Zeitschrift: Orion : Zeitschrift der Schweizerischen Astronomischen Gesellschaft

Herausgeber: Schweizerische Astronomische Gesellschaft

Band: 36 (1978)

Heft: 164

Artikel: Koordinatentransformationen, sphärische Dreiecke und

Taschenrechner

Autor: Schilt, H.

DOI: https://doi.org/10.5169/seals-899478

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 02.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Koordinatentransformationen, sphärische Dreiecke und Taschenrechner

von H. SCHILT, Biel

eingereicht: 1977, Dez.

Der Astronom hat sehr häufig Koordinaten von einem System in ein anderes umzurechnen. Das ist oft ohne Hilfsmittel eine mühsame Arbeit; schon das Umrechnen von Polarkoordinaten r, ϑ , φ in rechtwinklige ist mit dem Aufschlagen von zwei Paar trigonometrischen Funktionswerten und fünf Multiplikationen verbunden.

Bei verschiedenen wissenschaftlichen Taschenrechnern stehen die Tasten «to rectangular» und «to polar» zur Verfügung, welche die Umrechnung der Koordinaten sehr erleichtern. Wir schreiben die folgenden Anweisungen in der Umgekehrten Polnischen Notierung (UPN); z. B. wird a/b = in UPN a,b/lauten. Die Komata dienen zum Aufzählen einzelner Grössen; bei der Eingabe entspricht ein Komma der ENTER-Taste. Die Operatoren kommen in der UPN immer nach den Operanden. Mit dieser Notierung ist man weder an eine Hierarchie noch an Klammern gebunden. Wir nehmen ferner an, der Taschenrechner habe vier Stackregister, die wir der Reihe nach mit t, z, y, x bezeichnen; der Inhalt des Registers x erscheint in der Anzeige. Die Register werden von rechts nach links aufgefüllt. Der zuerst eingegebene Wert steht also links. Gibt man a ENTER b ein, so findet man a im y- und b im x-Register; drückt man die Operationstaste /, so erscheint der Quotient a/b in der Anzeige und ist also im x-Register gespeichert. Falls im Register t die Zahl c und im Register z die Zahl d gespeichert waren, so findet man nach der Operation folgende Verteilung: c, c, d, a/b, die Zahl b ist für eine weitere Verwendung (z. B. für eine Korrektur) im Register LAST X.

Die Inhalte der Register x und y können mit dem Befehl v ausgetauscht werden. Die Befehle q bzw. d erlauben eine zyklische Vertauschung der Inhalte der Stackregister: z. B.

$$a,b,c,d$$
 $\mathbf{q} \Longrightarrow d,a,b,c$
 a,b,c,d $\mathbf{d} \Longrightarrow b,c,d,a$

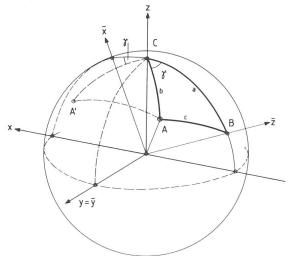


Fig. 1: Sphärisches Dreieck (A, B, C). A' ist Spiegelbild von A bezüglich Ebene (y, z).

Wir kürzen den Befehl «to rectangular» mit r und «to polar» mit p ab. Mit unseren Abmachungen können wir diese Befehle folgendermassen erklären:

 α , r r \Rightarrow y, x mit y = r sin α , x = r cos α und y, x p \Rightarrow α , r wobei α durch folgende Vorschrift den Werten von x und y zugeordnet ist: x = 0 y = 0 $\alpha = 0$

 $y \neq 0$ $\alpha = 90^{\circ} y/|y|$ $x \neq 0$ y = 0 $\alpha = 90^{\circ} (1 - x/|x|)$

 $y \ne 0$ $\alpha = \arctan(y/x) + 90^{\circ} (1 - x/|x|)y/|y|$

Der Winkel α liegt also im Intervall — $180^{\circ} < \alpha \le 180^{\circ}$; eine besondere Überlegung zur Bestimmung des richtigen Quadranten ist überflüssig. Die Inhalte der Register t und z bleiben bei den Operationen \mathbf{r} und \mathbf{p} unverändert.

Wir können den Übergang von räumlichen Polarkoordinaten φ , ϑ , r zu rechtwinkligen z = r $\cos\vartheta$, y = r $\sin\vartheta\sin\varphi$ und x = r $\sin\vartheta\cos\varphi$ nun folgendermassen schreiben:

-, φ , ϑ , r, r, q, r => z, -, y, x. die Operationenfolge r, q, r kürzen wir mit A ab. Über das Register t kann noch verfügt werden, sein Inhalt wird durch die Operation A ins Register z verschoben. Sind die Koordinaten z, y, x gegeben und wie oben im Stack verteilt, so findet man:

z, -, y, x **pdp** => -, φ , ϑ , r. Sinngemäss verwenden wir für **pdp** die Abkürzung A^{-1} .

Oft wird in der Astronomie statt der Poldistanz ϑ deren Komplement $\gamma = 90^{\circ} - \vartheta$ benutzt. Der Übergang zu rechtwinkligen Koordinaten wird wie folgt erzeugt:

-, φ , γ , r $\mathbf{r} \mathbf{v} \mathbf{q} \mathbf{r} => z$, -, y, x wobei $z = r \sin \gamma$, $y = r \cos \gamma \sin \varphi$, und $x = \cos \gamma \cos \varphi$ ist. Die Operatorensequenz $\mathbf{r} \mathbf{v} \mathbf{q} \mathbf{r}$ kürzen wir mit \mathbf{B} ab. Die inverse Operation ist $\mathbf{B}^{-1} = \mathbf{p} \mathbf{d} \mathbf{v} \mathbf{p}$, sie leistet folgenden Übergang:

$$z, -, y, x \quad \mathbf{B}^{-1} \implies -, \varphi, \gamma, r.$$

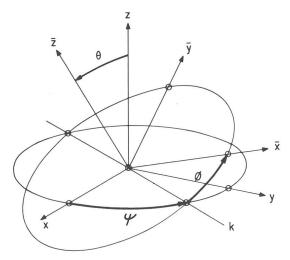


Fig. 2: Die Koordinatensysteme K und K mit den Eulerschen Winkeln.

36

Zusammenstellung

E: Ein.	Stack				Befehle	Bemerkungen
A: Aus.	t	Z	у	X		
E A	Θ	9 9	$\frac{\vartheta}{\vartheta}$	r r	A C _y A ⁻¹	Polarkoordinaten φ , ϑ , r in \underline{K} Drehung Θ um y-Achse φ , ϑ , r in \overline{K}
E A	-Θ	$\overline{\varphi}$ φ		r r	A C _y A ⁻¹	Θ Winkel zwischen z und \overline{z} $\Theta > 0$, wenn $\langle z, x \text{ spitz}$
E A	a	γ β	b c	r r	A n C _y A ⁻¹	Sphärisches Dreieck SWS, s. Fig. 1 a, b, c Seiten α, β, γ Winkel
E A	b	γ α	a c	r r	A n C _y A ⁻¹	geg. a, γ, b
E A	90° – φ	a t	h d	r r	В Су В-1	<i>Horizont-Äquator</i> φ: geogr. Breite a: Azimut t: Stundenwinkel
E A	φ – 90°	t a	б h	r r	B C _y B ⁻¹	h: Höhe d: Deklination
E A	ε	AR L	δ B	r r	B C _X B ⁻¹	Äquator-Ekliptik ε: Schiefe d. Ekliptik AR: Rektaszension L: Länge
E A	–ε	L AR	Β δ	r r	B C _X B ⁻¹	δ: Deklination B: Breite
E A	Θ	$\frac{\varphi - \Psi}{\overline{\varphi} + \Phi}$	$\frac{\vartheta}{\vartheta}$	r r	A C _X A ⁻¹	Allgemeine Kugeldrehung Eulersche Winkel Ψ , Θ , Φ (Fig. 2) Polarkoord. r , ϑ , $\varphi \rightarrow r$, $\overline{\vartheta}$, $\overline{\varphi}$
E E E A	Х	у 	z y	Ψ Θ <u>Φ</u> χ	E E E	Kart. Koord. $x, y, z \rightarrow x, y, z$

Einfache Befehle

n v	Vorz Inhal	A B			
q	\bigcirc	z y	p	to polar to rectangular	$\mathbf{C}_{\mathbf{X}}$
d	\bigcirc	t x	r	to rectangular	$\mathbf{c}_{\mathbf{y}}$

Zusammengesetzte Befehle

A	= r q r	\mathbf{A}^{-1}	= p d p
B	$= \mathbf{r} \mathbf{v} \mathbf{q} \mathbf{r}$	\mathbf{B}^{-1}	= p d v p
D	= p q + d r	\mathbf{D}^{-1}	$= \mathbf{v} \mathbf{D} \mathbf{v}$
$\mathbf{C}_{\mathbf{X}}$	$= \mathbf{d} \mathbf{v} \mathbf{q} \mathbf{D} \mathbf{q} \mathbf{v}$		
$\mathbf{C}_{\mathbf{V}}$	$= \mathbf{v} \mathbf{d} \mathbf{v} \mathbf{q} \mathbf{D} \mathbf{q}$	\mathbf{E}	= q q D v
		E	= q q D v

Wir benutzen nun zwei gleichorientierte Koordinatensysteme K (x, y, z) und K (\bar{x} , \bar{y} , \bar{z}) mit gemeinsamem Nullpunkt. Die z-Achse sei zunächst identisch mit der \bar{z} -Achse, dann geht das eine System durch eine einfache Drehung Θ um die z-Achse in das andere über. Es gilt:

oder einfacher mit Hilfe von Polarkoordinaten:

y, x $\mathbf{p} => \alpha$, ϱ ; $\Theta + \alpha$, ϱ $\mathbf{r} => \overline{y}$, $\overline{x} - 180^{\circ} < \Theta \le 180^{\circ}$; $0 < \Theta$, wenn der Winkel zwischen x, \overline{y} spitz ist. Für unsern Rechner ergeben sich folgende Operationen:

 $z, \Theta, y, x \quad p q + d r \implies \varrho, \overline{z}, \overline{y}, \overline{x}$

Der Operator **D** setzt sich somit aus der Sequenz $\mathbf{p} \mathbf{q} + \mathbf{d} \mathbf{r}$ zusammen.

Falls um die x-Achse gedreht werden soll, ist der Stack anders zu ordnen:

z, Θ , y, x $dvq \Rightarrow x$, Θ , y, z

Für eine Drehung um die y-Achse, würde der Operator \mathbf{v} d \mathbf{v} q die Ordnung des Stacks leisten.

Die beschriebenen Umformungen sind nun auch brauchbar, um von einem Polarkoordinatensystem φ , ϑ , r zu einem andern $\overline{\varphi}$, $\overline{\vartheta}$, r überzugehen. Für eine Drehung Θ um die y-Achse schreiben wir den Zustand der Stackregister und die Operationen nacheinander auf.

$$\Theta, \varphi, \vartheta, r$$
 z, Θ', y, x
 y, Θ, x, z
 $Q, \overline{y}, \overline{x}, \overline{z}$
 $Q, \overline{\varphi}, \overline{\vartheta}, r$

A Umwandlung in rechtw. Koord.

 $A = A = A$
 $A = A = A$
 $A = A$
 $A = A$
 $A = A$
Umwandlung in rechtw. Koord.

 $A = A = A$
 $A = A$
 $A = A$
Umwandlung in rechtw. Koord.

 $A = A = A$
Umwandlung in rechtw. Koord.

 $A = A = A$
Umwandlung in rechtw. Koord.

 $A = A = A$
Umwandlung in rechtw. Koord.

 $A = A = A$
Umwandlung in rechtw. Koord.

Wir können die Darstellung abkürzen, wenn wir die Operatoren in einer Zeile schreiben:

$$\begin{array}{ll} \Theta \,,\, \varphi \,,\, \vartheta \,,\, \mathbf{r} \\ \varrho \,,\, \overline{\varphi} \,,\, \overline{\vartheta} \,,\, \mathbf{r} \end{array} \quad \mathbf{A} \,\mathbf{v} \,\mathbf{d} \,\mathbf{v} \,\mathbf{q} \,\mathbf{D} \,\mathbf{q} \,\mathbf{A}^{\scriptscriptstyle -1} \end{array}$$

Der Betrag (r > 0) bleibt bis auf Rundungsfehler unverändert; er wird wie ein Huckepack mitgeführt. Ausser dem Stack werden keine Register belegt.

Es ist C_X äquivalent mit v C_y v und ebenso C_y mit v C_X v.

Im allgemeinen schneiden sich die Koordinatenebenen x-y der Systeme K und \overline{K} nicht in einer Koordinatenachse, sondern in der Knotenlinie k. Für eine Transformation ist es dann zweckmässig, die Eulerschen Winkel Ψ , Θ , Φ zu benutzen. Diese sind wie folgt definiert: Der Winkel Ψ wird von der x-Achse bis zur Knotenlinie k, der Winkel Φ von k bis zur \overline{X} -Achse gemessen und Θ ist der Winkel zwischen der z- und der \overline{Z} -Achse. S. Fig. 2.

Die Transformation vom System K auf das System \overline{K} erfolgt somit in drei Schritten:

- 1) Drehung Ψ um die z-Achse
- 2) Drehung Θ um die Knotenlinie k
- 3) Drehung Φ um die \overline{z} -Achse

Geht man von einem Polarkoordinatensystem $K(r,\vartheta,\varphi)$ aus, so lässt sich der erste und der dritte Schritt bequem als Winkelsubtraktion ausführen. Der zweite Schritt ist eine Drehung um die Knotenlinie und wird durch den Operator A C_X A^{-1} erzeugt.

$$\begin{array}{ccc} \text{Aus} & \Theta \,, \varphi \,-\, \Psi \,, \underline{\vartheta} \,, r \\ & \Theta \,, \overline{\varphi} \,+\, \varphi \,, \overline{\vartheta} \,, r \end{array} \quad \textbf{A} \, \textbf{C}_X \, \textbf{A}^{\scriptscriptstyle -1}$$

finden wir leicht $\overline{\varphi}$, $\overline{\vartheta}$, und r.

Sind rechtwinklige Koordinaten gegeben, so führt folgendes Schema zum Ziel:

$$x, y, z, \Psi$$
 $-\Theta$
 Φ
 $\overline{z}, \overline{y}, \overline{x}$

E Drehung Ψ um z
E Drehung Θ um k
E Drehung Φ um z

mit E = q q p q + d r v.

1) Für die Auflösung des sphärischen Dreiecks ist neben der Drehung noch eine Spiegelung notwendig, diese wird durch den Vorzeichenwechsel n erzeugt. Fig. 1.

Adresse des Autors: Prof. Dr. H. Schilt, Höheweg 5, CH-2502 Biel.

Neue Zeitschrift:

Sonne — Mitteilungsblatt der Amateursonnenbeobachter

Als erstes Ergebnis einer überregionalen Zusammenarbeit der Sonnenbeobachter wurde in der Bundesrepublik Deutschland Anfang 1977 das Mitteilungsblatt *Sonne* gegründet.

Sonne dient zur Veröffentlichung von Beobachtungen, zur Diskussion von Beobachtungsprogrammen und als Kommunikationsforum der Leser. Regelmässig werden grundlegende Themen der Sonnenbeobachtung in allgemeinverständlicher Form behandelt, um Neulingen den Einstieg in die Sonnenbeobachtung zu ermöglichen.

Die erste Ausgabe erschien im April 1977 und enthielt die Selbstdarstellung von 14 Arbeitsgruppen der Bundesrepublik Deutschland und Oesterreichs sowie mehrerer Einzelbeobachter.

Sonne 1 wurde auf der VdS-Sonnentagung vom April 1977 in Berlin vorgestellt. Die Vereinigung der Sternfreunde e.V. übernahm die Vorfinanzierung des Mitteilungsblattes. Die Redaktion übernahm ein Redaktionsstab mit den folgenden Arbeitsgebieten:

Relativzahlen, Positionsbestimmungen, Sonnenflekkenentwicklung, Lichtbrücken, Wilson-Phänomen, H_{α} -Beobachtungen.

Sonne erscheint drei- bis viermal im Jahr. Das Abonnement für 4 Hefte kostet DM 12.— (inkl. Porto und Verpackung) Wer sich für die Zeitschrift interessiert, wende sich bitte an:

AG-Sonne der Olbers-Gesellschaft Alexander Hinrichs Schwachhauser Ring 159 D-2800 Bremen 1

ORION-Redaktion-ORION-Redaktion

Der Aufruf zur Mitarbeit am ORION in der letzten ORION-Ausgabe brachte der Redaktion erfreulich viele positive Echos ein. Es konnte ebenfalls ein bestens ausgewiesener Amateurastronom als Redaktionsmitarbeiter gewonnen werden. Dadurch wird sich die anfallende Arbeit in Zukunft besser verteilen lassen. Die einzelnen Anteile werden aber immer noch zu gross bleiben. Deshalb sucht die ORION-Redaktion weiterhin

ständige Redaktions-Mitarbeiter

zur Übernahme einer Teilaufgabe im Rahmen der ORION-Redaktion. Diese Aufgabe kann im technischen — bzw. administrativen Bereich liegen oder aber in der selbständigen Redaktion einer eigenen Spalte (Beispiele: Astro-Vorschau, Astronomische Frage-Ecke, Astro-News etc.). Der Umfang der zu bewältigenden Aufgabe könnte den gegebenen Möglichkeiten angepasst werden. Wichtig wäre jedoch eine langfristige und möglichst regelmässige Mitarbeit.

Interessenten melden sich bitte bei der ORION-Redaktion.

ORION-Redaktion-ORION-Redaktion-ORION-Redaktion