Zeitschrift: Orion: Zeitschrift der Schweizerischen Astronomischen Gesellschaft

Herausgeber: Schweizerische Astronomische Gesellschaft

Band: 37 (1979)

Heft: 174

Artikel: Die Sonnenaktivität 1979 : 2. Bericht der SAG-Sonnengruppe über die

Sonnenaktivität in der 1. Jahreshälfte 1979

Autor: Lüthi, Werner

DOI: https://doi.org/10.5169/seals-899623

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 16.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

dass er kaum zu erkennen war ⁵).» Auch der englische Astronom HERSCHEL scheint 1783 Zeta Aurigae beobachtet zu haben, ohne jedoch die Veränderlichkeit bemerkt zu haben. Im Jahre 1902 gelang VOGEL in Berlin der Nachweis der veränderlichen Radialgeschwindigkeit des Sternes ⁵).

Man gelangte zu folgendem Modell: Ein Stern-Riese von 300 Sonnenradien wird von einem Stern umkreist, der etwa 1/10 der Grösse des Riesensternes hat. Die Umlaufperiode ist ungewöhnlich lang: sie beträgt rd. 27 Jahre! Die Minimumshelligkeit bleibt für volle 330 Tage konstant. Dies weist zweifellos auf eine totale Verfinsterung hin. Die Dauer der Verfinsterung beträgt 754 Tage. Dabei sinkt die Helligkeit von 3.1 m auf 3.8 m ab.

Aber das Spektrum des helleren Sternes bleibt dauernd sichtbar. Dagegen ist von dem zweiten keine Spur zu finden. Eine Reihe von Modellen versuchten dieses Rätsel zu lösen. So nimmt man z.B. an, dass ein dichter Gasring den kleinen, «unsichtbaren» Stern einhüllt. Und dieser Gasring soll den helleren Stern partiell bedecken ⁴). Der nächste Bedeckungsanfang wird am 23. Mai 1982 beginnen ⁶).

Noch zwei Sterne lassen sich in die Sondergruppe der Bedeckungssterne mit ausgedehnter Atmosphäre einordnen.

Bei dem Stern 31 Cygni (02) Cygni; 20h11.6m;

+46°35'20") umkreisen sich zwei Sterne der Spektralklassen K3 und B3 in 3780 Tagen. Der K-Stern vereinigt 15 Sonnenmassen und 200 Sonnenradien in sich, der B-Stern 8 Sonnenmassen und 6 Sonnenradien. Die Bahnneigung des Systems beträgt nahe 90°. Die totale Bedeckungsdauer beträgt 61 Tage. Die Helligkeit sinkt dann von 4.9 m auf 5.3 m.

Der Stern 32 Cygni (0 Cygni; 20h13.9m; +47°22'35") besteht aus einer K5-Komponente mit 23 Sonnenmassen und 300 Sonnenradien (!) und einer B-Komponente mit 8 Sonnenmassen und 4 Sonnenradien. Die Umlaufperiode beträgt 1148 Tage. 13 Tage dauert die totale Bedeckung. Die Bahn des Systems ist um 73° gegen die Beobachtungsebene geneigt.

Literatur:

- 1) SCHNELLER, Geschichte und Literatur des Lichtwechsels, Berlin
- 2) General Catalogue of Variable Stars, Moskau 1969
- LUKAS, Das bedeckungsveränderliche System Zeta Aurigae, BAV-Rundbrief, 25, 54—57, Berlin 1976
- 4) HEINTZ, Doppelsterne, München 1971
- MÜLLER/HARTWIG, Geschichte und Literatur des Lichtwechsels, Leipzig 1918
- 6) HERRMANN, Tabellenbuch für Sternfreunde, Stuttgart 1961

Adresse des Autors:

KLAUS-PETER TIMM, Im Weidenblech 29, D-5090 Leverkusen 1

Die Sonnenaktivität 1979

2. Bericht der SAG-Sonnengruppe über die Sonnenaktivität in der 1. Jahreshälfte 1979.

WERNER LÜTHI, Burgdorf

Allgemeines

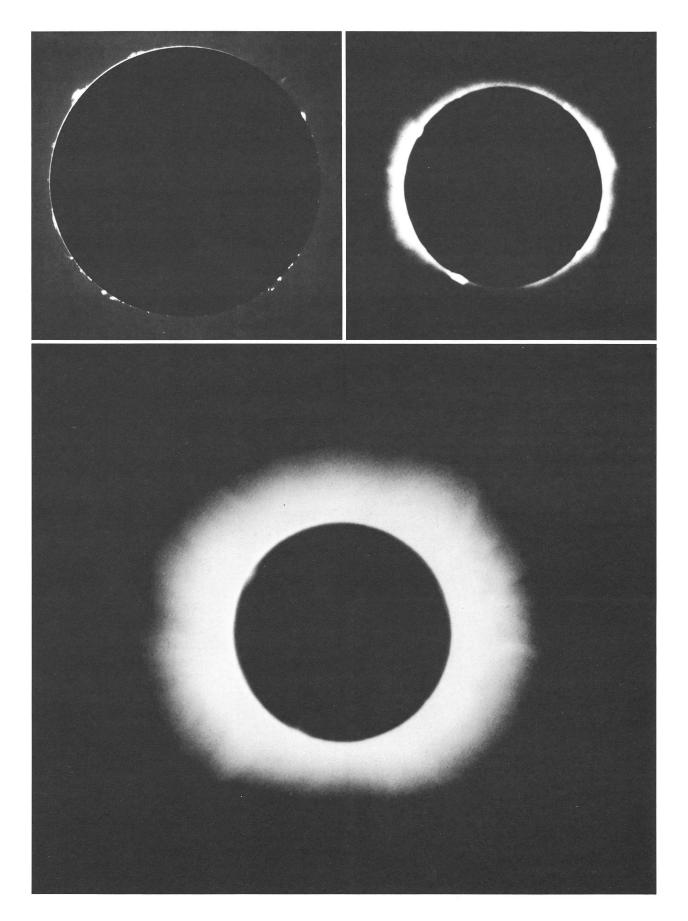
Die schlechte Witterung zu Beginn des Jahres liess leider nicht zahlreiche Beobachtungen des Tagesgestirns zu. Gemäss Prognose war zu erwarten, dass die Sonnenaktivität noch weiter zunehmen und der Beobachter eine interessante Zeit vor sich haben wird.

Beobachtungen wurden in der 1. Hälfte des Jahres 1979 vorgenommen durch:

Beobachter	Anzahl Beobach.	Art
P. Altermatt, Buckten	34	Flecken
E. Handschin, Burgdo	rf 31	Flecken
J. Iskum, Budapest	12	Flecken
O. Lehner, Kloten	43	Flecken
W. Lüthi, Burgdorf	10	Flecken
D. Marti, Ittigen	23	Flecken
E. Moser, St. Imier		Protuberanzen
X. Willi, Oberehrendir	ngen 17	Flecken

Sonnenflecken

In den ersten drei Monaten waren im Durchschnitt immer nahezu 10 Fleckengruppen auf der sichtbaren Sonnenhalbkugel zu beobachten. Die tägliche Zürcher Relativzahl stieg dann auch im Januar erstmals über 200. Trotz der hohen Sonnenaktivität bildeten sich aber keine grossen Flecken. Lediglich im Februar, April und Juni waren je eine grosse F-Gruppe sichtbar. Trotz einer


grossen F-Gruppe mit rund 100 Einzelflecken zu Beginn des Monates, zeigte sich im April eine deutliche Abnahme der Aktivität. Die Zürcher Relativzahl erreichte mit 103 ein Zwischenminimum. In den folgenden Monaten stieg dann die Gruppenzahl erneut stark an. In den Monaten Mai, Juni und Juli waren im Durchschnitt wiederum 10 bis 12 Fleckengruppen auf der sichtbaren Sonnenhalbkugel zu beobachten. Im Juli lagen die höchsten Werte der Zürcher Relativzahl bei 249.

Wie letztes Jahr, war die Nordhalbkugel der Sonne die aktivere. Auf ihr haben die Flecken bereits die heliographische Breite um +5° erreicht, während sich auf der Südhalbkugel die Flecken noch in Breiten zwischen —15° und —20° bewegen.

Protuberanzen

Die Protuberanzenaktivität schwankt bekanntlich auch mit dem 11-jährigen Sonnenfleckenzyklus, nur nicht so stark ausgeprägt. Die Hauptprotuberanzenzonen verhalten sich ähnlich wie die Fleckenzonen und wandern im Laufe des Sonnenfleckenzyklus von beiden Seiten zum Äquator hin. Von der Hauptzone spalten sich polare Nebenzonen ab, die zum Pol hin wandern. Dieser polare Protuberanzenzug beginnt bereits zwei Jahre vor der Fleckenperiode und erreicht das Maximum auch zwei Jahre vor dem Fleckenmaximum.

Die Protuberanzentätigkeit ist gegenüber anderen Jahren in diesem Zyklus nicht sehr ausgeprägt. Zwar waren im Mai recht ausgeprägte Protuberanzen zu beobachten (siehe auch Titelbild dieser Ausgabe).

ORION 37. Jg. (1979) No. 174

Leider liegen zu wenig Beobachtungen vor, um näher auf die Protuberanzenaktivität einzugehen.

Korona

Das Jahr 1979 bot dem Amateursonnenbeobachter wiederum die Gelegenheit, auch die sonst nicht sichtbare Sonnenkorona zu beobachten. Erich Korkoschka aus Stuttgart stellte uns Aufnahmen der totalen Sonnenfinsternis vom 26. Februar 1979 zur Verfügung. Die Korona zeigt die typische Struktur einer Maximumskorona. Der Strahlenkranz verteilt sich fast regelmässig um die verdeckte Sonnenkugel. Im Süden sind noch Polarstrahlen sichtbar. Auf der Westseite ist in der mittleren Korona eine turbulente Struktur zu erkennen.

Die Koronaform ist bekanntlich sehr stark vom 11jährigen Fleckenzyklus abhängig. Zur Zeit des Maximums hat die Korona rundliche Form und ihre Strahlen treten in allen Positionswinkeln auf. Zur Zeit des Minimums dagegen treten die Strahlen eher parallel zum Äquator auf. In den Polargebieten sind nur kurze Strahlen zu beobachten.

Adresse des Berichterstatters: WERNER LÜTHI, Lorraine 12 D/16, 3400 Burgdorf

Bildlegenden

Oben links: Aufnahme der Protuberanzen vom 26. Februar 1979 durch Dr. E. Moser, St. Imier, mit Protuberanzenfernrohr.

Oben rechts: Aufnahme der inneren Korona während der totalen Sonnenfinsternis durch E. Korkoschka. Auf der Original-Farbaufnahme sind die grösseren Protuberanzen deutlich sichtbar. CELESTRON 90/850 mm, Belicht. 1/60 sec. auf Ektachrome 200 (24 DIN).

Unten: Aufnahme der äusseren Korona. Deutlich die Maximumsform der Korona ersichtlich. Die Aufnahmen der Sonnenfinsternis wurden durch E. Korkoschka, in der kanadischen Prärie, ca. 100 km nordwestlich von Winnipeg gemacht. CELESTRON 90/850 mm, Belicht. ¼ sec. auf Ektachrome 200 (24 DIN).

Sonnenfleckenrelativzahlen

für Mai/Juni/Juli/August 1979

Mai (Monatsmittel 134.6)

Tag	1	2	3	4	5	6	7	8	9	10	
R	108	106	103	112	113	122	148	165	162	145	П
Tag	11	12	13	14	15	16	17	18	19	20	
R	148	158	163	203	207	187	184	148	109	107	
Tag	21	22	23	24	25	26	27	28	29	30	31
R	114	121	117	119	124	123	118	110	113	96	120
	0.1			4.50							

Juni (Monatsmittel 150.5)

Tag	1	2	3	4	5	6	7	8	9	10	
R	121	152	161	178	207	226	222	220	231	205	
Tag	11	12	13	14	15	16	17	18	19	20	
R											
Tag	21	22	23	24	25	26	27	28	29	30	
R	124	108	96	90	120	132	112	128	124	154	

Juli (Monatsmittel 159.6)

Tag	1	2	3	4	5	6	7	8	9	10	
R	158	168	205	219	232	249	223	219	191	163	
Tag	11	12	13	14	15	16	17	18	19	20	
R	155	145	142	127	121	114	109	109	135	158	
Tag	21	22	23	24	25	26	27	28	29	30	31
R	151	152	154	143	144	142	146	132	148	150	144

August (Monatsmittel 143.5)

ragust (Wonatsmitter 145.5)											
Tag	1	2	3	4	5	6	7	8	9	10	
R	115	96	121	110	93	104	110	132	115	92	
Tag	11	12	13	14	15	16	17	18	19	20	
R	84	87	91	119	135	122	138	157	176	187	
Tag	21	22	23	24	25	26	27	28	29	30	31
R	218	216	206	203	201	182	189	174	158	150	168

Nach Angaben der Eidg. Sternwarte Zürich, Prof. Dr. M. Waldmeier