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Corporation, die IRTF-Gruppe der NASA, die Universität

Hawaii und das National Radiostronomy Observatory

von Green Bank, Virginia, USA — haben den Mauna

Kea ebenfalls als Standort für Teleskope gewählt.
Ausgezeichnete Arbeitsbeziehungen zu diesen Gruppen
bestehen bereits.

Dieses grosse neue Infrarot-Teleskop wird britischen
Astronomen die Möglichkeit bieten, zahlreiche Objekte
sehr viel genauer zu erforschen. Messungen der von den
Kernen von Galaxien ausgesendeten Strahlung,
insbesondere der Art und Weise, wie die Intensität der Emission

je nach der Wellenlänge innerhalb eines weiten
Bereichs variiert, werden, so hofft man, dazu verhelfen,
einiges über die Energiequellen in diesen Kernen in
Erfahrung zu bringen.

In näherer Nachbarschaft der Erde wird man die
«Geburtsstätten» von Sternen unseres eigenen galaktischen
Systems beobachten und versuchen zu erforschen, wie
sich aus den grossen, Moleküle enthaltenden interstellaren

Wolken Sterne bilden. Es gibt mehrere Theorien
darüber, doch keine konnte bislang endgültig als richtig

bewiesen werden.
Ausserdem wird von den winzigen Staubteilchen der

interstellaren Wolken Infrarotstrahlung absorbiert und
ausgesendet, und Messungen dieser Absorptionen und
Emissionen können manchen Aufschluss über deren
physikalische und chemische Eigenschaften geben.
Obwohl die Grösse dieser Staubteilchen nur einen Bruchteil
eines pm beträgt, und wenn sie insgesamt auch weniger

als ein Prozent der Materiemasse in interstellaren
Wolken ausmachen, sind sie doch bewonders wichtig,
weil sich auf ihrer Oberfläche Wasserstoff- und andere
Moleküle bilden. Manche Wissenschaftler vermuten,
dass es diese Bildung von Wasserstoffmolekülen ist, die
das Zerfallen der Wolken in Fragmente verursacht, die
sich dann zu Sternen verdichten, ohne die es kein Licht,
keine Wärme, kein Leben geben würde — und dass sich
vielleicht auch die Moleküle, in denen das Leben seinen
Ursprung hat, auf diesen winzigen Partikeln bilden und
daher weit über das gesamte Universum verbreitet sind.

Die Energiequellen in den Kernen von Galaxien, die
Entstehung der Sterne, der Ursprung des Lebens — mit
Hilfe des neuen Infrarot-Teleskops einen bedeutenden
Beitrag zur Erforschung dieser Dinge leisten zu können,
ist für die britische Wissenschaft eine faszinierende
Zukunftsaussicht. (BF)

Die Berechnung der Ephemeriden von Planeten und Kometen
mit dem programmierbaren Taschenrechner.

von Roman A. Gubser, Urania Sternwarte Zürich

Die Entwicklung des Benjamins der Kleinkomputerfamilie
— des programmierbaren, durch Mikroprozessoren

gesteuerten Taschenrechners, hat inzwischen einen
beachtlichen Stand erreicht. Trotz oder vielleicht wegen
des technologischen Fortschritts sind die Preise soweit
gesunken, dass der Erwerb solcher Geräte beinahe jedem
Astro-Amateur möglich geworden ist. Diese Rechner
werden wohl bald einmal zur Ausrüstung einer noch so
bescheidenen Sternwarte gehören, sind doch ihre
Einsatzmöglichkeiten noch kaum absehbar: etwa als
Sternzeituhrersatz oder z.B. für die Berechnung der Präzession,

Parallaxe, Refraktion, für Koordinatentransformationen

etc. Eine dieser Möglichkeiten mit den neueren

Rechnermodellen, die relativ komplexe Berechnung
(ungestörter) Ortsephemeriden von Planeten und Kometen,

soll hier erörtert werden. Es liegt nicht im Rahmen
eines solchen Aufsatzes, eine komplette Programmiertechnik

mit fertigen Programmen zu vermitteln. Mit
Ausnahme eines besonders interessanten Programmausschnittes

soll lediglich der Rechnungsablauf mit einsetzbaren

mathematischen Formeln beschrieben werden.
Die im Folgenden beschriebenen Programme und

Rechenbeispiele sind mit einem Rechner des Typs Ti-59
(Texas Instruments) verwirklicht worden. Dieser Rechner

hat einige für uns relevante Eigenschaften wie z.B.
— grosse Rechengenauigkeit (10 Anzeige plus 3

Schutzstellen, wichtig, um Rundungsfehler bei der Vielzahl

arithmetischer Operationen klein zu halten),
— relativ grossen, auf Datenregister und Programmschritte

flexibel aufteilbaren Speicherbereich,
— auswechselbare festverdrahtete Einheiten (Software
Module) mit ca. 25 Programmen, die nicht nur über

die Tastatur, sondern auch als Unterprogramme aufrufbar
sind (für astronomische Berechnungen ist das

Programm Kalenderrechnung sehr nützlich),
— an den Rechner anschliessbares alphanumerisches

Druckwerk, womit ein automatischer Betrieb mit
alphabetisch gekennzeichneten Resultatenausdruck möglich
wird. Programme und Daten können auf Magnetkarten
aufgezeichnet werden, so dass der Rechner beliebig oft
geladen werden kann.

Die Bestimmung des geozentrischen Ortes eines um
die Sonne laufenden Himmelskörpers gliedert sich im
Wesentlichen in zwei Teile:
1. Berechnung der heliozentrischen Koordinaten so¬

wohl dieses Körpers, als auch der Erde und
2. Umwandlung dieser Positionen in geozentrische.

1. Die Berechnung der heliozentrischen Polarkoordi¬
naten v und r.

1.1 Die elliptische Bahn.

ORION 36. Jg. (1978) No. 166 103



Fig. 1 zeigt die Verhältnisse eines auf elliptischer Bahn
um die in dem einen Ellipsenbrennpunkt F stehenden
Sonne laufenden Himmelskörpers. Die Winkel-
Geschwindigkeit des Körpers oder die Änderung von v,
der wahren Anomalie, ist entsprechend dem zweiten
Keplerschen Gesetz im Perihel Pe am grössten und im
Aphel A am geringsten.

Da es nicht streng gelingt, unmittelbar aus der seit
dem Periheldurchgang T verflossenen Zeit die wahre
Anomalie v zu berechnen, muss man sich hierzu einer
Hilfskonstruktion bedienen. Wir denken uns einen Körper

mit gleichförmiger Winkelgeschwindigkeit. Seinen
Winkelabstand vom Perihel bezeichnet man als die mittlere

Anomalie M. Es ist dann

M — (t—T)
U

(1)

worin U die siderische Umlaufzeit und t-T die seit dem
Periheldurchgang verflossene Zeit in Tagen (Ephemeri-
dentage) ist. Der Ausdruck

2n

U

wird oft mit n bezeichnet und gibt die mittlere tägliche
Bewegung des Körpers wieder. Vielfach wird für die
Berechnung von M nicht von T ausgegangen, sondern es

wird die Grösse M0 zur Zeit tD (genannt die Epoche)
benützt.

M M0 + n(t—10) (2)

Um nun aus der mittleren die wahre Anomalie zu
berechnen, hat schon Kepler einen Hilfswinkel, die
exzentrische Anomalie E, eingeführt. Fig. 2 zeigt ihre Bedeutung.

Ihr Zusammenhang mit v hat Kepler auf geometrischem

Wege gefunden. Die nach ihm benannte
Gleichung lautet

M E—esinE (3)

Die Grösse e wird Exzentrizität genannt und ist ein
Mass für die Elliptizität. Definiert ist e durch e OF/OPe,
wobei OPe der grossen halben Bahnachse a entspricht.
Ganz allgemein ist in der Ellipse e<l, in der Parabel
e l und in der Hyperbel e>l. In der Gleichung (3) sind
E und M im Bogenmass (Radian) ausgedrückt. Da es

Pe

meistens bequemer ist, mit Altgrad zu rechnen, muss
dann e mit 180/ti multipliziert werden, was mit e°
bezeichnet wird.

Diese Keplersche Gleichung (3) ist transzendent, weil
auf der rechten Seite sowohl E als auch sin E vorkommen.

Ihre Auflösung gelingt daher nur durch Versuche.
Mit Hilfe des Rechners ist es naheliegend, die Lösung
iterativ d.h. durch stetige Annäherung an den exakten
Wert zu finden. Die Iterationsgleichung zur Berechnung
von E lautet dann

En +1 M + e°sin En (4

Der Index n gibt die Iterationsstufe an.
Für E0 setzen wir M ein, es wird dann

Ei M + e°sinE0
Dieses Verfahren wird solange fortgesetzt, bis En sich
nicht mehr ändert. Für kleine Exzentrizitäten, wie etwa
für die Erdbahn, genügen 4 Stufen. Für grössere
Exzentrizitäten konvergiert diese Form allerdings nur langsam.

Macht man sich aber den Umstand zu Nutze, dass

^ 1

(5)
dM 1—ecosE

ist, so kann die Iteration (4) folgendermassen modifiziert
werden:

M — En + e° sin EnEn + 1

1 — e cos En
+ En (6)

Dieses Verfahren konvergiert sehr rasch. Die Iteration
kann abgebrochen werden, wenn der absolute Betrag des

ersten linken Terms kleiner als eine vorgegebene
Genauigkeitsgrenze z.B. 1 x 10"8 ist.

Leider versagt diese Methode, wenn sich e der Einheit
nähert, d.h. bei Bahnen mit sehr grossen Exzentrizitäten,

indem dann die Iteration divergieren kann.
Methode (4) kennt diesen Nachteil nicht, konvergiert

aber, wie erwähnt, bei solch grossen Exzentrizitäten
äusserst langsam (Rechenzeiten bis zu '/i Stunde). Diese
Situation lässt sich mit einer Methode nach J. Hartmann
d), c) wesentlich verbessern. Bildet man aus drei nach
Formel (4) gewonnenen E0, Ej, E2 eine Derivative

E2 — El

El — E0
(7)

so hat Hartmann zeigen können, dass ein besserer
Näherungswert von E berechnet werden kann aus

E3 E0 +
El —E0

1 —d

Die entsprechende Iterationsgleichung lautet

En + 1 —En

(8)

En + 3 M + e° sin / En +
/ En + 2—En + A
\En + l—En

1(9)

1-

Fig. 2 Zur Ableitung der excentrischen Anomalie E.

in den Algorithmus des Ti-59 übersetzt, kann das etwa
folgendermassen aussehen:
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Ausschnitt aus Programm ELLIPT-EPHEM.

Prog.
Adresse

Tasten
Kode

Funktion

063 06 6 Speichern der Genauigkeits064
94 + /— grenze 1 x 10 6in das

065 22 INV t-Register.
066 28 log
067 32 X-t
068 43 RCL Aufruf von M als
069 13 13 Anfangswert von E.

—070 42 STO
071 05 05 Speichern in
072 42 STO Register 05 und 03.
073 03 03
074 02 2

075 42 STO 2 in Reg. 00 (Laufindex).
076 00 00

— 077 43 RCL
078 05 05
079 38 sin sin e

080 65 X X
081 43 RCL
082 07 07 eo > Kepler
083 85 + +
084 43 RCL
085 13 13 M
086 75 — —

087 48 EXC Austausch des Anzeigeregisters
088 05 05 mit Register 05 und Bildung der
089 95 Differenz En + —En-
090 68 NOP (No Operation)
091 72 STO IND Indirektes Abspeichern von
092 00 00 Ei-Eo in Reg. 02 im 1. Durchgang
093 97 DSZ E2-E1 in Reg. 01 im 2. Durchgang.
094 00 00 Vermindert Reg. 00 um 1, wenn
095 00 Reg. 00# 0 Sprung nach
096 77 077 Adresse 077.
097 50 1 x 1 Absolutbetrag,
098 22 INV ist er < 1 x 10-6 Sprung
099 77 X> t nach Adresse 120
100 01 damit ist die Iteration beendet.
101 20 120
102 43 RCL
103 03 03 E0
104 85 +
105 43 RCL
106 02 02 Ei-E0
107 55
108 53 > Hartmann
109 01 1

110 75 —
111 43 RCL
112 01 01 E2-El
113 55
114 43 RCL
115 02 02
116 95
117 61 GTO
118 00 Sprung nach Adresse 070.
119 70 070

— 120 43 RCL
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Wird bei Adresse 090 das NOP durch einen Printoder

Pausebefehl ersetzt, so kann das Konvergieren gut
verfolgt werden.

Die Berechnung der Polarkoordinaten v und r
(Radiusvektor) erfolgt nun durch

r „— cos v cos E—e x

und

— sinv coscpsinE y
a (<p arc sin e)

r a(l—e cos E)

(10)

(11)

v 1

tg y+ ytg V2~<
(t —T) (12)

mit Hilfe der Cardanischen Formel berechnet werden.
Die Gaussche Gravitationskonstante k hat den Wert
0.017202099. Nach Einsetzen in die Cardanische Formel
erhalten wir

v

tgT
worin

\j C + Vc2 + 1 — \j | c — V c2 + 1 (13)

c
3 k (t—T)

V2~c

e tg H + In tg (-^-ü) =^=^=M
1 4 2 J a"'

(15)

H ist das hyperbolische Analogon zur exzentrischen
Anomalie E und a ist der Absolutbetrag der in der
Hyperbel immer negativen grossen halben Bahnachse a

a a
e—1

(16)

Auch Gleichung (15) ist transzendent und muss ähnlich

wie die Keplersche Gleichung aufgelöst werden. Zu
iterieren ist dann in der Form

Einfacher als die Berechnung von tg v aus dem
Quotienten von y/x mitsamt der Bestimmung des Quadranten

von v, ist die Benutzung der rechnereigenen Funktionen

P-*-R (Polar^- Rechtwinklig, und umgekehrt).
Werden x und y in der vorgeschriebenen Reihenfolge
eingegeben, liefert diese Funktion direkt den Winkel v
und als zweites Ergebnis r/a. Gleichung (11) wird dann
nicht gebraucht.

1.2 Die Parabel-Bahn
Diese Bahnform kommt ausschliesslich und recht häufig
bei Kometen vor. Da bei der Parabel mit e l, a und U
unendlich sind, ist es wenig sinnvoll, eine mittlere Bewegung

zu definieren. Vielmehr ist die Parabel eindeutig
definiert durch die Periheldistanz q (in AE). Entsprechend

vereinfacht sich die Berechnung von v und r. Unter

Vernachlässigung der Masse des Kometen kann v
direkt durch Auflösen der kubischen Gleichung

tgHn + 1

(tM — In tg — —
Hn
2

(17)

Winkeleinheit ist hier das Bogenmass. Die uns
interessierenden Bahnen sind wie gesagt parabelnahe, e ist
somit nur wenig grösser als 1. Wir stossen damit wiederum
auf dasselbe Problem des langsamen Konvergierens von
H wie E in (4). Auch hier hilft uns die Hartmann-
Iteration weiter, wenn sie wie in Gleichung (9) sinngemäss

in (17) eingesetzt wird.
Aus H ergeben sich v und r aus den Beziehungen

— cos v e — sec H x
a

sin v V e2 — 1 tg H y

cos 1

(18)

(19)

Was zu (10) und (11) gesagt wurde gilt auch hier.

2. Die Berechnung der geozentrischen Örter

2.1 Die Bahnelemente
Drei Elemente einer Bahn, diejenigen, welche sich auf
Form, Grösse und Ort eines Himmelskörpers in seiner
Bahn beziehen, haben wir bereits kennengelernt:

1. Die Bahnexzentrizität e

2. Die grosse halbe Bahnachse a
oder die daraus abgeleitete mittlere

Bewegung n
a3/2

ist. Nach der Polargleichung der Parabel ist dann

r q sec2 —- (14)

1.3 Die hyperbolische Bahn
Diese Bahnform ist auch bei Kometen recht selten und,
wenn sie gefunden wird, so ist es fast immer eine
parabelnahe Hyperbel. Trotzdem sei hier der Vollständigkeit

halber die Berechnung der heliozentrischen
Polarkoordinaten erwähnt. Die der Keplerschen in der Ellipse
entsprechende Gleichung für die Hyperbel ist

respektive die Periheldistanz q
3. Die mittlere Anomalie M

oder die Perihelzeit T

Um nun diese Bahn im Raum eindeutig festlegen zu
können, brauchen wir drei weitere Bahnelemente und
ein geeignetes Bezugssystem. Es liegt auf der Hand, als
Bezugssystem die Ebene der Erdbahn, die Ekliptik zu
benutzen. Die ausgezeichnete Richtung auf der Ekliptik
ist der Frühlingspunkt. Die notwendigen weiteren
Bahnelemente sind:

4. Die Länge des aufsteigenden Knotens <ß gezählt auf
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der Ekliptik vom Frühlingspunkt an von 0—360°,
5. Die Neigung der Bahnebene gegen die Ekliptik i, von

0—180°,
6. Der Abstand des Perihels vom Knoten co

oder auch die Länge des Perihels ö> Pi) es ist
ai co + ß.

Die Bahnelemente der Planeten e, a, n, M, ß i und
co sindz.B. in den astronomischen Jahrbürchernh)aufge-
führt. Für die inneren Planeten Merkur bis Mars sind
sogenannte mittlere Elemente und für die äusseren
Planeten sogenannte oskulierende Elemente angegeben.
Letztere bestimmen Ort und Geschwindigkeit für einen
gegebenen Zeitmoment, sie berücksichtigen demnach die
momentan wirkenden Störungskräfte und ermöglichen
eine genaue Ortsberechnung, sofern die Zeit nahe der
Oskulationsepoche liegt. Für die Vorausberechnung
über grössere Zeiträume eignen sich die mittleren
Elemente besser, weil sie weitgehend frei von kurzperiodisch

wirkenden Störungen sind. Solche mittleren
Elemente finden sich z.B. in f) und g). Die oben erwähnten
mittleren Elemente der inneren Planeten lassen sich auch
leicht für beliebige Epochen mit einem gesonderten
Programm berechnen. Die entsprechenden Polynome sind
in g) zu finden. Provisorische und später verbesserte
Elemente neuentdeckter Kometen werden, sobald genügend
Beobachtungen vorliegen, vom Central Bureau for
Astronomical Telegrams (IAU) in ihren abonnierbaren
Zirkularen publiziert i). Nur ein kleiner Teil der Amateure
werden Zugang zu diesen Zirkularen haben. Es wäre daher

sicher wünschenswert, wenn der Informationsgehalt
der ORION-Zirkulare unter anderem durch Flinzufügen
dieser Elemente erhöht würde.

2.2 Umwandlung der heliozentrischen Koordinaten in
geozentrische
Diese Umwandlung ist bereits einmal im ORION e) von
R. Schneider erläutert worden. Wir können uns daher
hier kurz fassen. Nebst den Elementen ß und i benötigen

wir noch das Argument der Breite u (siehe Fig. 3),

das sich einfach ergibt aus

u v + co v -f- co—ß (20)

ferner die Sonnenlänge L, die identisch ist mit der Länge
der Erde + 180°

L cü® + v® + 180°, (20a)

und schliesslich die Radiusvektoren des Himmelskörpers
r und der Sonne bzw. der Erde R.

Daraus errechnen sich die ekliptikalen Polarkoordinaten:
die Länge A, die Breite ß, und die Distanz zur Erde A

aus

A cos ß cos (A„— ß r cos u + R cos (L— ß
A cos ß sin (A„— ß r sin u cos i + R sin (L— ß) (21)

A2 R2 + r2 + 2Rr (cos u cos (L— ß
+ sin u sin (L— ß cos i) (22)

r sin u sin i
sin ß (22a)

A

Hiermit haben wir die ekliptikalen Koordinaten bezogen

auf Ekliptik und Äquator der Epoche t0 berechnet.
Dies genügt für Kometen, weil deren Bahnelemente auf
eine Nullepoche (z.B. 1950.0) bezogen werden und auch
die zu rechnenden Örter für dieses Äquinoktium
gewünscht werden (Vergleich mit Sternkarten). Planeten-
örter werden üblicherweise auf Ekliptik und Äquator
des Datums bezogen. Wünschen wir das ebenfalls,
haben wir unsere Koordinaten wegen der Präzession zu
korrigieren. Im ekliptikalen System ist dies besonders
einfach, weil bei der hier geforderten Genauigkeit lediglich

zu A0 die allgemeine Prezession in Länge p hinzuzufügen

ist.

A A0 + pd (t—10) (23)

wobei p* den Wert 0.0000382° hat.
Nachdem wir nun R, r und A kennen sind wir auch in
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der Lage, die scheinbaren Helligkeiten der Planeten und
Kometen zu berechnen.

2.3 Die Berechnung der scheinbaren Helligkeit und des
scheinbaren Durchmessers.
Für die Kometen wird sehr häufig die Formel

m g + 5 log A + 10 log r (24)

verwendet. Die «Grundhelligkeit» g (für A l, r l) ist
aus den beobachteten Helligkeiten abzuleiten.

Für die Planeten ist die Berechnung der scheinbaren
Helligkeit etwas komplizierter, weil nebst deren
Eigenhelligkeit und Entfernung auch deren Phasen und das
Beleuchtungsgesetz zu berücksichtigen sind. Ein Mass
für die Phase ist der Winkel s, es ist der Winkel zwischen
der Richtung zur Sonne und der zur Erde vom Planeten
aus. Es ist

A2 + r2 — R2
cos s v"!

2 r A

Die scheinbare Helligkeit rechnet sich nach g) S. 314
z.B. für die Venus mit g —4.0:

m g + 5 log r A+ 0.01322 s + 0.000000425 s3 (26)

Nehmen wir für g beim Mars —1.3, Jupiter —8.93,
Saturn —8.68 (die Ringstellung bleibt unberücksichtigt),
Uranus —6.85, Neptun —7.05 und Pluto —1.01 (die
hellen Planetoiden liegen bei 4.0), so erhalten wir auch
für diese Planeten recht gute Werte für m. Für Merkur
müsste der 3. und 4. Term von (26) anders aussehen. Es
hat sich jedoch gezeigt, dass damit trotzdem befriedigende

Helligkeiten (~±0.1m) erhalten werden mit g= —
0.04 und, wenn der dritte Term mit 1.8 multipliziert
wird.

Noch einfacher ist die Berechnung der scheinbaren
Durchmesser der Planeten. Wir brauchen lediglich den
scheinbaren Durchmesser in der Einheitsentfernung
(meist in Bogensekunden) durch A zu dividieren.

2.4 Berechnung der geozentrischen Äquatorkoordinaten
a (AR), ô.
Bleibt als letzter Schritt unserer Ephemeridenrechnung
die Transformation der ekliptikalen in die äquatorialen
Koordinaten durch das Formelsystem:

sin à cos £ sin ß + sin £ cos ß sin A (27)

cos 6 cos a cos ß cos À

cos à sin a cos £ cos ß sin À — sin £ sin ß (28)

£ ist hier die Neigung der Ekliptik. Haben wir nach (23) A

für Präzession korrigiert, so müssen wir für £ die mittlere
Schiefe für das Datum einsetzen. Sie ist mit genügender

Genauigkeit zu berechnen nach

£ £0 — 3.56-10 7 (t—t0) (29)

£0 ist hier die mittlere Schiefe zum Datum der Epoche
und t—10 ist wiederum in Tagen ausgedrückt. Sind die
Koordinaten auf eine Nullepoche bezogen, so muss auch
die mittlere Schiefe für diesen Zeitpunkt eingesetzt werden

(z.B. für 1950.0 £ 23.445788°).
Zum Schluss eine Zusammenfassung der wichtigsten

Schritte bei der Ephemeridenrechnung für die verschiedenen

Bahnformen. Sorgfältig ist darauf zu achten, dass

die Bahnelemente von Erde und Planet bzw. Komet auf
das gleiche Äquinoktium bezogen sind. Die elliptischen

Bahnelemente von Kometen, bei denen ihre Masse
vernachlässigt wird, enthalten oft an Stelle von a, n, M0
nur die Periheldistanz q. Die fehlenden Parameter können

dann aus

a
1-

und n
k°

(30)

berechnet werden. k° ist die Gausskonstante in Grad
ausgedrückt, sie kann bei meist tolerierbarer
Genauigkeitseinbusse durch die mittlere Erdgeschwindigkeit n
ersetzt werden.

Schema der wichtigsten Rechenschritte

Schritt Berechnung von nach Formel

Planeten:
1 * 'o
2 M (Erde) (2)
3 E (Erde) Iter. (6)
4 v, R (10)
5 L (20a)
6—8 Wiederholung der Schritte

2—4 für den Planeten.
9 u (20)
10 Ao, ß, A (21), (22),

(22a)
11 A (23)
12 £ (29)
13 6, a (27), (28)
14 t + Inkrement, mit neuem t zurück zu Schritt 1

Kometen mit elliptischer Bahn:

1 t-t0
2 M (Erde) (2)
3 E (Erde) Iter. (9)
4 v, R (10)
5 L (20a)
6 t—T
7—9 Wiederholung der Schritte

2—4 für den Kometen.
10 u (20)
11 A„, ß„ A„ (21), (22), (22a)
12 à0 «o (27), (28)
13 t + Inkrement, zurück zu Schritt 1

mitparabolischer Bahn:

1—2 wie bei der elliptischen Bahn
3 E (Erde) einfache Iter. (4)
sonst gleich wie bei der elliptischen Bahn nur Schritte
7—9 ersetzen durch die Berechnung von v, r mit (13),
(14).

mit hyperbolischer Bahn:

gleiches Vorgehen wie bei der Parabel, nur v, r des
Kometen werden durch iteratives Berechnen von H und
durch Formeln (18), (19) bestimmt.

Fig. 4a zeigt als Beispiel einen Ausdruck einer
Ephemeridenrechnung für den Halley'schen Kometen bei
seinem nächsten Periheldurchgang im Jahre 1986, gerechnet

mit den Bahnelementen von D.K. Yeomas J.P.L.
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Fig. 4: Beispiele gerechneter Ephemeriden. a be
publiziert in «Sky and Teleskopes» (Nov. 1977). Als
erstes nach dem Programmstart folgt hier die interaktiv
gestaltete Eingabe der verschiedenen Parameter: Das
Programm bleibt stehen mit der Frage INC?, worauf das
Ephemerideninkrement in Datumeinheiten einzutasten
ist (z.B. 100=1 Monat), dann folgen MEZ? — die
Tageszeit für die jeweils zu rechnen ist, T? — das Datum
des Periheldurchgangs (Datumeingabe nach amerikanischer

Manier 209.1986 entspricht Feb. 09. 1986), TB? —
der Tagesbruchteil von T und schliesslich die Bahnelemente

co, fj6, i» Q und e. Auf DAT? wird das erste Datum
eingetastet und der Rechnungsablauf beginnt. Alle diese

Daten können nach erstmaliger Eingabe auf einer
Magnetkartenseite aufgezeichnet werden und stehen im
Wiederholungsfalle sofort zur Verfügung. Im anschliessenden

Ausdruck der Resultate bedeuten R (für r) die
Distanz Komet—Sonne in AE, A die Distanz Komet—
Erde, M die Helligkeit und D50, AR50 Deklination und
Rektaszension bezogen auf 1950.0. Diese beiden Zahlen

sind «sexagesimal» zu lesen, —10.1910 ist als
—10°19'10" und die Rektaszension 21.0300 als
2iho3moos zu lesen. Diese Werte sind jeweils auf 10"
resp. 10s gerundet. Zwei weitere Programme PARAB-
EPHEM und HYP-EPHEM, zu Verwenden für die ent-
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sprechende Bahnform, unterscheiden sich im Ausdruck
nur unwesentlich vom hier beschriebenen ELLIPT-
EPHEM.

Fig. 4b zeigt das Resultat einer Berechnung der mittleren

Bahnelemente von Erde und Mars für den 22. Jan.
1978 (Opposition), berechnet nach g) wie unter 2.1
erwähnt. E bedeutet hier die Schiefe der Ekliptik t.

Fig. 4C zeigt eine mit diesen Elementen gerechnete 5

Tages-Ephemeride von Mars. Es sind LE, LP die orbitalen

Längen von Erde und Planet, R die Radiusvektoren,
A die Distanz Erde—Planet, M seine Helligkeit, DM sein
Durchmesser in Bogensekunden und D bzw. AR die
wiederum «sexagesimal» zu interpretierenden
Äquatorkoordinaten bezogen auf das Datum.

Ausser den erwähnten Programmen gehört zu diesem
«Ephemeridenpaket» noch ein Programm das die
Berechnung der Präzession der Bahnelemente gestattet.
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Le problème cosmologique et ses hypothèses VI
J. Dubois

Introduction
Dans cette dernière partie nous examinons brièvement
quelques théories cosmologiques, puis nous tentons de
formuler une conclusion toute provisoire à ce travail.

Théorie de S. Malin
C'est une théorie relativiste développée par Malin1) et
Malin et Mansfield2), mais elle est amputée en quelque
sorte du principe de la conservation de l'énergie. Ce qui
revient à faire l'hypothèse suivante:

A l'échelle cosmologique l'énergie, donc en particulier
la masse des particules au repos, n 'est pas conservée.

Cela a pour conséquence une simplification des

équations d'Einstein. En particulier le terme contenant
la constante cosmologique A disparaît (voir ORION
no. 155).

Pour le reste on retrouve implicitement les hypothèses
nos. 1 à 6 introduites pour les modèles relativistes classiques.

Ainsi S. Malin utilise la relation (7) pour exprimer

l'intervalle ds de l'espace-temps. Cela introduit
dans les modèles la fonction R(t) ou paramètre d'échelle.

Enfin la pression du fluide est supposée nulle. S.

Malin obtient ainsi deux équations analogues aux équations

(5) et (6) des modèles relativistes classiques (voir
ORION no. 155).

Il en déduit trois modèles cosmologiques peu différents

de ceux de Friedmann. A savoir un modèle à espace

sphérique oscillant entre deux singularités de la fonction

R(t) [R(t) 0] et deux modèles en expansion illimitée

après avoir passé par une singularité de R(t). L'un est
à espace euclidien, l'autre à espace hyperbolique.

La conséquence la plus originale de cette théorie est la
variation au cours du temps de la masse des particules à

laquelle elle conduit et cela selon la relation:

m(t) m0[R(t)]"3 (128)
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où m0 est une constante de proportionnalité. Cette relation

montre que la masse décroît si R(t) augmente. Tout
se passe donc comme si la masse des particules décroît
au fur et à mesure que la distance moyenne entre particules

augmente. On retrouve là un aspect du principe de
Mach qui veut que la masse d'une particule dépende de
la répartition de la matière dans l'univers.

Il y a lieu de préciser que dans cette théorie la charge
de l'électron, la vitesse de la lumière, la constante de
Planck et la constante de la gravitation sont considérées

comme de vraies constantes.
Lorsque l'on cherche à décrire dans l'un ou l'autre des

modèles de S. Malin le décalage spectral vers le rouge,
on obtient un résultat inhabituel à savoir que ce décalage
est la conséquence d'une contraction de l'univers. Il faut
bien comprendre que deux effets se superposent pour
produire ce décalage. D'une part la variation de la fonction

R(t) comme dans tous les modèles relativistes et de
l'autre la variation de la masse des particules (voir
appendice).

Il y a apparemment une contradiction avec ce qui est
devenu une habitude et qui consiste à affirmer que tout
décalage vers le rouge observé dans le spectre d'un objet
céleste présumé lointain ne peut être qu'un effet de
l'expansion de l'univers*. Néanmoins dans ce cas, cette
contradiction disparaît en faisant la distinction, comme
dans la théorie de Dirac (voir ORION no. 160) entre le
temps cosmique tg de la relativité générale et le temps
atomique ty^. En fait le temps t utilisé est le temps cosmique

Tg, le fait que l'énergie soit conservée ou pas ne jouant

aucun rôle dans sa définition. Dans la théorie de
Malin et Mansfield la relation entre le temps et le
temps tg dépend de la forme de la fonction R(t) donc du
modèle considéré (voir appendice). Alors en utilisant
on obtient la formule:
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