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Astro- und Instrumententechnik

5. Kapitel: «Das Steifigkeits-Additionsgesetz» (Teil I)
von Ing. H. Ziegler

5.1 Vorbemerkungen zum Steifigkeits-Additionsgesetz
Im 4. Kapitel wurde gezeigt wie an einer Teleskopmon-
tierung die Systemsteifigkeit cs gemessen wird, und dass
diese Messung auch vom Amateur durchgeführt werden
kann, da dafür keine Messapparaturen benötigt werden.
In diesem Kapitel wird das Steifigkeits-Additionsgesetz
behandelt. Es beschreibt den Zusammenhang zwischen
den individuellen Steifigkeiten der Elemente und der
Systemsteifigkeit der Struktur. Die Frage nach diesem
Zusammenhang stellt sich bereits bei der Messung der
Steifigkeit, wenn man die Messergebnisse zu interpretieren
versucht. In einem weiteren Schritt sollen dann die
Zusammenhänge zwischen der Steifigkeit eines Teiles und
seinen Konstruktionsparametern diskutiert werden. Die
Systematik, nach der bisher vorgegangen wurde und
nach der nun weitergefahren werden soll, ist durch das
folgende Schema gegeben:

1. zeigen, dass für Teleskopmontierungen statische,
kinetische und kinematische Aspekte relevant sind
(2. Kapitel),

2. postulieren von drei Grundkriterien entsprechend den
statischen, kinetischen und kinematischen Aspekten und
den Anforderungen, die sich aus der Anwendung des
Instrumentes ergeben (3. Kapitel),

3. jedem Grundkriterium eine definierte und messbare
Basisgrösse zuordnen (Steifigkeit, mechanische Impedanz,

kinematischer Fehler),

4. zeigen, wie die Statik, das Schwingungsverhalten und
die Kinematik durch je ein fundamentales Strukturgesetz

bestimmt werden (Steifigkeits-Additionsgesetz,
Vierpolgleichungen, Fehlerfortpflanzungsgesetz),

5. aufzeigen der Zusammenhänge zwischen der jeweils
für einen Aspekt relevanten Basisgrösse (Steifigkeit) und
den Konstruktionsparametern wie Abmessungen,
geometrische Form, Werkstoffeigenschaften usw.

Nach diesem Schema ist das Steifigkeits-
Additionsgesetz das Strukturgesetz, das die elastome-
chanischen Eigenschaften der Einzelteile wie Achsen,
Lager, Säule usw. mit jenen des fertigen Instrumentes
verbindet. Es ist ein für die Konstruktion von Teleskop-
montierungen wichtiges Gesetz mit Aspekten, die kaum
bekannt sind und die in der Regel bei Amateurinstrumenten

zu wenig berücksichtigt werden. Für den am
Instrumentenbau, nicht jedoch an Theorie und Formeln
interessierten Leser werden die Konsequenzen dieses
wichtigen Gesetzes in einigen einfachen «Merksätzen»
zusammengefasst.

5.2 Die Steifigkeit einer Kettenstruktur
Der Steifigkeitstensor lässt sich in allgemeiner Form

durch eine kubische Matrix, das heisst durch 3x3x3
Zahlenwerte, darstellen. In dieser Matrix werden auch
die Randwerte berücksichtigt. Die Addition von Steifigkeiten

läuft daher auf die einfache Addition von Matrizen

hinaus. Es soll hier jedoch gezeigt werden, dass das
Steifigkeits-Additionsgesetz auch auf elementare und
anschauliche Weise abgeleitet werden kann.

Für die weiteren Betrachtungen ist der Begriff der Kette

wichtig. Unter einer Kette versteht man eine Struktur,
bei der die Elemente (Einzelteile) in Serie, das heisst
hintereinander, angeordnet sind. Eine äussere Kraft, die auf
ein Element einwirkt, pflanzt sich als innerer
Spannungszustand durch dieses Glied fort, tritt über eine
Verbindungsstelle in das nächste Glied über usw., bis sie

vom letzten Glied auf einen Festpunkt übertragen wird.
Eine Teleskopmontierung ist ein typisches Beispiel für
eine Kettenstruktur. Die wichtigsten Elemente (Hauptteile)

in dieser uns besonders interessierenden Kette sind:

Rohr — Rohrsattel — Deklinationsachse —
Deklinationsachslager — Lagergehäuse der Deklinationsachse
— Polachse — Polachslager — Lagergehäuse der
Polachse — Zwischenteil — Säule (Stativ) — Säulenbasis
— Justierschrauben (Fundamentschrauben) — Fundament.

Die am Rohr angreifenden Kräfte durchlaufen diese
Kette bis sie vom Fundament aufgenommen werden. In
der Regel werden mindestens einige dieser aufgezählten
Hauptteile aus mehreren Einzelteilen (Subelementen)
zusammengefügt sein, so dass die Kette wesentlich mehr
als nur 12 Glieder besitzen wird. Elemente lassen sich
aber auch aus berechnungstechnischen Gründen in
Abschnitte aufgliedern, die für sich kein eigenständiges
Element sind. So kann z. B. die Deklinationsachse in einen
Wellenabschnitt Achsflansch—Hauptlager, in einen
Wellenabschnitt zwischen den beiden Lagern und in
einen Wellenabschnitt Gegenlager—Ausgleichsgewicht
unterteilt werden. Auf diese Weise erhält man geometrisch

einfache Teilelemente, deren Steifigkeiten sich in
der Regel ohne allzu grossen Aufwand berechnen lassen.
Die Unterteilung eines Teiles in immer kleinere Elemente
kann sogar soweit getrieben werden, dass man sich diesen

aus einer sehr grossen Anzahl gleichgeformter kleiner

Bausteine, z. B. Tetraeder, aufgebaut denkt. Mit
solchen Kleinelementen operiert das unter dem Namen
«Finite Elemente Methode» bekannte Rechenverfahren,
mit dem sich verschiedene Aspekte kompliziert geformter

Teile wie Spannungsverteilungen oder die Steifigkeit
berechnen lassen.

Das Gegenteil von einer Kettenstruktur ist eine
Parallelstruktur. Ein Beispiel dafür wäre ein Stuhl, bei dem
die Last gleich verteilt über die 4 Beine auf den Boden
übertragen wird. Solche Parallelstrukturen sind jedoch
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für Teleskopmontierungen weniger interessant. Das
Additionsgesetz soll nun am Beispiel von hintereinander
angeordneten Drehfedern und am Beispiel einer auskragenden

Welle gezeigt werden.

Beispiel 1. In Serie angeordnete Drehfedern nach
Abb. 5.1

Federke tte

AI AI + AI + Al + Al
s 1 2 3 i

F Al- c
n n

1111

AL fcj

Abb. 5.1. Steifigkeit einer Federkette.
Die Federkette ist ein elementares Beispiel für das Steifigkeits-Addi-
tionsgesetz.

Auf die Federn mit den Federsteifigkeiten c,, c2, c,, c4

wirkt eine Kraft F ein, die sich durch die Federkette
fortpflanzt, jede Feder nach dem Federgesetz (Hookesches
Gesetz) F c • A/ dehnt und schliesslich vom Fesselpunkt

aufgenommen wird. Die Gesamtdehnung Als ist:

A/s A/, + A/2 + A/3 + A/4 Gl. 5.1

Drückt man die AI durch das Federgesetz aus, dann
erhält man

Als — — + — + + - und
Cs Ci C2 C3 C4

Beispiel soll gezeigt werden, dass das — -Gesetz auch für
c

eine biegebelastete Welle gilt. Dazu wurde eine Anordnung

gewählt, die üblicherweise bei den Achsen der
Deutschen Montierung anzutreffen ist; eine in zwei
Punkten gelagerte Welle, die am auskragenden Ende die
Last aufnimmt. Dieses dem Montierungsbau entnommene

Beispiel wird zudem zeigen, dass auch bei einer in
zwei Punkten gelagerten Welle eine reine Kette vorliegt
und nicht eine Parallelstruktur, wie zu vermuten wäre.
Damit dieses Beispiel möglichst praxisnah ausfällt soll
ausserdem der Kraftangriffs- und Bezugspunkt der Sy-
stemsteifigkeit nicht auf der Welle, sondern ausserhalb
dieser in einem Schwerpunkt S angenommen werden.

Beispiel 2. Steifigkeit einer auskragenden Welle nach
Abb. 5.2
Dieser Belastungsfall lässt sich sehr einfach mit der
Schnittmethode lösen. Dazu denkt man sich die Welle
im Punkt B geschnitten und führt an den Schnittstellen
die Reaktionskräfte und Reaktionsmomente ein, so dass
die freigemachten Teile im Gleichgewicht sind und
getrennt betrachtet werden können. Man erhält so die
mittlere Wellenpartie, die in den Lagerpunkten A und B
abgestützt und durch ein Moment M Fs-s belastet
wird, und den in B eingespannten, auskragenden
Wellenstummel mit der reduzierten Kraft FD Für diese
elementaren Belastungsfälle einer Welle lassen sich die
Biegeformeln leicht ableiten, oder können aus technischen
HandbüchernV entnommen werden. Da die Steifigkeiten

auf den Schwerpunkt S zu beziehen sind, ist es
zweckmässig beim Wellenmittelteil mit dem Biegewinkel
ßt, beim auskragenden Wellenstummel hingegen mit der
Durchbiegung Ax2 zu rechnen. Durch den sich durchbiegenden

Mittelteil wird der auskragende Wellenstummel
gekippt und zu dieser Kippung addiert sich seine eigene
Durchbiegung Ax\. Die Auslenkung des Schwerpunktes
ist daher:

Axs Ax,'+ Ax2'= s • tg/L + - • Ax2 Gl. 5.7
3.

und mit den Biegeformeln der beiden Wellenabschnitte
wird

Axs Fs s LI
3 E • JA 3 • E • JB

Gl. 5.S

Nach Division durch F und Umstellung des Bruches
ergibt sich für die Steifigkeit einer solchen Welle

\_
Cs IIIc2 + c3 + c4

Gl. 5.2

Steifigkeit der elektrische Leitwert R
ist. Auf diese

wichtige Analogie werden wir noch bei den
Teleskopschwingungen zu sprechen kommen. Mit dem nächsten

Ax„
Fs

1 1

.3 • E • L, 3 • E • JB
Gl. 5.9

/
damit ist das Steifigkeits-Additionsgesetz für eine Federkette

abgeleitet.

Betrachtet man diese Formel, dann drängt sich eine
Analogie zu elektrischen Netzwerken auf. Es ist ersichtlich,

dass das elektrische Aequivalent der mechanischen

Die im Nenner stehenden Ausdrücke sind die auf den
Schwerpunkt S bezogenen Biegesteifigkeiten der beiden
Wellenabschnitte. In den Formeln steht Efür den

Elastizitätsmodul des Werkstoffes (für Stahl ist E 206-103
N/mm1) und mit J ist das Flächenträgheitsmoment der
Querschnittflächen der Welle bezeichnet. Das
Flächenträgheitsmoment einer Welle vom Durchmesser D ist

64
Gl. 5.10
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Zur Durchbiegung Ax im Bezugspunkt S tragen sowohl der mittlere
Wellenteil als auch der auskragende Teil bei. Diese Beiträge (Ax,', Axg) lassen

sich nach der Schnittmethode für die einzelnen Wellenabschnitte
getrennt berechnen und summieren. Dabei wird ersiehtlich, dass sich

auch bei der Biegebelastung die Gesamtsteifigkeit nach dem—-Gesetz
aus den Hinzelsteifigkeiten der Wellenabschnitte errechnet. c

Damit ist gezeigt, dass das —-Gesetz auch für eine

biegebelastete Welle und für einen beliebig wählbaren
Bezugspunkt S gilt. Man achte in der Gl. 5.9 auf die
Ausdrücke s2 I und s2 a, die für die Steifigkeit einer
Teleskopachse wichtig sind. Es ist ersichtlich, dass diese
Längen bei der Konstruktion einer Montierung kurz
gemacht werden müssen. Ausserdem widerlegen sie die
weit verbreitete Ansicht, dass die Lagerstellen A—B
einer Welle weit auseinander liegen müssen. Bei gegebener
Steifigkeit der Lager lässt sich ein optimaler Lagerabstand

/anhand der Steifigkeitsformeln berechnen.

Die Gl. 5.9 kann ohne weiteres durch weitererr -

Glieder ergänzt werden, die die Steifigkeiten des
Wellenflansches und der zwischen Flansch und Schwerpunkt
liegenden Teile erfassen. Ausserdem liesse sich mit den
gleichen Biegeformeln der Einfluss des Ausgleichsgewichtes

an der Deklinationsachse auf die Steifigkeit im
Punkt S erfassen.

Anhand dieser Beispiele lässt sich das Steifigkeits-
Additionsgesetz für eine Kette angeben. Es lautet:

Zu dieser Formel sind Anmerkungen nötig, die sich bei
exakter Darstellung durch Matrizen erübrigen würden.

1. Die Steifigkeiten c»„ der einzelnen Elemente müssen
sich auf ein und denselben Belastungszustand der
Struktur beziehen. Dies wird durch den Index k
angedeutet.

2. Die Steifigkeiten der einzelnen Elemente müssen auf
ein und denselben Punkt, in unserem Fall die
Bildebene, bezogen werden.

3. Die Gl. 5.11 ist nur gültig, wenn die Quersteifigkeiten
vernachlässigt werden können.

Die beiden ersten Punkte wurden bereits in den
vorangegangenen Kapiteln behandelt und die Bedingung der
vernachlässigbaren Querstiefigkeiten ist in der Regel bei
Teleskopmontierungen erfüllt.

Ein interessantes Beispiel für ein Element bei dem der
Punkt 3 nicht erfüllt ist, ist ein Gleitlager. Die
Querverschiebung einer auf einem Schmierfilm «schwimmenden»

Welle ist von der Viskosität des Schmiermittels
abhängig. Mit anderen Worten, die Auslenkung Az ist vom
Widerstand abhängig den das Schmiermittel dem seitlichen

«Herausgequetschtwerden» entgegensetzt. Dieser
Widerstand ist nichts anderes als die Quersteifigkeit in
den Koordinatenrichtungen x und y. In diesem Fall müssen

in der Streifigkeitsmatrix die Glieder cv; und c,„
berücksichtigt werden. Ein ähnlicher Fall wäre gegeben,
wenn durch die Belastung ein Teil ausknicken würde.
Dies kommt jedoch bei Teleskopmontierungen mit
Sicherheit nie vor.

Welche Konsequenzen ergeben sich aus dem Steifig-
keits-Additionsgesetz? Diese lassen sich anschaulich
anhand von Zahlenbeispielen zeigen3'.

ij Eine Zusammenstellung der Biegeformeln für den
Balken bei verschiedenen Belastungsfällen findet man
z.B. in: «Die Hütte».
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«Die Hütte», (Physikhütte Band 1), Des Ingenieurs
Taschenbuch (29. Auflage). Berlin/München/Düsseldorf:

Verlag Wilhelm Ernst & Sohn.

2) Die Zahlenbeispiele werden im Abschnitt 5.3 im
Teil II diese Kapitels im ORION 168 behandelt.
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Ein 25-cm-Reflektor aus Amerika
Die astronomische Arbeitsgemeinschaft Geseke/Warstein

arbeitete bisher mit einem 15cm Reflector und
einem 9cm Refractor. Da in der AG die Astrofotogra-
fie immer mehr Vorrang gewann, beschlossen wir
gemeinsam, ein lichtstärkeres Teleskop anzuschaffen.
Das neue Teleskop sollte etwa eine Brennweite von
0,8—1 m und mindestens ein Öffnungsverhältnis von
1:4 haben. So einigten wir uns schliesslich auf einen
25cm-Spiegel.

Kostenvoranschläge, die wir innerhalb von Europa
einholten, schienen uns zu hoch. Deshalb setzten wir
uns mit einer amerikanischen Firma, die in «Sky and
Teleskop» inserierte, brieflich in Verbindung. Nach ca.
4 Wochen bekamen wir von dieser Firma einen
ausführlichen Prospekt zugeschickt, in dem ein Spiegel mit

25cm Durchmesser und einer Brennweite von Im für
156 Dollar angeboten wurde. Obwohl dieser Spiegel
nur 1/8 Wellenlänge besass, war es für ein Öffnungsverhältnis

von 1:4 immer noch ein relativ guter Wert.
Ausserdem bot uns die Firma einen dazu passenden
Fangspiegel zum Preis von 30 Dollar an.

Im November 1977 bestellten wir diese beiden Teile
von der amerikanischen Firma. Ende November
erreichte uns die Rechnung über 186 Dollar. Da der
Rechnungsbetrag in Dollar an die Firma überwiesen
werden musste, Hessen wir dieses im Dezember 1977

von einer Bank erledigen. Die amerikanische Firma
bestätigte uns Ende Dezember den Erhalt des Geldes und
teilte uns mit, dass die Optik in ca. 8—10 Wochen an
uns geliefert würde.
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