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Corporation, die IRTF-Gruppe der NASA, die Univer-
sitdt Hawaii und das National Radiostronomy Observa-
tory von Green Bank, Virginia, USA — haben den Mau-
na Kea ebenfalls als Standort fiir Teleskope gewéhlt.
Ausgezeichnete Arbeitsbeziehungen zu diesen Gruppen
bestehen bereits.

Dieses grosse neue Infrarot-Teleskop wird britischen
Astronomen die Moglichkeit bieten, zahlreiche Objekte
sehr viel genauer zu erforschen. Messungen der von den
Kernen von Galaxien ausgesendeten Strahlung, insbe-
sondere der Art und Weise, wie die Intensitit der Emis-
sion je nach der Wellenldnge innerhalb eines weiten Be-
reichs variiert, werden, so hofft man, dazu verhelfen,
einiges tiber die Energiequellen in diesen Kernen in Er-
fahrung zu bringen.

In ndherer Nachbarschaft der Erde wird man die «Ge-
burtsstdtten» von Sternen unseres eigenen galaktischen
Systems beobachten und versuchen zu erforschen, wie
sich aus den grossen, Molekiile enthaltenden interstel-
laren Wolken Sterne bilden. Es gibt mehrere Theorien
dariiber, doch keine konnte bislang endgiiltig als rich-
tig bewiesen werden.

Ausserdem wird von den winzigen Staubteilchen der

interstellaren Wolken Infrarotstrahlung absorbiert und
ausgesendet, und Messungen dieser Absorptionen und
Emissionen konnen manchen Aufschluss iiber deren
physikalische und chemische Eigenschaften geben. Ob-
wohl die Grosse dieser Staubteilchen nur einen Bruchteil
eines um betrédgt, und wenn sie insgesamt auch weni-
ger als ein Prozent der Materiemasse in interstellaren
Wolken ausmachen, sind sie doch bewonders wichtig,
weil sich auf ihrer Oberfliche Wasserstoff- und andere
Molekiile bilden. Manche Wissenschaftler vermuten,
dass es diese Bildung von Wasserstoffmolekiilen ist, die
das Zerfallen der Wolken in Fragmente verursacht, die
sich dann zu Sternen verdichten, ohne die es kein Licht,
keine Warme, kein Leben geben wiirde — und dass sich
vielleicht auch die Molekiile, in denen das Leben seinen
Ursprung hat, auf diesen winzigen Partikeln bilden und
daher weit iiber das gesamte Universum verbreitet sind.
Die Energiequellen in den Kernen von Galaxien, die
Entstehung der Sterne, der Ursprung des Lebens — mit
Hilfe des neuen Infrarot-Teleskops einen bedeutenden
Beitrag zur Erforschung dieser Dinge leisten zu kdnnen,
ist fur die britische Wissenschaft eine faszinierende Zu-
kunftsaussicht. (BF)

Die Berechnung der Ephemeriden von Planeten und Kometen
mit dem programmierbaren Taschenrechner.
von ROMAN A. GUBSER, Urania Sternwarte Ziirich

Die Entwicklung des Benjamins der Kleinkomputerfa-
milie — des programmierbaren, durch Mikroprozesso-
ren gesteuerten Taschenrechners, hat inzwischen einen
beachtlichen Stand erreicht. Trotz oder vielleicht wegen
des technologischen Fortschritts sind die Preise soweit
gesunken, dass der Erwerb solcher Gerite beinahe jedem
Astro-Amateur maoglich geworden ist. Diese Rechner
werden wohl bald einmal zur Ausriistung einer noch so
bescheidenen Sternwarte gehéren, sind doch ihre Ein-
satzmoglichkeiten noch kaum absehbar: etwa als Stern-
zeituhrersatz oder z.B. fiir die Berechnung der Prazes-
sion, Parallaxe, Refraktion, fiir Koordinatentransfor-
mationen etc. Eine dieser Moglichkeiten mit den neue-
ren Rechnermodellen, die relativ komplexe Berechnung
(ungestorter) Ortsephemeriden von Planeten und Kome-
ten, soll hier erértert werden. Es liegt nicht im Rahmen
eines solchen Aufsatzes, eine komplette Programmier-
technik mit fertigen Programmen zu vermitteln. Mit
Ausnahme eines besonders interessanten Programmaus-
schnittes soll lediglich der Rechnungsablauf mit einsetz-
baren mathematischen Formeln beschrieben werden.

Die im Folgenden beschriebenen Programme und Re-
chenbeispiele sind mit einem Rechner des Typs Ti-59
(Texas Instruments) verwirklicht worden. Dieser Rech-
ner hat einige fiir uns relevante Eigenschaften wie z.B.

— grosse Rechengenauigkeit (10 Anzeige plus 3
Schutzstellen, wichtig, um Rundungsfehler bei der Viel-
zahl arithmetischer Operationen klein zu halten),

— relativ grossen, auf Datenregister und Programm-
schritte flexibel aufteilbaren Speicherbereich,

— auswechselbare festverdrahtete Einheiten (Softwa-
re-Module) mit ca. 25 Programmen, die nicht nur iiber
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die Tastatur, sondern auch als Unterprogramme aufruf-
bar sind (fiir astronomische Berechnungen ist das Pro-
gramm Kalenderrechnung sehr niitzlich),

— an den Rechner anschliessbares alphanumerisches
Druckwerk, womit ein automatischer Betrieb mit alpha-
betisch gekennzeichneten Resultatenausdruck mdglich
wird. Programme und Daten kénnen auf Magnetkarten
aufgezeichnet werden, so dass der Rechner beliebig oft
geladen werden kann.

Die Bestimmung des geozentrischen Ortes eines um
die Sonne laufenden Himmelskorpers gliedert sich im
Wesentlichen in zwei Teile:

1. Berechnung der heliozentrischen Koordinaten so-
wohl dieses Korpers, als auch der Erde und
2. Umwandlung dieser Positionen in geozentrische.

1. Die Berechnung der heliozentrischen Polarkoordi-
naten vundr.
1.1 Dieelliptische Bahn.

Fig. 1 Die Polarkoordination r und v in der Ellipse.
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Fig. 1 zeigt die Verhdltnisse eines auf elliptischer Bahn
um die in dem einen Ellipsenbrennpunkt F stehenden
Sonne laufenden Himmelskorpers. Die Winkel-
Geschwindigkeit des Korpers oder die Anderung von v,
der wahren Anomalie, ist entsprechend dem zweiten
Keplerschen Gesetz im Perihel Pe am grossten und im
Aphel A am geringsten.

Da es nicht streng gelingt, unmittelbar aus der seit
dem Periheldurchgang T verflossenen Zeit die wahre
Anomalie v zu berechnen, muss man sich hierzu einer
Hilfskonstruktion bedienen. Wir denken uns einen Kor-
per mit gleichférmiger Winkelgeschwindigkeit. Seinen
Winkelabstand vom Perihel bezeichnet man als die mitt-
lere Anomalie M. Es ist dann

M = %" (t—T) M

worin U die siderische Umlaufzeit und t-T die seit dem
Periheldurchgang verflossene Zeit in Tagen (Ephemeri-
dentage) ist. Der Ausdruck

£
U

wird oft mit n bezeichnet und gibt die mittlere tagliche
Bewegung des Korpers wieder. Vielfach wird fiir die Be-
rechnung von M nicht von T ausgegangen, sondern es
wird die Grosse Mg zur Zeit tg (genannt die Epoche) be-
niitzt.

M = Mg + n(t—tg) ?)

Um nun aus der mittleren die wahre Anomalie zu be-
rechnen, hat schon Kepler einen Hilfswinkel, die exzen-
trische Anomalie E, eingefiihrt. Fig. 2 zeigt ihre Bedeu-
tung. Ihr Zusammenhang mit v hat Kepler auf geometri-
schem Wege gefunden. Die nach ihm benannte Glei-
chung lautet

M=E—esinE 3)

Die Grosse e wird Exzentrizitdt genannt und ist ein
Mass fiir die Elliptizitat. Definiert istedurche=OF/OPe,
wobei OPe der grossen halben Bahnachse a entspricht.
Ganz allgemein ist in der Ellipse e<l, in der Parabel
e=1und in der Hyperbel e>l. In der Gleichung (3) sind
E und M im Bogenmass (Radian) ausgedriickt. Da es

Fig. 2 Zur Ableitung der excentrischen Anomalie E.
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meistens bequemer ist, mit Altgrad zu rechnen, muss
dann e mit 180/n multipliziert werden, was mit €© be-
zeichnet wird.

Diese Keplersche Gleichung (3) ist transzendent, weil
auf der rechten Seite sowohl E als auch sin E vorkom-
men. Thre Auflésung gelingt daher nur durch Versuche.
Mit Hilfe des Rechners ist es naheliegend, die Losung
iterativ d.h. durch stetige Anndherung an den exakten
Wert zu finden. Die Iterationsgleichung zur Berechnung
von E lautet dann

Ep +1=M+e9sin Ep “)

Der Index n gibt die Iterationsstufe an.
Fiir Eq setzen wir M ein, es wird dann

E|=M +¢€9sin E,

Dieses Verfahren wird solange fortgesetzt, bis E, sich
nicht mehr dndert. Fiir kleine Exzentrizititen, wie etwa
fur die Erdbahn, geniigen 4 Stufen. Fiir grossere Exzen-
trizititen konvergiert diese Form allerdings nur lang-
sam. Macht man sich aber den Umstand zu Nutze, dass

dE 1 )

m " 1—ecosE

ist, so kann die Iteration (4) folgendermassen modifiziert
werden:
M — E, + eOsinE
Eptl = n .+ By ©
1 —ecosEp

Dieses Verfahren konvergiert sehr rasch. Die Iteration
kann abgebrochen werden, wenn der absolute Betrag des
ersten linken Terms kleiner als eine vorgegebene Genau-
igkeitsgrenze z.B. 1 X 10-®ist.

Leider versagt diese Methode, wenn sich e der Einheit
ndhert, d.h. bei Bahnen mit sehr grossen Exzentrizita-
ten, indem dann die Iteration divergieren kann.

Methode (4) kennt diesen Nachteil nicht, konvergiert
aber, wie erwidhnt, bei solch grossen Exzentrizitdten dus-
serst langsam (Rechenzeiten bis zu 2 Stunde). Diese Si-
tuation ldsst sich mit einer Methode nach J. Hartmann
d), ¢) wesentlich verbessern. Bildet man aus drei nach
Formel (4) gewonnenen E, E|, E eine Derivative

Ey—E
g = 2—71 ©)
E] —Eo

so hat Hartmann zeigen kdnnen, dass ein besserer Nédhe-
rungswert von E berechnet werden kann aus

E|—Eo
E3=Eg+ ———— @®
3 o] —d
Die entsprechende Iterationsgleichung lautet
E —E
En+3 =M+ eOsin | E, + el 2 ()]

l_(En+2—En+l)
Ep+1—En
in den Algorithmus des Ti-59 iibersetzt, kann das etwa

folgendermassen aussehen:
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Ausschnitt aus Programm ELLIPT-EPHEM.

Prog.
Adresse

063

064

065

066

067

068

069

— »070
071

072

073

074

075

076
—p» 077
078
079

110
111
112
113
114
115
116
117
118

119
L p120
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Tasten
Kode

Funktion

077

X>t
120
RCL
03

RCL

070
RCL

Speichern der Genauigkeits-
grenze 1 X 10-¢in das
t-Register.

Aufruf von M als
Anfangswert von E.
Speichern in

Register 05 und 03.

2 in Reg. 00 (Laufindex).

sine
X

e0 > Kepler
+

M

Austausch des Anzeigeregisters
mit Register 05 und Bildung der
Differenz Ep + 1—Ep.

(No Operation).

Indirektes Abspeichern von
E]-Egin Reg. 02 im 1. Durchgang und
E»-Ejin Reg. 01 im 2. Durchgang.
Vermindert Reg. 00 um I, wenn
Reg. 00# 0 Sprung nach

Adresse 077.

Absolutbetrag,

ister < 1 X 10-¢ Sprung

nach Adresse 120

damit ist die [teration beendet.

Eo ]
El-Eg
> Hartmann
Ex-E|
Sprung nach Adresse 070.
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Wird bei Adresse 090 das NOP durch einen Print-
oder Pausebefehl ersetzt, so kann das Konvergieren gut
verfolgt werden.

Die Berechnung der Polarkoordinaten v und r (Radi-
usvektor) erfolgt nun durch

r
— cosv =cosE—e = x

a
r . .
— sinv =cos@sSinE =y
2 (¢ = arcsine) (10)
und
r=a(l—ecos E) (11)

Einfacher als die Berechnung von tg v aus dem Quo-
tienten von y/x mitsamt der Bestimmung des Quadran-
ten von v, ist die Benutzung der rechnereigenen Funktio-
nen P—R (Polar— Rechtwinklig, und umgekehrt).
Werden x und y in der vorgeschriebenen Reihenfolge
eingegeben, liefert diese Funktion direkt den Winkel v
und als zweites Ergebnis r/a. Gleichung (11) wird dann
nicht gebraucht.

1.2 Die Parabel-Bahn

Diese Bahnform kommt ausschliesslich und recht héiufig
bei Kometen vor. Da bei der Parabel mit e=1, a und U
unendlich sind, ist es wenig sinnvoll, eine mittlere Bewe-
gung zu definieren. Vielmehr ist die Parabel eindeutig
definiert durch die Periheldistanz q (in AE). Entspre-
chend vereinfacht sich die Berechnung von v und r. Un-
ter Vernachldssigung der Masse des Kometen kann v di-
rekt durch Auflosen der kubischen Gleichung

tv+1t3v_k
Ex vt 5~

" Vi

mit Hilfe der Cardanischen Formel berechnet werden.
Die Gaussche Gravitationskonstante k hat den Wert
0.017202099. Nach Einsetzen in die Cardanische Formel
erhalten wir

tg%=3\/c+\/cz+l —3\/|c—\/c2+l‘ 13)

(12)

t—T

worin

ist. Nach der Polargleichung der Parabel ist dann

r = qsec? - (14

2

1.3 Die hyperbolische Bahn

Diese Bahnform ist auch bei Kometen recht selten und,
wenn sie gefunden wird, so ist es fast immer eine para-
belnahe Hyperbel. Trotzdem sei hier der Vollstandig-
keit halber die Berechnung der heliozentrischen Polar-
koordinaten erwihnt. Die der Keplerschen in der Ellipse
entsprechende Gleichung fiir die Hyperbel ist

106

_keD _

a’?

n H
tgH +Intg | — — — (15)
o g(4 2)

H ist das hyperbolische Analogon zur exzentrischen
Anomalie E und « ist der Absolutbetrag der in der Hy-
perbel immer negativen grossen halben Bahnachse a

q (16)
e—l

a=|a| =

Auch Gleichung (15) ist transzendent und muss dhn-
lich wie die Keplersche Gleichung aufgelost werden. Zu
iterieren ist dann in der Form

tgHp 41 = 17

Winkeleinheit ist hier das Bogenmass. Die uns interes-
sierenden Bahnen sind wie gesagt parabelnahe, e ist so-
mit nur wenig grosser als 1. Wir stossen damit wiederum
auf dasselbe Problem des langsamen Konvergierens von
H wie E in (4). Auch hier hilft uns die Hartmann-
Iteration weiter, wenn sie wie in Gleichung (9) sinnge-
mdss in (17) eingesetzt wird.

Aus H ergeben sich v und r aus den Beziehungen

r
s cosv=e—secH =x

(18)
% sinv=\Ve*—ltgH=y
e
r= —i 19
a(cosH )

Was zu (10) und (11) gesagt wurde gilt auch hier.

2. Die Berechnung der geozentrischen Orter

2.1 Die Bahnelemente

Drei Elemente einer Bahn, diejenigen, welche sich auf
Form, Grosse und Ort eines Himmelskorpers in seiner
Bahn beziehen, haben wir bereits kennengelernt:

1. Die Bahnexzentrizitit e
2. Die grosse halbe Bahnachse a
oder die daraus abgeleitete mittlere

Bewegung n=
a‘/,

respektive die Periheldistanz q
3. Die mittlere Anomalie M
oder die Perihelzeit T

Um nun diese Bahn im Raum eindeutig festlegen zu
konnen, brauchen wir drei weitere Bahnelemente und
ein geeignetes Bezugssystem. Es liegt auf der Hand, als
Bezugssystem die Ebene der Erdbahn, die Ekliptik zu
benutzen. Die ausgezeichnete Richtung auf der Ekliptik
ist der Friihlingspunkt. Die notwendigen weiteren Bahn-
elemente sind:

4. Die Linge des aufsteigenden Knotens & gezihlt auf
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der Ekliptik vom Friihlingspunkt an von 0—360°,

5. Die Neigung der Bahnebene gegen die Ekliptik i, von
0—180°,

6. Der Abstand des Perihels vom Knoten w
oder auch die Linge des Perihels @ (=Pi) es ist
w=w+ 5.

Die Bahnelemente der Planeten e, a, n, M, & , i und
w sind z.B. in den astronomischen Jahrbiirchernh)aufge-
fithrt. Fiir die inneren Planeten Merkur bis Mars sind
sogenannte mittlere Elemente und fiir die dusseren Pla-
neten sogenannte oskulierende Elemente angegeben.
Letztere bestimmen Ort und Geschwindigkeit fiir einen
gegebenen Zeitmoment, sie beriicksichtigen demnach die
momentan wirkenden Storungskrafte und ermdoglichen
eine genaue Ortsberechnung, sofern die Zeit nahe der
Oskulationsepoche liegt. Fiir die Vorausberechnung
iiber grossere Zeitraume eignen sich die mittleren Ele-
mente besser, weil sie weitgehend frei von kurzperio-
disch wirkenden Storungen sind. Solche mittleren Ele-
mente finden sich z.B. in f) und g). Die oben erwdhnten
mittleren Elemente der inneren Planeten lassen sich auch
leicht fiir beliebige Epochen mit einem gesonderten Pro-
gramm berechnen. Die entsprechenden Polynome sind
in g) zu finden. Provisorische und spéiter verbesserte Ele-
mente neuentdeckter Kometen werden, sobald geniigend
Beobachtungen vorliegen, vom Central Bureau for As-
tronomical Telegrams (IAU) in ihren abonnierbaren Zir-
kularen publiziert i). Nur ein kleiner Teil der Amateure
werden Zugang zu diesen Zirkularen haben. Es wire da-
her sicher wiinschenswert, wenn der Informationsgehalt
der ORION-Zirkulare unter anderem durch Hinzufiigen
dieser Elemente erhoht wiirde.

2.2 Umwandlung der heliozentrischen Koordinaten in
geozentrische

Diese Umwandlung ist bereits einmal im ORION e) von
R. Schneider erldutert worden. Wir kénnen uns daher
hier kurz fassen. Nebst den Elementen & und i bendti-
gen wir noch das Argument der Breite u (siehe Fig. 3),
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das sich einfach ergibt aus

U=v+w=v+o—>5s, (20)

ferner die Sonnenlange L, die identisch ist mit der Liange
der Erde + 180°

L=we +ve +180°, (20a)

und schliesslich die Radiusvektoren des Himmelskorpers
r und der Sonne bzw. der Erde R.

Daraus errechnen sich die ekliptikalen Polarkoordina-
ten: die Lénge A, die Breite 3, und die Distanz zur Erde A
aus

Acos B cos (A,— §3) = rcosu + R cos (L— §3)
Acosfisin (A,— &) = rsinucosi+Rsin(L— §3) (21)

A*=R*+r1*+2Rr (cosucos (L—&3)

+ sinusin (L— §&) cos i) (22)
Sinf = r sin: sin i (222)

Hiermit haben wir die ekliptikalen Koordinaten bezo-
gen auf Ekliptik und Aquator der Epoche to berechnet.
Dies geniigt fiir Kometen, weil deren Bahnelemente auf
eine Nullepoche (z.B. 1950.0) bezogen werden und auch
die zu rechnenden Orter fiir dieses Aquinoktium ge-
wiinscht werden (Vergleich mit Sternkarten). Planeten-
orter werden iiblicherweise auf Ekliptik und Aquator
des Datums bezogen. Wiinschen wir das ebenfalls, ha-
ben wir unsere Koordinaten wegen der Prizession zu
korrigieren. Im ekliptikalen System ist dies besonders
einfach, weil bei der hier geforderten Genauigkeit ledig-
lich zu A, die allgemeine Prezession in Linge p hinzuzu-
fiigen ist.

A=A, +p?(t—ty)

wobei p? den Wert 0.0000382° hat.
Nachdem wir nun R, r und A kennen sind wir auch in

(23)

Fig. 3 Zur Definition der Bahnelemente.
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der Lage, die scheinbaren Helligkeiten der Planeten und
Kometen zu berechnen.

2.3 Die Berechnung der scheinbaren Helligkeit und des
scheinbaren Durchmessers. )
Fiir die Kometen wird sehr hidufig die Formel

m=g+5logA+10logr (24)

verwendet. Die «Grundhelligkeit» g (fir A=I, r=1) ist
aus den beobachteten Helligkeiten abzuleiten.

Fiir die Planeten ist die Berechnung der scheinbaren
Helligkeit etwas komplizierter, weil nebst deren Eigen-
helligkeit und Entfernung auch deren Phasen und das
Beleuchtungsgesetz zu beriicksichtigen sind. Ein Mass
fiir die Phase ist der Winkel s, es ist der Winkel zwischen
der Richtung zur Sonne und der zur Erde vom Planeten
aus. Esist

A?* + r?—R?
2rA

Die scheinbare Helligkeit rechnet sich nach g) S. 314
z.B. fiir die Venus mit g= —4.0:

m=g+5logrA+0.01322s 4+ 0.000000425 s* (26)

Nehmen wir fiir g beim Mars —1.3, Jupiter —8.93,
Saturn —8.68 (die Ringstellung bleibt unberiicksichtigt),
Uranus —6.85, Neptun —7.05 und Pluto —1.01 (die
hellen Planetoiden liegen bei 4.0), so erhalten wir auch
fiir diese Planeten recht gute Werte fir m. Fir Merkur
miisste der 3. und 4. Term von (26) anders aussehen. Es
hat sich jedoch gezeigt, dass damit trotzdem befriedigen-
de Helligkeiten (~=0.1M) erhalten werden mit g= —
0.04 und, wenn der dritte Term mit 1.8 multipliziert
wird.

Noch einfacher ist die Berechnung der scheinbaren
Durchmesser der Planeten. Wir brauchen lediglich den
scheinbaren Durchmesser in der Einheitsentfernung
(meist in Bogensekunden) durch A zu dividieren.

COs s = 25)

2.4 Berechnung der geozentrischen Aquatorkoordinaten
a (AR), d.

Bleibt als letzter Schritt unserer Ephemeridenrechnung
die Transformation der ekliptikalen in die 4quatorialen
Koordinaten durch das Formelsystem:

sind = cosesinf + sinecosffsini 27
cosdcos a = cos fcos i
cosdsina = cosecosfBsinA —sinesinff  (28)

¢ ist hier die Neigung der Ekliptik. Haben wir nach (23) A
fiir Prizession korrigiert, so miissen wir fiir £ die mittle-
re Schiefe fiir das Datum einsetzen. Sie ist mit geniigen-
der Genauigkeit zu berechnen nach

£ =€, —3.56-1077 (t—tg) (29)

&, ist hier die mittlere Schiefe zum Datum der Epoche
und t—tg ist wiederum in Tagen ausgedriickt. Sind die
Koordinaten auf eine Nullepoche bezogen, so muss auch
die mittlere Schiefe fiir diesen Zeitpunkt eingesetzt wer-
den (z.B. fiir 1950.0 ¢ = 23.445788°).

Zum Schluss eine Zusammenfassung der wichtigsten
Schritte bei der Ephemeridenrechnung fiir die verschie-
denen Bahnformen. Sorgfiltig ist darauf zu achten, dass
die Bahnelemente von Erde und Planet bzw. Komet auf
das gleiche Aquinoktium bezogen sind. Die elliptischen
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Bahnelemente von Kometen, bei denen ihre Masse ver-
nachléssigt wird, enthalten oft an Stelle von a, n, Mg
nur die Periheldistanz q. Die fehlenden Parameter kon-
nen dann aus

kO

und n = (30

l_e a’?

a=

berechnet werden. kO ist die Gausskonstante in Grad
ausgedriickt, sie kann bei meist tolerierbarer Genauig-
keitseinbusse durch die mittlere Erdgeschwindigkeit n
ersetzt werden.

Schema der wichtigsten Rechenschritte

Schritt  Berechnung von nach Formel

Planeten:

1 t—to

2 M (Erde) ?)

3 E (Erde) Iter. ©6)

4 v, R (10)

5 L (20a)

6—8 Wiederholung der Schritte

2—4 fiir den Planeten.

9 u (20)

10 Aoy B, A 21), (22),
(22a)

11 A (23)

12 £ (29)

13 d, a 27), (28)

14 t + Inkrement, mit neuem t zuriick zu Schritt 1

Kometen mit elliptischer Bahn:

1 ity
2 M (Erde) )
3 E (Erde) Iter. 9
4 v,R (10)
5 L (20a)
6 t—T
7—9 Wiederholung der Schritte
2—4 fir den Kometen.
10 u (20)
11 Aoy Bos Ao (21), (22), (22a)
12 d, a, 27), (28)
13 t + Inkrement, zuriick zu Schritt 1
mit parabolischer Bahn:
1—2 wie bei der elliptischen Bahn

3 E (Erde) einfache Iter. 4)

sonst gleich wie bei der elliptischen Bahn nur Schritte
7—9 ersetzen durch die Berechnung von v, r mit (13),
(14).

mit hyperbolischer Bahn:

gleiches Vorgehen wie bei der Parabel, nur v, r des Ko-
meten werden durch iteratives Berechnen von H und
durch Formeln (18), (19) bestimmt.

Fig. 4a zeigt als Beispiel einen Ausdruck einer Ephe-
meridenrechnung fiir den Halley’schen Kometen bei sei-
nem nichsten Periheldurchgang im Jahre 1986, gerech-
net mit den Bahnelementen von D.K. Yeomas J.P.L.
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Fig. 4: Beispiele gerechneter Ephemeriden. a

publiziert in «Sky and Teleskopes» (Nov. 1977). Als er-
stes nach dem Programmstart folgt hier die interaktiv
gestaltete Eingabe der verschiedenen Parameter: Das
Programm bleibt stehen mit der Frage INC?, worauf das
Ephemerideninkrement in Datumeinheiten einzutasten
ist (z.B. 100=1 Monat), dann folgen MEZ? — die
Tageszeit fiir die jeweils zu rechnen ist, T? — das Datum
des Periheldurchgangs (Datumeingabe nach amerikani-
scher Manier 209.1986 entspricht Feb. 09. 1986), TB? —
der Tagesbruchteil von T und schliesslich die Bahnele-
mente w, [., i, qunde. Auf DAT? wird das erste Datum

eingetastet und der Rechnungsablauf beginnt. Alle diese

ORION 36. Jg. (1978) No. 166

Daten konnen nach erstmaliger Eingabe auf einer Ma-
gnetkartenseite aufgezeichnet werden und stehen im Wie-
derholungsfalle sofort zur Verfiigung. Im anschliessen-
den Ausdruck der Resultate bedeuten R (fiir r) die Di-
stanz Komet—Sonne in AE, A die Distanz Komet—
Erde, M die Helligkeit und D50, AR50 Deklination und
Rektaszension bezogen auf 1950.0. Diese beiden Zah-
len sind «sexagesimal» zu lesen, —10.1910 ist als
—10°19°10"> und die Rektaszension 21.0300 als
21h03mo0s zu lesen. Diese Werte sind jeweils auf 107’
resp. 105 gerundet. Zwei weitere Programme PARAB-
EPHEM und HYP-EPHEM, zu Verwenden fiir die ent-
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sprechende Bahnform, unterscheiden sich im Ausdruck
nur unwesentlich vom hier beschriebenen ELLIPT-
EPHEM.

Fig. 4b zeigt das Resultat einer Berechnung der mittle-
ren Bahnelemente von Erde und Mars fiir den 22, Jan.
1978 (Opposition), berechnet nach g) wie unter 2.1 er-
wéhnt. E bedeutet hier die Schiefe der Ekliptik e.

Fig. 4C zeigt eine mit diesen Elementen gerechnete 5
Tages-Ephemeride von Mars. Es sind LE, LP die orbita-
len Léngen von Erde und Planet, R die Radiusvektoren,
A die Distanz Erde—Planet, M seine Helligkeit, DM sein
Durchmesser in Bogensekunden und D bzw. AR die wie-
derum «sexagesimal» zu interpretierenden Aquator-
koordinaten bezogen auf das Datum.

Ausser den erwdhnten Programmen gehort zu diesem
«Ephemeridenpaket» noch ein Programm das die Be-
rechnung der Prédzession der Bahnelemente gestattet.
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Le probléme cosmologique et ses hypothéses VI

J. DuBOIS

Introduction

Dans cette derniére partie nous examinons briévement
quelques théories cosmologiques, puis nous tentons de
formuler une conclusion toute provisoire a ce travail.

Théorie de S. MALIN

C’est une théorie relativiste développée par MALIN') et
MALIN et MANSFIELD?), mais elle est amputée en quelque
sorte du principe de la conservation de ’énergie. Ce qui
revient a faire I’hypothése suivante: ‘

A [’échelle cosmologique [’énergie, donc en particu-
lier la masse des particules au repos, n’est pas conservée.

Cela a pour conséquence une simplification des
équations d’Einstein. En particulier le terme contenant
la constante cosmologique A disparait (voir ORION
no. 155).

Pour le reste on retrouve implicitement les hypothéses
nos. 1 a 6 introduites pour les modeéles relativistes classi-
ques. Ainsi S. MALIN utilise la relation (7) pour expri-
mer D’intervalle ds de 1’espace-temps. Cela introduit
dans les modeles la fonction R(t) ou paramétre d’échel-
le. Enfin la pression du fluide est supposée nulle. S.
MALIN obtient ainsi deux équations analogues aux équa-
tions (5) et (6) des modeles relativistes classiques (voir
ORION no. 155).

Il en déduit trois modéles cosmologiques peu diffé-
rents de ceux de Friedmann. A savoir un modéle a espa-
ce sphérique oscillant entre deux singularités de la fonc-
tion R(t) [R(t) = 0] et deux modéles en expansion illimi-
tée apreés avoir passé par une singularité de R(t). L’un est
a espace euclidien, I’autre a espace hyperbolique.

La conséquence la plus originale de cette théorie est la
variation au cours du temps de la masse des particules a

laquelle elle conduit et cela selon la relation:
m(t) = mp[R()]* (128)
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ou mg est une constante de proportionnalité. Cette rela-
tion montre que la masse décroit si R(t) augmente. Tout
se passe donc comme si la masse des particules décroit
au fur et a mesure que la distance moyenne entre parti-
cules augmente. On retrouve la un aspect du principe de
Mach qui veut que la masse d’une particule dépende de
la répartition de la matiére dans I’univers.

Il y a lieu de préciser que dans cette théorie la charge
de I’électron, la vitesse de la lumiére, la constante de
PLANCK et la constante de la gravitation sont considé-
rées comme de vraies constantes.

Lorsque I’on cherche & décrire dans I’un ou I’autre des
modeéles de S. MALIN le décalage spectral vers le rouge,
on obtient un résultat inhabituel a savoir que ce décalage
est la conséquence d’une contraction de I’univers. Il faut
bien comprendre que deux effets se superposent pour
produire ce décalage. D’une part la variation de la fonc-
tion R(t) comme dans tous les modéles relativistes et de
I’autre la variation de la masse des particules (voir ap-
pendice).

Il y a apparemment une contradiction avec ce qui est
devenu une habitude et qui consiste a affirmer que tout
décalage vers le rouge observé dans le spectre d’un objet
céleste présumé lointain ne peut étre qu’un effet de I’ex-
pansion de l’univers*. Néanmoins dans ce cas, cette
contradiction disparait en faisant la distinction, comme
dans la théorie de Dirac (voir ORION no. 160) entre le
temps cosmique tg de la relativité générale et le temps
atomique tA . En fait le temps t utilisé est le temps cosmi-
que TE, le fait que I’énergie soit conservée ou pas ne jou-
ant aucun role dans sa définition. Dans la théorie de
MALIN et MANSFIELD la relation entre le temps ta et le
temps tg dépend de la forme de la fonction R(t) donc du
modeéle considéré (voir appendice). Alors en utilisant ta
on obtient la formule:
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