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wicklung. Dadurch wird die Trennung der Sterne ver-
breitert. Der KOSTINSKY-Effekt kann auch zur Verstar-
kung von feinen Absorptionslinien in Spektren fithren.
Deshalb braucht es sehr umfangreiche Eichungen, um
Spektren photometrisch genau zu vermessen.

5. Hypersensibilisierung

Unter Hypersensibilisierung versteht man die Empfind-
lichkeitssteigerung von Emulsionen durch Behandlung
mit verschiedenen Chemikalien vor der Belichtung. Sie
ist zu unterscheiden vom Baking-Prozess, wo Platten in
einer Stickstoffatmosphére fiir einige Stundenauf65° C
erwiarmt werden. In beiden Fillen steigt die Empfind-
lichkeit und auch der Grauschleier. Fiir den Amateur
kommt am ehesten die Hypersensibilisierung von rot-
empfindlichen Filmen in Betracht. Im Orion sind ver-
schiedene Rezepte dafiir angegeben worden’). Am ein-
fachsten ist die Behandlung der spektroskopischen
Emulsionen Kodak 103a-E und 103a-F mit destilliertem
Wasser, das einige cm?® Kodak Photo-Flo-Losung ent-
hilt. Die Filme werden fiir 2 Minuten in der 5° C kalten
Losung gebadet und anschliessend in einem Strom mog-
lichst kalter Luft getrocknet. Die Filme sind nach der
Behandlung im Tiefkiihlschrank bis zu 5 Wochen halt-
bar. Verglichen mit der Haltbarkeit von infrarotemp-
findlichem Material, das nach der Hypersensibilisierung
nur noch wenige Tage aufbewahrt werden kann, ist das

sehr praktisch. Fiir eine ausfiihrliche Beschreibung der
verschiedenen Methoden und der erzielbaren Ergebnisse
sei auf die Literatur verweisen®°'9).
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Zur numerischen Berechnung der Normalrefraktion

von H. BEUCHAT

Als Normalrefraktion wird der von der scheinbaren Ze-
nitdistanz z abhingige Winkel r bezeichnet, um den ein
Lichtstrahl in der Normalatmosphire der Erde von der
wahren Zenitdistanz ¢ abgelenkt wird.

Das Aufkommen der (programmierbaren) Taschen-
rechner mit eingebauten mathematischen Funktionen
(sin, tan, log usw.) hat den rechnenden Astro-Amateu-
ren dadurch grosse Vorteile gebracht, dass bei Berech-
nungen die Verwendung von Tabellen dieser Funktionen
entfallt.

Hingegen gibt es in der Astronomie manchmal benutz-
te empirische Standardfunktionen, welche tabelliert vor-
liegen. Es wire dabei praktisch, Formeln fiir solche
Funktionen anzugeben, welche an Stelle der Tabelle ver-
wendet wiirden.

In dieser Form liegt eine durch R. Radau') veroffent-
lichte Tabelle der Normalrefraktion vor.

Eine adltere Tafel der Refraktion ist etwa diejenige von
F. W. Bessel?). Die Normalrefraktion spielt eine Rolle bei
der Reduktion von beobachteten Zenitdistanzen oder
Hohen iiber dem Horizont. Um bei Zenitdistanzen von
ca. 90° die Auf- und Untergangszeiten von Gestirnen un-
ter Beriicksichtigung des topographisch gegebenen Hori-
zontes zu bestimmen, benotigt man ebenfalls die Kennt-
nis der Refraktion, wenn die Zeiten einigermassen genau
sein sollten. Die Umkehrfunktion, nadmlich den Betrag
der Refraktion als Funktion der wahren Zenitdistanz,
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bendtigt man, wenn beispielsweise vorausgerechnete Or-
ter eines Erdsatelliten am Himmel genauer korrigiert
sein sollen.

Formeln zur Berechnung der Refraktion

Es lasst sich zeigen, dass bel nicht zu grossen Zenitdi-
stanzen die Refraktion proportional dem Tangens der
scheinbaren Zenitdistanz ist

= atanz (1)

«a ist dabei die Refraktionskonstante.

Bei grosseren und sogar schon bei méssigen Zenitdi-
stanzen weichen die mit dieser Formel berechneten Wer-
te erheblich von den tabellierten ab. Daher besteht die
Notwendigkeit, eine diesen Bereich grosser Zenitdistan-
zen abdeckende mathematische Formel anzugeben.

Hierzu hatte bereits Th. Simpson?®) die folgende ein-
fach gebaute Naherungsformel angegeben

r = atan(z—fr) 2)

Fiir den Koeffizienten 8 schlug J.Bradley*) den Wert 3
vor. In Formel (2) geht die Refraktion r sowohl links wie
rechts vom Gleichheitszeichen ein. Dies l14dt geradezu
ein, die Berechnung der Refraktion auf iterativem Wege
zu versuchen, das heisst, etwa von r, = 0 ausgehend in
die rechte Seite der Formel einzusetzen bis der mit der
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Formel erhaltene jeweilige Wert r; , | sich gegeniiber dem
vorhergehenden r; nicht mehr dndert.

Mit dieser Formel und diesem Ansatz entstehen aber
bei Zenitdistanzen um 90° nach wie vor Schwierigkeiten
wegen des Verlaufs des Tangens in diesem Argumentbe-
reich.

Die auf die Formel (2) angewendete Iterationsvor-
schrift fithrt sogar zu Divergenz bei Zenitdistanzen um
90°, liefert also keine Werte der Refraktion.

Ausserdem ist die Formel mit dem Wert § = 3 gar
nicht so genau, wie ein Blick in nachstehender Tabelle
iiberzeugt. Diese wurde mit Refraktionskonstante a =
60.154’’, die dem zitierten Tabellenwerk®) entspricht be-
rechnet.

Fiihrt man dies aus, so erhilt man, ausgehend von Ta-
bellenwerk ') die folgende Zusammenstellung

Tabelle 1
Anz.

zZ r(Taf.) r(1) r(2) It.
45° 1°00.04”’ 1°00.15” 1°00.05”’ 3
50° 1’11.51” 1’11.69” 1’11.54” 3
55° 1’25.64” 1°25.91” 1°25.68”’ 3
60° 1’43.76” 1’44.19” 1°43.83”’ 3
65° 2°08.25” 2°09.00”’ 2°08.37”’ 4
70° 2°43.78” 2°45.27” 2’44.05”’ 5
75° 3’41.00” 3’44.50” 3’41.64” 5
77° 4’15.23” 4°20.56”’ 4’16.20” 5
80° 5'29.8 7 5’41.2 5’31.8 6
85° 10’°13.5 > 11'27.6 >’ 10°22.6 8
86° 12°11.8 14°20.2 > 12°24.3 > 9
87° 14°58.8 19°07.8 >’ 15’14.8 7 11
88° 19°06.6 ’ 28’42.6 ’ 19°20.5 " 14
89° 25°37.0 57°26.2 25’19.8 26
90° 36’36.0 — ——

91° 56°27.5” — S

Das Ziel der Bemiihungen soll somit sein, einfach ge-
baute Formeln anzugeben, um die Normalfraktion r ins-
besondere des Tabellenwerks') bei gegebener scheinbarer
Zenitdistanz z oder bei gegebener wahrer Zenitdistanz
¢=z+r auf einige Zehntel Bogensekunden genau darzu-
stellen bis hinunter zur Zenitdistanz z=91°, wo die Ta-
belle 1 nicht ausreicht, muss eben versucht werden, die
Algorithmus so zu gestalten, dass in jedem Falle dessen
Konvergenz sichersteht und zugleich immer rasch ist,
wobei auch der Fall z 2 90° bzw. £290° zu keinerlei nu-
merischen Schwierigkeiten fiithren soll, indem der iterati-
ve Algorithmus mit einer guten Einstiegsfunktion be-
gonnen wird.

Zur Formelgenauigkeit

Da eine Konstante § = 3 zur guten Darstellung der Ta-
belle 1 nicht ausreicht, muss eben versucht werden, die
Formel (2) auszubauen, indem zuerst

r = atan(z—f) 3)

gesetzt wird, und anschliessend

f2) = r(@pB () @

mit variablem .
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Tabelle 2

7 r f B

65° 2°08.25”’ 0.128317° 3.60187
70° 2°43.78”’ 0.167546° 3.68277
75° 3°41.00” 0.226465° 3.68902
77° 4’°15.23” 0.261764° 3.69216
80° 5'29.8 ** 0.336857° 3.67703
85° 10°13.5 0.599981° 3.52067
86° 12°11.8 ** 0.699151° 3.43939
87° 14°58.8 0.828925° 3.32013
88° 19°06.6 "’ 1.003151° 3.14961
89° 25’37.0 1.241257° 2.90731
90° 36’36.0 1.569084° 2.57227
90° 30’ 45°00.0 1.776296° 2.36840
91° 5627.5 2.017331° 2.14388

Es stellt sich heraus, dass im Bereich grosser Zenitdi-
stanzen eine gute Niherung des Verlaufs der Funktion
B (z) erzielt wird, wenn man setzt

p =A+BF() ©)

Aund B sind zwei empirisch zu bestimmende Konstan-
ten. Die neue Funktion F (z) soll gegen 1 streben fiir klei-
nere Zenitdistanzen. Im gesamten Argumentbereich von
z soll sie stets positiv kleiner als 1 sein. Im Zusammen-
hang mit der Formel (5) zeigt es sich, dass folgender An-
satz fur F (z) befriedigende Ergebnisse liefert

F(z) = e—@/z)™ (6)

Auch die Konstanten z, und m sind empirisch zu be-
stimmen. Die insgesamt eingefiihrten vier Konstanten A,
B, z,, , werden etwa dadurch festgelegt, dass die Dar-
stellung der Normalrefraktion fiir die Argumente
z = 91, 90, 89, 88 exakt sein soll.

In diesem Falle sind diese Konstanten einer iterativen
Berechnung zuginglich, die von n#herungsweise be-
kannten Werten fiir z, und _, ausgeht. Die Formel hier-
zu sind die folgenden

F, = F(z) F, = F(z) (7.1
F (z) gemass Formel (6)
Ba—Ps
= == A = f,—F, 2
B F._F, f.—F,B (7.2)
[33_A ﬁa—A
F,= —— g = 7.
B F B -3
m = log(—InF,) —log(—1nF,) (1.4)
log zs — log z3
logz, = logz, — % log(—1n F,) (7.5)

Die obigen Formeln sind so lange zu wiederholen (ite-
rieren), bis keine Anderung in den Werten der z,, ,, A,
B auftritt.
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Zur Sicherstellung der Konvergenz

Sind neben der Refraktionskonstanten o die Werte der

A, B, z,, m bekannt, so fiihrt folgender Algorithmus

(Kette von Rechenoperationen) zur Berechnung vonr.
Bei gegebenem z und einer ersten Nahrung r, berech-

net man F (z) und f§ (z) nach den Formeln (6) und (5),

und sodann jeweils

fo = fr, 11 = atan(z—f,)
f, = Br, r, = atan(z—f,) usw. 8)

bis etwa | r; . |—r1; | <107® wird.

Die numerische Erprobung dieses Algorithmus (8)
zeigt aber, dass fiir Werte von z um die 90° auch jetzt
keine Konvergenz der r; gegen einen Grenzwert erfolgt,
indem die Differenzen aufeinanderfolgender r grosser
werden statt kleiner.

Das Verfahren, um auch in diesen Fallen Konvergenz
zu erzwingen besteht darin, bei der Berechnung von r; |
nur einen Bruchteil von atan(z—f;) mitzunehmen, also
den Algorithmus (8) abzuédndern in

fi = Br;

iy = 1 + H@y'—rp)

r;7 = atan(z—f;)

®

Mit einem geeigneten Bruchteil, der zwischen 0 und 1
liegt, zeigt es sich, dass dann in jedem Falle Konvergenz
der Refraktion gegen einen Grenzwert erzielt wird.
Fihrt man jedoch einen festen Bruchteil H fiir alle Be-
rechnungen ein, so zeigt sich, dass man dabei die Schnel-
ligkeit der Konvergenz fiir kleine Zenitdistanzen erheb-
lich verschlechtert, was als Nachteil des konvergenzer-
zwingenden Verfahrens in obiger Form zu werten ist.

Das Ziel der nun folgenden Bemiithungen wird es sein,
das Verfahren zur Konvergenzerzwingung derart abzu-
dandern, dass im gesamten Argumentbereich der Zenit-
distanzen z schnelle Konvergenz erreicht wird.

Zur Beschleunigung der Konvergenz

Ansatzpunkt ist die Tatsache, dass fiir kleine z aus der
Tabelle 1 ersichtlich ist, dass der normale Algorithmus
(8), der einem Faktor H =1 entspricht, mit 3 bis 4 Itera-
tionen konvergiert, also relativ schnell ist. Fiir grosse z
kann man jeweils den besten Bruchteil H ermitteln, der
zur schnellsten Konvergenz fiihrt.

Nun hat genau der frither mit Formel (6) eingefiihrte
Faktor F(z) die Eigenschaft, fiir kleine z gegen 1 zu stre-
ben und fiir grosse z einen Wert zwischen 0 und 1 anzu-
nehmen. Setzt man einfach H = F(z), so erzwingt man
im kritischen Bereich zwar die Konvergenz, doch bleibt
sie dabei so langsam, dass man sehr lange Rechenzeiten
in Kauf nehmen miisste. Stellt man die besten Bruchteile
H (z) der Funktion F(z) gegeniiber, so findet man, dass
der folgende Ansatz im kritischen Bereich zu einer er-
heblichen Verbesserung der Konvergenz fiihrt

H() = [F@)IL (10)

Der Faktor, um welchen die Differenz der Refraktions-
werte von Iteration zu Iteration zuriickgeht, ist damit
stdndig grosser als 5, so dass bei Vorliegen einer guten
Ausgangsndherung die Genauigkeit von 107 Grad
nach 5—6 Iterationen mit dem Algorithmus (9) erreicht
wird.
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Zur Ermittlung der Einstiegsfunktion

Als Einstiegsfunktion wird hier die Ausgangsnidherung
bezeichnet, mit welcher der Algorithmus (9) begonnen
wird.

Aus der Tabelle 2 ersieht man, dass f(z) fiir zuneh-
mende z monoton zunimmt, wogegen F (z) monoton ab-
nimmt.

Will man somit auf bereits ermittelte Funktionen von
z zuriickgreifen, um eine Einstiegsfunktion anzugeben,
empfiehlt es sich, den Wert f, (z) etwa anzusetzen als

fo(z) = K(1—F") an

Als Einstiegsfunktion r,(z) hat man dann einfach zu

definieren
(12)

Die beiden neu eingefiithrten Konstanten K und k sind
wie die andern in den Formeln (5)—(10) eingefiihrten
empirisch festzulegen.

Es wire denkbar, fiir z=91 und 90° den Wert von f
jeweils genau darzustellen, so dass damit die Refraktion
durch ro(z) fiir diese Argumente genau dargestellt
ware.

Eine weitere brauchbare Vorschrift wire die, nur den
aussersten Wert der Refraktionstafel exakt darzustellen,
und dabei denjenigen Exponenten k zu ermitteln, fiir
den die folgende, weitere Wertpaare z; r; beriicksichti-
gende Summe zu einem Minimum wird

ro(z) = atan (z—f,)

N
"N =Z (logr; —log 1o [z])*
i=2

Grosse Genauigkeit ist fiir die Einstiegsfunktion ohne-
hin von untergeordneter Bedeutung; wesentlich ist nur
dabei, dass ein Iterieren bei Verwendung des Algorith-
mus (9) nach Méglichkeit abgekiirzt wird.

Die «Umkehrfunktion»

Bei den iiblichen mathematischen Funktionen wird diese
kurz gesagt darin gesehen, dass sie, bei Vorgabe des
Funktionswertes, der zu einem (zuldssigen) Argument
gehort, wieder dieses Argument als Hauptwert liefert; in
diesem Sinne ist etwa \/'x die Umkehrfunktion von x2,
wenn positive x zugelassen sind.

Die Ermittlung der Normalrefraktion r(z) lduft im
wesentlichen darauf hinaus, die wahre Zenitdistanz € bei
gegebener scheinbarer Zenitdistanz z zu bestimmen. Die
«Umkehrfunktion» ist in diesem Sinne eine Funktion,
welche bei vorgegebener wahrer Zenitdistanz ¢ gestattet,
die scheinbare Zenitdistanz z zu ermitteln. Genauso wie
man aus ¢ = z+r (z) die wahre Zenitdistanz ermittelt,
kann man aus z = {—r (&) die scheinbare Zenitdistanz
erhalten, wenn man, wie im Falle von r(z) eine «Umkehr-
funktion» r ({) bereitstellt.

Nun kann die Formel (2) wegen z = {—r geschrieben
werden

r = atan ((—fr—r) = atan({—yr) (14)

Dieser Aufbau der Formel (14)legt nahe, die «Umkehr-
funktion» analog anzusetzen wie die Funktion der Nor-
malrefraktion bei gegebener scheinbarer Zenitdistanz.

Man setzt daher
y() = C+ D G(@©) (15)

G() = et/ (16)
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und als konvergenzerzeugender Faktor H

HE) = GOP an
Die Einstiegsfunktion wird hier angesetzt als

g (0 = K(1—-G¥) (18)

1o(¢) = atan({—go) (19)

Ergebnisse
A. Berechnung der Refraktion bei gegebener scheinbarer
Zenitdistanz z

F = e—(@/zo)™

B = A+BF

Zo = 91.85400°

m = 41.38486

A = 0.631076

B = 2.984247

f, =K (1—Fk

I's = atan(z—f,)

a = 60.154”

K = 2.7150°

k =2.0

Liyp =T+ FLy—r)
1y’ =atan(z—fr)i =0,1,...

so lange bis | rj y |—T; |< 10-¢ (Gradmass) wird
L =15

B. Berechnung der Refraktion bei gegebener wahrer Ze-
nitdistanz ¢

G = e—(&/C)H
y =C+DG

Lo = 91.47948°
U = 37.85656

(& = 2.505161

D = 2.141612
8o = K (1-GX)
To = atan({—go)
a = 60.154”

K = 3.8971°

x = 1/.85

iyl =+ GA(ry—r)

>

atan({—yry)i = 0,1,...
so lange bis | r; . |—r1; | <107° (Gradmass) wird
A =1.0

I

Darstellung der Normalrefraktion der Tabelle")

Obige Formeln und Zahlenwerte der eingefiihrten Kon-
stanten ergeben gegeniiber dem Tabellenwerk') folgende
Abweichungen Ar in Bogensekunden; in der Tabelle 3 ist
die Differenz Tabelle minus Formelwert angefiihrt.

Tabelle 3

z=_C—r1 Ar Formeln A Ar Formeln B
91° 0 0

90° 30’ +.2 —.3
90° 0 0
89°30’ —.1 0

89° 0 0
88°30’ 0 0

88° 0 0
87°30’ —.1 0

87° =D —.1
86°30’ —.3 —.1
86° -3 —.1
85°30° —3 —2
85° —.4 —a2
80° —.2 —.1
77° —.11 —.07
75¢ —.07 —.04
70° —.03 —.01
65° 0 +.01

Im restlichen Tabellenwerk") weicht die formelmassige
Darstellung hochstens um .01’ von dem Tafelwert ab.
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