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Wicklung. Dadurch wird die Trennung der Sterne
verbreitert. Der KOSTINSKY-Effekt kann auch zur Verstärkung

von feinen Absorptionslinien in Spektren führen.
Deshalb braucht es sehr umfangreiche Eichungen, um
Spektren photometrisch genau zu vermessen.

5. HyperSensibilisierung
Unter HyperSensibilisierung versteht man die
Empfindlichkeitssteigerung von Emulsionen durch Behandlung
mit verschiedenen Chemikalien vor der Belichtung. Sie
ist zu unterscheiden vom Baking-Prozess, wo Platten in
einer Stickstoffatmosphäre für einige Stunden auf 65° C
erwärmt werden. In beiden Fällen steigt die Empfindlichkeit

und auch der Grauschleier. Für den Amateur
kommt am ehesten die HyperSensibilisierung von
rotempfindlichen Filmen in Betracht. Im Orion sind
verschiedene Rezepte dafür angegeben worden7). Am
einfachsten ist die Behandlung der spektroskopischen
Emulsionen Kodak 103a-E und 103a-F mit destilliertem
Wasser, das einige cm3 Kodak Photo-Flo-Lösung
enthält. Die Filme werden für 2 Minuten in der 5° C kalten
Lösung gebadet und anschliessend in einem Strom
möglichst kalter Luft getrocknet. Die Filme sind nach der
Behandlung im Tiefkühlschrank bis zu 5 Wochen haltbar.

Verglichen mit der Haltbarkeit von infrarotempfindlichem

Material, das nach der HyperSensibilisierung
nur noch wenige Tage aufbewahrt werden kann, ist das

sehr praktisch. Für eine ausführliche Beschreibung der
verschiedenen Methoden und der erzielbaren Ergebnisse
sei auf die Literatur verweisen8,910).
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Zur numerischen Berechnung der Normalrefraktion

von H. Beuchat

Als Normalrefraktion wird der von der scheinbaren
Zenitdistanz z abhängige Winkel r bezeichnet, um den ein
Lichtstrahl in der Normalatmosphäre der Erde von der
wahren Zenitdistanz £ abgelenkt wird.

Das Aufkommen der (programmierbaren) Taschenrechner

mit eingebauten mathematischen Funktionen
(sin, tan, log usw.) hat den rechnenden Astro-Amateu-
ren dadurch grosse Vorteile gebracht, dass bei Berechnungen

die Verwendung von Tabellen dieser Funktionen
entfällt.

Hingegen gibt es in der Astronomie manchmal benutzte

empirische Standardfunktionen, welche tabelliert
vorliegen. Es wäre dabei praktisch, Formeln für solche
Funktionen anzugeben, welche an Stelle der Tabelle
verwendet würden.

In dieser Form liegt eine durch R. Radau1) veröffentlichte

Tabelle der Normalrefraktion vor.
Eine ältere Tafel der Refraktion ist etwa diejenige von

F. W. Bessel2). Die Normalrefraktion spielt eine Rolle bei
der Reduktion von beobachteten Zenitdistanzen oder
Höhen über dem Horizont. Um bei Zenitdistanzen von
ca. 90° die Auf- und Untergangszeiten von Gestirnen unter

Berücksichtigung des topographisch gegebenen
Horizontes zu bestimmen, benötigt man ebenfalls die Kenntnis

der Refraktion, wenn die Zeiten einigermassen genau
sein sollten. Die Umkehrfunktion, nämlich den Betrag
der Refraktion als Funktion der wahren Zenitdistanz,

benötigt man, wenn beispielsweise vorausgerechnete Ör-
ter eines Erdsatelliten am Himmel genauer korrigiert
sein sollen.

Formeln zur Berechnung der Refraktion
Es lässt sich zeigen, dass bei nicht zu grossen Zenitdi-
stanzen die Refraktion proportional dem Tangens der
scheinbaren Zenitdistanz ist

r otan z (1)

a ist dabei die Refraktionskonstante.
Bei grösseren und sogar schon bei mässigen Zenitdistanzen

weichen die mit dieser Formel berechneten Werte
erheblich von den tabellierten ab. Daher besteht die

Notwendigkeit, eine diesen Bereich grosser Zenitdistanzen
abdeckende mathematische Formel anzugeben.

Hierzu hatte bereits Th. Simpson3) die folgende
einfach gebaute Näherungsformel angegeben

r atan(z—ßr) (2)

Für den Koeffizienten ß schlug J.Bradley4) den Wert 3

vor. In Formel (2) geht die Refraktion r sowohl links wie
rechts vom Gleichheitszeichen ein. Dies lädt geradezu
ein, die Berechnung der Refraktion auf iterativem Wege
zu versuchen, das heisst, etwa von rc 0 ausgehend in
die rechte Seite der Formel einzusetzen bis der mit der

64 ORION 36. Jg. (1978) No. 165



Formel erhaltene jeweilige Wert ri + 1 sich gegenüber dem
vorhergehenden r; nicht mehr ändert.

Mit dieser Formel und diesem Ansatz entstehen aber
bei Zenitdistanzen um 90° nach wie vor Schwierigkeiten
wegen des Verlaufs des Tangens in diesem Argumentbereich.

Die auf die Formel (2) angewendete Iterationsvorschrift

führt sogar zu Divergenz bei Zenitdistanzen um
90°, liefert also keine Werte der Refraktion.

Ausserdem ist die Formel mit dem Wert ß 3 gar
nicht so genau, wie ein Blick in nachstehender Tabelle
überzeugt. Diese wurde mit Refraktionskonstante a
60.154", die dem zitierten Tabellenwerk1) entspricht
berechnet.

Tabelle 1

Führt man dies aus, so erhält man, ausgehend von
Tabellenwerk ') die folgende Zusammenstellung

z r(Taf.) r(D r(2)
Anz.
lt.

45° 1'00.04" 1'00.15" 1'00.05" 3

50° I'll.51" I'll.69" I'll.54" 3

55° 1'25.64" 1 '25.91 " 1 '25.68" 3

60° 1'43.76" 1 '44.19" 1 '43.83 ' ' 3

65° 2'08.25" 2'09.00" 2'08.37" 4

70° 2'43.78" 2'45.27" 2'44.05" 5

75° 3'41.00" 3'44.50" 3'41.64" 5

77° 4' 15.23 " 4'20.56" 4'16.20" 5

80° 5'29.8 " 5'41.2 " 5'31.8 " 6

85° 10T3.5 " 11'27.6 " 10'22.6 " 8

86° 12'11.8 " 14'20.2 " 12'24.3 " 9

87° 14'58.8 " 19'07.8 " 15 ' 14.8 " 11

88° 19'06.6 " 28'42.6 " 19'20.5 " 14

89° 25'37.0 " 57'26.2 " 25' 19.8 " 26
90° 36'36.0 " — —
91° 56'27.5 " — —

r atan(z — f)

gesetzt wird, und anschliessend

f(z) r (z) ß (z)

mit variablem ß.

Tabelle 2

z r f ß

65° 2'08.25" 0.128317° 3.60187
70° 2'43.78" 0.167546° 3.68277
75° 3'41.00" 0.226465° 3.68902
77° 4' 15.23'' 0.261764° 3.69216
80° 5'29.8 " 0.336857° 3.67703
85° 10' 13.5 " 0.599981° 3.52067
86° 12'11.8 " 0.699151° 3.43939
87° 14'58.8 " 0.828925° 3.32013
88° 19'06.6 " 1.003151° 3.14961
89° 25'37.0 " 1.241257° 2.90731
90° 36'36.0 " 1.569084° 2.57227
90° 30' 45'00.0 " 1.776296° 2.36840
91° 56'27.5 " 2.017331° 2.14388

Es stellt sich heraus, dass im Bereich grosser Zenitdistanzen

eine gute Näherung des Verlaufs der Funktion
ß (z) erzielt wird, wenn man setzt

ß A + BF(z) (5)

AundB sind zwei empirisch zu bestimmende Konstanten.

Die neue Funktion F (z) soll gegen 1 streben für kleinere

Zenitdistanzen. Im gesamten Argumentbereich von
z soll sie stets positiv kleiner als 1 sein. Im Zusammenhang

mit der Formel (5) zeigt es sich, dass folgender Ansatz

für F (z) befriedigende Ergebnisse liefert

F (z) e—(z/zo)n (6)

Das Ziel der Bemühungen soll somit sein, einfach
gebaute Formeln anzugeben, um die Normalfraktion r
insbesondere des Tabellenwerks1) bei gegebener scheinbarer
Zenitdistanz z oder bei gegebener wahrer Zenitdistanz
£ z + r auf einige Zehntel Bogensekunden genau darzustellen

bis hinunter zur Zenitdistanz z 91°, wo die
Tabelle 1 nicht ausreicht, muss eben versucht werden, die
Algorithmus so zu gestalten, dass in jedem Falle dessen

Konvergenz sichersteht und zugleich immer rasch ist,
wobei auch der Fall z > 90° bzw. £>90° zu keinerlei
numerischen Schwierigkeiten führen soll, indem der iterative

Algorithmus mit einer guten Einstiegsfunktion
begonnen wird.

Zur Formelgenauigkeit
Da eine Konstante ß 3 zur guten Darstellung der
Tabelle 1 nicht ausreicht, muss eben versucht werden, die
Formel (2) auszubauen, indem zuerst

Auch die Konstanten z0 und m sind empirisch zu
bestimmen. Die insgesamt eingeführten vier Konstanten A,
B, z0, m werden etwa dadurch festgelegt, dass die
Darstellung der Normalrefraktion für die Argumente
z 91, 90, 89, 88 exakt sein soll.

In diesem Falle sind diese Konstanten einer iterativen
Berechnung zugänglich, die von näherungsweise
bekannten Werten für zD und m ausgeht. Die Formel hierzu

sind die folgenden

F, F (z,) F2 F (z2)

F (z) gemäss Formel (6)

B

F3

A ß.-F.B

F4= *-a

(3)

(4)

f2-f,
ß,—A

B B

m
log (— 1 n F„) — log (—1 n F3)

log z4 — log z3

logz0 log z3 - log In F3)
m

(7.1)

(7.2)

(7.3)

(7.4)

(7.5)

Die obigen Formeln sind so lange zu wiederholen (ite-
rieren), bis keine Änderung in den Werten der z0, m, A,
B auftritt.
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Zur Sicherstellung der Konvergenz
Sind neben der Refraktionskonstanten a die Werte der
A, B, z0, m bekannt, so führt folgender Algorithmus
(Kette von Rechenoperationen) zur Berechnung von r.

Bei gegebenem z und einer ersten Nährung r0 berechnet

man F (z) und ß (z) nach den Formeln (6) und (5),
und sodann jeweils

fo ßTo r, atan(z—f0)

fi ßr, r2 atan(z—fi)usw. (8)

bis etwa | rj + j—rs | < 10"6 wird.

Die numerische Erprobung dieses Algorithmus (8)
zeigt aber, dass für Werte von z um die 90° auch jetzt
keine Konvergenz der rj gegen einen Grenzwert erfolgt,
indem die Differenzen aufeinanderfolgender r grösser
werden statt kleiner.

Das Verfahren, um auch in diesen Fällen Konvergenz
zu erzwingen besteht darin, bei der Berechnung von ri + ]

nur einen Bruchteil von atan(z—f:) mitzunehmen, also
den Algorithmus (8) abzuändern in

fi ßTi ri' »tan(z—fj)
(9)

ri + 1 rj + HOY—ri)

Mit einem geeigneten Bruchteil, der zwischen 0 und 1

liegt, zeigt es sich, dass dann in jedem Falle Konvergenz
der Refraktion gegen einen Grenzwert erzielt wird.
Führt man jedoch einen festen Bruchteil H für alle
Berechnungen ein, so zeigt sich, dass man dabei die Schnelligkeit

der Konvergenz für kleine Zenitdistanzen erheblich

verschlechtert, was als Nachteil des konvergenzerzwingenden

Verfahrens in obiger Form zu werten ist.
Das Ziel der nun folgenden Bemühungen wird es sein,

das Verfahren zur Konvergenzerzwingung derart
abzuändern, dass im gesamten Argumentbereich der
Zenitdistanzen z schnelle Konvergenz erreicht wird.

Zur Beschleunigung der Konvergenz
Ansatzpunkt ist die Tatsache, dass für kleine z aus der
Tabelle 1 ersichtlich ist, dass der normale Algorithmus
(8), der einem Faktor H 1 entspricht, mit 3 bis 4
Iterationen konvergiert, also relativ schnell ist. Für grosse z
kann man jeweils den besten Bruchteil H ermitteln, der
zur schnellsten Konvergenz führt.

Nun hat genau der früher mit Formel (6) eingeführte
Faktor F(z) die Eigenschaft, für kleine z gegen 1 zu streben

und für grosse z einen Wert zwischen 0 und 1

anzunehmen. Setzt man einfach H F(z), so erzwingt man
im kritischen Bereich zwar die Konvergenz, doch bleibt
sie dabei so langsam, dass man sehr lange Rechenzeiten
in Kauf nehmen müsste. Stellt man die besten Bruchteile
H (z) der Funktion F (z) gegenüber, so findet man, dass
der folgende Ansatz im kritischen Bereich zu einer
erheblichen Verbesserung der Konvergenz führt

H (z) [F(z)]L (10)

Der Faktor, um welchen die Differenz der Refraktionswerte

von Iteration zu Iteration zurückgeht, ist damit
ständig grösser als 5, so dass bei Vorliegen einer guten
Ausgangsnäherung die Genauigkeit von KT6 Grad
nach 5—6 Iterationen mit dem Algorithmus (9) erreicht
wird.

Zur Ermittlung der Einstiegsfunktion
Als Einstiegsfunktion wird hier die Ausgangsnäherung
bezeichnet, mit welcher der Algorithmus (9) begonnen
wird.

Aus der Tabelle 2 ersieht man, dass f(z) für zunehmende

z monoton zunimmt, wogegen F(z) monoton
abnimmt.

Will man somit auf bereits ermittelte Funktionen von
z zurückgreifen, um eine Einstiegsfunktion anzugeben,
empfiehlt es sich, den Wert f0(z) etwa anzusetzen als

f„(z) K(l-F') (11)

Als Einstiegsfunktion r<,(z) hat man dann einfach zu
definieren

r0(z) a-tan (z —f0) (12)

Die beiden neu eingeführten Konstanten K und k sind
wie die andern in den Formeln (5)—(10) eingeführten
empirisch festzulegen.

Es wäre denkbar, für z 91 und 90° den Wert von f
jeweils genau darzustellen, so dass damit die Refraktion
durch r0(z) für diese Argumente genau dargestellt
wäre.

Eine weitere brauchbare Vorschrift wäre die, nur den
äussersten Wert der Refraktionstafel exakt darzustellen,
und dabei denjenigen Exponenten k zu ermitteln, für
den die folgende, weitere Wertpaare z; r; berücksichtigende

Summe zu einem Minimum wird

N
° N=^] (logrj — logr0[Zj])2

i 2

Grosse Genauigkeit ist für die Einstiegsfunktion ohnehin

von untergeordneter Bedeutung; wesentlich ist nur
dabei, dass ein Iterieren bei Verwendung des Algorithmus

(9) nach Möglichkeit abgekürzt wird.

Die «Umkehrfunktion»
Bei den üblichen mathematischen Funktionen wird diese
kurz gesagt darin gesehen, dass sie, bei Vorgabe des

Funktionswertes, der zu einem (zulässigen) Argument
gehört, wieder dieses Argument als Hauptwert liefert; in
diesem Sinne ist etwa \fx die Umkehrfunktion von x2,
wenn positive x zugelassen sind.

Die Ermittlung der Normalrefraktion r(z) läuft im
wesentlichen darauf hinaus, die wahre Zenitdistanz £ bei
gegebener scheinbarer Zenitdistanz z zu bestimmen. Die
«Umkehrfunktion» ist in diesem Sinne eine Funktion,
welche bei vorgegebener wahrer Zenitdistanz £ gestattet,
die scheinbare Zenitdistanz z zu ermitteln. Genauso wie
man aus £ z + r (z) die wahre Zenitdistanz ermittelt,
kann man aus z £—r(£) die scheinbare Zenitdistanz
erhalten, wenn man, wie im Falle vonr(z) eine «Umkehrfunktion»

r(£) bereitstellt.
Nun kann die Formel (2) wegen z £—r geschrieben

werden
r atan(£—ßr—r) atan(£—yr) (14)

Dieser Aufbau der Formel (14) legt nahe, die «Umkehrfunktion»

analog anzusetzen wie die Funktion der
Normalrefraktion bei gegebener scheinbarer Zenitdistanz.
Man setzt daher

y(£) C + D G(£) (15)

G(£) e—£/£o)f (16)
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und als konvergenzerzeugender Faktor H

H(£) [G(£)[A (17)

Die Einstiegsfunktion wird hier angesetzt als

g„(ö K(l-GK) (18)

r„(£) atan(£—go) (19)

Ergebnisse
A. Berechnung der Refraktion bei gegebener scheinbarer
Zenitdistanz z

F e—(z/z0)m

ß A + BF
z0 91.85400°
m 41.38486
A 0.631076
B 2.984247
fo =K(1-F><)
r0 atan(z—f0)
a 60.154"
K 2.7150°
k 2.0
ri + l rj + FL(rj'—r;)
Tj' a tan (z—ß rj) i 0,1,...

so lange bis | rj + [—ri |< io~6 (Gradmass) wird
L 1.5

B. Berechnung der Refraktion bei gegebener wahrer
Zenitdistanz £

G e-(C/C0y
y C + DG
£„ 91.47948°

/j 37.85656
C 2.505161
D =2.141612
go K (1—GK)
r0 er tan (£—g0)
a 60.154"
K 3.8971°
x 1/.85
ri + l rj + G^rj'—r;)
rj' atan(£—yrj) i 0,1,...

so lange bis | r; +rj | < 10"6 (Gradmass) wird
X =1.0

Darstellung der Normalrefraktion der Tabelle')
Obige Formeln und Zahlenwerte der eingeführten
Konstanten ergeben gegenüber dem Tabellenwerk1) folgende
Abweichungen Ar in Bogensekunden; in der Tabelle 3 ist
die Differenz Tabelle minus Formelwert angeführt.

Tabelle 3

z £—r Ar Formeln A Ar Formeln B

91° 0 0

90°30' + .2 —.3
90° 0 0

89°30' —.1 0
89° 0 0
OO oo o o 0 0

88° 0 0

87°30' —.1 0

87° —.2 —.1
86°30' —.3 —.1
86° —.3 —.1
85° 30' —.3 —.2
85° —.4 —.2
80° —.2 —.1
77° —.11 —.07
75° —.07 —.04
70° —.03 —.01
65° 0 + .01

Im restlichen Tabellenwerk1) weicht die formelmässige
Darstellung höchstens um .01" von dem Tafelwert ab.
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