gegenwärtig ausgewertet. B-Sterne bis zur 13. Grösse, aber auch Galaxien und blaue Sterne des galaktischen Halo konnten beobachtet werden. Die hier gezeigten Bilder sind von

besonderem Interesse, da es sich um die ersten UV-Bilder einer Spiral-Galaxie, eines Paares von jungen Sternhaufen und um die Reste einer Supernova handelt, die vor 50 000 explodiert war. Zum ersten Male konnten auch die feinen Strukturen einer Spiral-Galaxie im UV-Licht analysiert werden. Der Kern von M 31 ist im UV-Bereich viel kleiner als auf der im sichtbaren Licht gemachten Aufnahme. Die Intensität dieses Kerns kann auf ungefähr 5.10<sup>-13</sup> erg cm<sup>-2</sup> sec<sup>-1</sup> Å<sup>-1</sup> bei 1950 Å geschätzt werden. Für die näheren Angaben über Kamera und Gondel verweisen wir den Leser auf den französischen Text. W. MAEDER

## Rätselhafte Venusatmosphäre

Erste Ergebnisse der am 8. August 1978 gestarteten «Pioneer-Multiprobe-Sonde»

Die am 8. August 1978 gestartete Venus-Sonde wurde ca. 13 Millionen km vor dem Erreichen der Venus auf Funkbefehl in insgesamt 5 Sonden zerlegt. Am 9. Dezember 1978 erreichten diese kurz hintereinander die Venus. Die Aufgabe der kleinen Sonden war es, die untere Venusatmosphäre (unterhalb 60 km) zu erforschen. Im eigentlichen Mutterschiff befanden sich Instrumente zur Erforschung der oberen Venusatmosphäre. Dabei be-

fand sich ein von der Universität Bonn und dem MPI für Kernphysik entwickelter Massenspektrograph für neutrale Teilchen. Insgesamt stand dem Gerät lediglich eine Messzeit von 250 sec zur Verfügung. In dieser Zeit konnten 60 Massenspektren der Venusatmosphäre in Höhen zwischen 700 km und 135 km gewonnen werden. Es ergaben sich folgende vorläufige Resultate:

1. Der Anteil der Edelgase Argon, Helium und Neon ist

wesentlich grösser als beispielsweise in unserer Erdatmosphäre.

Falls sich dieses Resultat bestätigt, müsste wohl die heutige Vorstellung von der Entstehung des Planeten Venus revidiert werden. Nach heutiger Ansicht trennten sich bei der Bildung der Planeten die gasförmigen von den festen Substanzen. Die damals vorhandenen 'primordialen' Gase sind in der Zwischenzeit grösstenteils verlorengegangen. Aus dieser Sicht ist der grosse Edelgasanteil in der Venusatmosphäre nicht zu verstehen.

- Eigenartige Ergebnisse wurden auch über die Temperatur der oberen Venusatmosphäre gewonnen. An den Polen z.B. ist die Temperatur höher als am Aequator. Ebenfalls ist die Temperatur auf der Nachtseite höher (!) als auf der Tagseite.
- Offensichtlich bleibt die Struktur der Venusatmosphäre sehr stabil. Jedenfalls haben die Sonden am 9. Dez. 1978 dieselbe Atmosphärenstruktur gemessen wie die Venera-Sonde vor bereits einigen Jahren.
- 4. Unterhalb der dichten Wolkenschicht (in ca. 60 km Höhe) fand man keine merkliche Menge an Staubteilchen. Die Atmosphäre ist unten also sehr klar.
- Offensichtlich weist die Venusoberfläche auch sehr unterschiedliche Niveaus auf. Dies ergaben die recht unterschiedlichen Atmosphärendrücke, welche die Sonden kurz vor dem Aufprall an verschiedenen Stellen registrierten.

P. Gerber/Umschau Januar 1979

## Physik-Nobelpreis 1978

an die Entdecker der kosmischen Hintergrundstrahlung

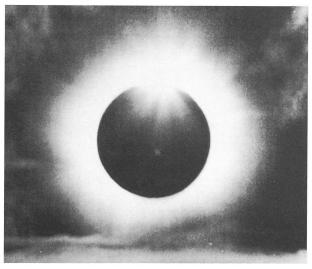
Nach der Entdeckung der allgemeinen Expansion des Universums (Nebelflucht) durch HUBBLE haben sich in den frühen Sechzigerjahren R.H. DICKE, G. GAMOW und andere Modelle des frühen Universums gemacht. Sie konnten zeigen, dass der Urknall — der Beginn der Expansion des Universums — ein Zustand extremer Dichte und Temperatur der vorhandenen Materie und Strahlung war. Durch die fortschreitende Expansion erniedrigte sich die Temperatur, bis sich bei ca. 5 000° die Strahlung von der Materie abkoppelte (d.h., die Wechselwirkung zwischen Strahlung und Materie war künftig vernachlässigbar). Die genannten Forscher konnten nun zeigen, dass sich infolge der allgemeinen Expansion die Temperatur der Strahlung ständig verringerte. Ihre Berechnungen ergaben, dass diese Reststrahlung des Urknalls heute (also nach ca. 15 Milliarden Jahren nach dem Urknall) lediglich noch eine sehr geringe Temperatur von höchstens 40° über dem absoluten Nullpunkt (also maximal —233°C) aufweisen kann.

Bei Messungen des Rauschverhaltens ihrer Hornantenne entdeckten unabhängig von den Überlegungen von DICKE und GAMOW die beiden Forscher ARNO A. PENZIAS und ROBERT W. WILSON im Jahre 1964 eine zeitlich unveränderliche und homogen über den Raum verteilte Hintergrundstrahlung mit einer extrem niedrigen Temperatur von 3,5° über dem absoluten Nullpunkt (—269.66°). Diese Strahlung wird heute als Reststrahlung des Urknalls angesehen.

Minimale Abweichungen von einer gleichmässigen Verteilung dieser Strahlung über den gesamten Raum erlauben es, die Bewegung der Erde (bzw. unserer Milchstrasse) durch dieses 'feste' Strahlungsfeld zu bestimmen. Resultat: unsere Galaxis bewegt sich als Ganzes mit einer Geschwindigkeit von ca. 600 km/s in einer Richtung, in der das Sternbild Löwe steht. Für die Entdeckung der kosmischen Hintergrundstrahlung — seit der Entdeckung der allgemeinen Expansion des Universums wohl die bedeutendste kosmologische Neuentdeckung — wurden PENZIAS und WILSON mit dem Nobelpreis für Physik 1978 geehrt.

P. GERBER

## 1978 RA, Schnellster Asteroid


Eleanor HELIN und ihre Kollegen haben am 10. September 1978 einen weiteren Asteroiden entdeckt, der die Erdbahn kreuzt. Seine Bahn ist ähnlich denjenigen der Planetoiden 1976 AA und UA, so dass man von einer eigentlichen Familie (Aten-Familie) sprechen kann. Der neue Asteroid weist lediglich eine grosse Halbachse von 0,83 AE auf und besitzt damit die kürzeste Umlaufszeit (277 Tage) aller Kleinplaneten. Eingehende Messungen ergaben für diesen Schnelläufer einen Durchmesser von 4 km und eine Eigenrotation mit einer Periode von 12 Tagen.

Nach Vorschlag der Entdeckerin soll der neue Asteroid «Râ-shalom» heissen: «Râ» nach dem aegyptischen Sonnengott und «shalom» nach der üblichen hebräischen Begrüssungsformel. Ein guter Stern über den aegyptisch-israelischen Friedensverhandlungen?

P. GERBER

# Totale Sonnenfinsternis vom 26. Februar 1979

Am 26. Februar 1979 war für den Norden der USA die letzte totale Sonnenfinsternis in diesem Jahrhundert zu beobachten. Tausende von Beobachtern hatten allerdings Pech. An den meisten Orten verunmöglichte ein dünner Wolkenschleier wissenschaftlich brauchbare Aufnahmen.



Totale Sonnenfinsternis vom 26. Februar 1979 (Foto Keystone).

50 ORION 37. Jg. (1979) No. 171