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Zur Bestimmung von T und a :
Zu einem bestimmten Zeitpunkt muss möglichst

genau die relative Lage der Monde bezüglich Jupiter

festgestellt werden. Bei visuellen Beobachtungen
verwendet man mit Vorteil vorbereitete Zeichnungen.

Auf diesen Zeichnungen ist Jupiter im Zentrum
als Kreis bereits eingezeichnet, ebenso die Jupiter-
Äquatorebene versehen mit Marken in Abständen
von einem Jupiterdurchmesser. Bei der Vorbereitung
dieser Zeichnung ist zu beachten, dass sich der vierte
Galilei-Mond im Maximum bis zu 13 Jupiterdurchmessern

vom Zentrum des Planeten entfernt kann.
Am Fernrohr werden die Abstände der Monde in
Jupiterdurchmessern abgeschätzt und in eine
vorbereitete Zeichnung eingetragen. Das Abschätzen
kann umgangen werden, wenn die Lagebestimmung
der Monde auf fotografischem Wege erfolgt. Für
Instrumente mit Brennweiten von einem Meter oder
mehr eignet sich dieses Verfahren sehr gut. Es ist
dann aber sehr genau darauf zu achten, dass die
Brennweite der Aufnahmeoptik und die Skala einer
nachträglichen Vergrösserung des Negativs für alle
Aufnahmen gleich beibehalten wird.

Solche Positionsbestimmungen sind in Intervallen
von einigen Stunden über mehrere Nächte zu wiederholen.

Diese werden dann untereinander so angeordnet,
dass ihr Abstand gerade dem Zeitunterschied

der Positionsbestimmung entspricht. Es lassen sich
dann unschwer die in Fig. 7 wiedergegebenen
bekannten Jupitermond-Schlaufen einzeichnen. Aus
diesen Schlaufen lassen sich sehr leicht die Umlaufszeiten

(in Stunden oder Tagen) und die Bahnradien
(in Millimetern oder in Jupiterdurchmessern)
herauslesen. Die Genauigkeit kann durch Mittelwertbildung

der Messwerte aus mehreren Schlaufen
erhöht werden. Mit den so gemessenen Daten für T
und a kann schliesslich kontrolliert werden, ob die
rechte Seite im dritten KEPLERgesetz wirklich für alle
Monde denselben konstanten Wert annimmt.

Anmerkung: Es würde die ORION-Redaktion
ausserordentlich freuen, wenn sie in einer der nächsten

Ausgaben eine «Kontrolle des dritten Kepler'-
schen Gesetzes mit Hilfe der Galilei-Monde»
veröffentlichen könnte. Jede Einsendung wird mit einer
Astro-Aufnahme honoriert. P. Gerber

Le problème cosmologique et ses hypothèses V
J. Dubois

Confrontation avec l'observation
(première partie)

Introduction
Il existe actuellement un fait d'observation qui peut

s'expliquer assez bien par la variation de la «constante»
G de la gravitation universelle au cours du temps. Par
ailleurs une telle variation a des implications importantes

en astrophysique, géophysique et certaines
d'entre elles peuvent être comparées avec l'observation.

G étant constant dans la théorie d'EiNSTEiN, sa
variation éventuelle et quelques-unes de ses conséquences

seront examinées dans le cadre des théories de
Hoyle et Narlikar et de Dirac.

Etant donné que la théorie de Dirac introduit aussi
l'idée de la variation de la masse d'une étoile
(indépendamment de son évolution) ou plus généralement
de tout corps macroscopique, je présenterai
simultanément les conséquences de ces deux catégories de
variation.

Mais avant d'aborder la première observation, il y
a lieu de rappeler quelques résultats théoriques utiles
pour la suite.

Dans tout ce qui suit, le temps utilisé est le temps
atomique, c'est-à-dire celui mesuré par une horloge atomique.

a) Théorie de Hoyle et Narlikar (voir ORION
No. 157 et 158).

Dans cette théorie on a la possibilité de choisir
l'espace-temps le mieux adapté aux phénomènes que

l'on veut examiner, ces espaces-temps étant liés
entre eux par une transformation conforme. On peut
aussi dire que dans chacun d'eux on a une image
différente, mais physiquement équivalente de l'univers.

Dans l'un d'eux, la «constante» G décroît comme
1 /t, tandis que la masse des particules demeure
constante. L'intervalle ds de cet espace-temps est:

ds2 dt2 - 2t(dx2 -J- dy2 + dz2) (85)

et la fonction paramètre d'échelle R(t) correspondante

est:

R(t) j/2t (86)

Nous savons qu'en mécanique classique, le
moment cinétique d'un corps soumis à un mouvement
central (par exemple celui de la terre autour du
soleil à la condition de négliger les autres influences) est
conservé ou si l'on préfère ne varie pas au cours du

temps. Ce fait est aussi connu sous le nom de 2e loi
de Kepler ou loi des aires. Dans la théorie de Hoyle
et Narlikar, le moment cinétique est de dimension
L°. Or toute grandeur de dimension L° n'est pas
modifiée par une transformation conforme. Il en
résulte que le moment cinétique est aussi conservé dans
la théorie de Hoyle et Narlikar, et que la distance r
terre-soleil varie proportionnellement à t, ou si l'on
préfère, que le demi-grand axe a de l'orbite elliptique
terrestre augmente comme t. (voir appendice no. 1).

En résumé nous avons :

G ~ t-1 M constante r ~ t (87)
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Les variations d'autres grandeurs sont indiquées dans
le tableau no. 1.

b) Théorie de Dirac avec l'hypothèse de la création

multiplicative, (voir ORION no. 160 et aussi le
récent et remarquable article de Canuto et Loden-
quai1).

Dans les deux modèles de Dirac, le nombre de

particules contenues dans la partie observable de
l'univers augmente proportionnellement à t2. C'est
une conséquence de l'hypothèse dite des grands nombres.

Puis G décroît comme 1/t et c'est aussi une
conséquence de la même hypothèse à la condition toutefois

d'effectuer les mesures en utilisant le temps
atomique. La création multiplicative signifie que les
nouvelles particules sont créées là où il y a déjà de la
matière et en nombre proportionnel à celle-ci. Il en
résulte que la masse d'une étoile ou d'une planète
augmente proportionnellement à t2. Alors la relation
(66) vr2 GM (voir ORION no. 160) entraîne que
la distance r entre un corps attractif et son satellite
augmente proportionnellement à t car la vitesse du
satellite demeure constante comme grandeur sans
dimension et exprimable en une fraction de la vitesse
de la lumière. Cela implique d'ailleurs que le moment
cinétique d'un corps animé d'un mouvement central
n'est pas conservé dans ce modèle.

En résumé, nous avons :

G ~ t"1 M ~ t2 r — t (88)

Les variations d'autres grandeurs sont présentées
dans le tableau no. 1. Le modèle d'univers dans ce
cas est à expansion linéaire dans le temps3).

Donc:
R ~ t (89)

c) Théorie de Dirac avec l'hypothèse de la création

additive.
Comme dans le modèle précédent. G varie comme

1/t, mais la création dite additive de nouvelles
particules, c'est-à-dire leur création uniforme dans tout
l'espace, donc essentiellement dans l'espace
intergalactique, entraîne que la masse d'une étoile demeure

pratiquement constante. Alors toujours par la relation

(66) la distance r varie aussi comme 1 /t.
En résumé, nous avons :

G ~ t-1 M constante r ~ t"1 (90)

Les variations d'autres grandeurs sont présentées
dans le tableau no. 1.

Il est intéressant de remarquer que des mesures
précises de la distance terre-lune effectuées au radar
ou au laser pendant une certaine période pourraient,
si l'hypothèse des grands nombres est correcte,
distinguer entre r ~ t-1 (la lune se rapproche de la terre)
et r ~ t(la lune s'éloigne de la terre), donc entre la
création additive et la création multiplicative.

Pour terminer cette introduction, signalons que la
variation éventuelle au cours du temps atomique de
constantes considérées comme fondamentales à
savoir la vitesse de la lumière c, la constante de Planck
h, la charge e et la masse me de l'électron a été examinée2).

Il en résulte que leur constance est bien fondée.
C'est important, car ainsi la variation éventuelle de G
ne peut être attribuée à une variation des étalons de
mesure. En effet, ces étalons reposent sur les dimensions
de l'atome et la fréquence des radiations qu'il émet,
et dans le calcul de ces grandeurs, les constantes citées
interviennent.

Observation de la variation de G
Van Flandern3) a examiné toute une série

d'occultations d'étoiles par la lune depuis 1955 pour
déterminer l'accélération eu' de la longitude moyenne
de la lune (voir appendice no. 2) accélération mesurée,
et c'est très important, avec une horloge atomique.
Le résultat diffère de celui obtenu en évaluant cette
accélération dans le temps des éphémérides et qui est
dûe à l'action et la réaction des marées sur le mouvement

de la terre et de la lune.
Il y a lieu de remarquer qu'une variation de G ne

peut pas être mise en évidence par des mesures
effectuées dans le temps des éphémérides, laquelle est
définie à l'aide du mouvement apparent du soleil
autour de la terre ou, si l'on préfère, du mouvement

Tableau no. 1 : Variation de diverses grandeurs selon le modèle considéré en fonction du temps «atomique».

Théorie de

Hoyle et Narlikar
Théorie de Dirac,
création multiplicative

Théorie de Dirac,
création additive

«Constante» de la gravitation G t-1 t"1 t"1

Masse d'une étoile ou d'une planète M constante t2 constante

demi grand axe d'une orbite a t t t-1

vitesse angulaire d'une planète co t-2 t"1 t

période du mouvement orbital P t2 t t-1

vitesse v t"1 constante constante

moment cinétique orbital constant t3 t"1

masse du proton mp constante constante constante

paramètre d'échelle R ]/2t t —
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réel de la terre autour du soleil. En effet nous avons
mentionné plus haut que le moment cinétique de la
terre dans son mouvement autour du soleil est
conservé. Alors une diminution de G provoque une
augmentation du rayon de l'orbite et de la durée d'une
révolution selon les deuxième et troisième lois de

Kepler (voir appendices nos. 1 et 3) c'est-à-dire
modifie l'étalon de mesure du temps des éphémérides.

La différence observée par Van Flandern est:

— (-1,6^1,1) • lCF10/année
co

(91)

co : vitesse angulaire de la lune
co' : accélération angulaire.

Van Flandern pense que cela peut s'expliquer a

priori de plusieurs façons différentes, mais après avoir
procédé à un examen attentif des diverses possibilités,

il estime que la variation de G constitue la meilleure

explication sans exclure définitivement les
autres. La variation de G est alors de:

yrr (-8 ±5) • 10_11/année
G

(92)

G': dérivée de G par rapport au temps.
Selon Faulkner4) il existe entre les grandeurs

figurant au tableau no. 1 et leur dérivée première par
rapport au temps la relation suivante qui se déduit
de la 3e loi de Kepler (voir appendice),

M'
(93)2 —

CD
3-=§a G M

M: masse du corps attractif,

a: demi grand axe de l'orbite,
a) Théorie de Hoyle et Narlikar
Si l'on introduit dans la relation (93) la valeur

déduite de l'observation pour co'/co avec M' 0 puisque

la masse d'un corps est constante dans ce modèle
et G '/G -1 /t, on peut calculer le rapport a '/a, c'est-
à-dire 1/t (voir tableaux nos. 1 et 2) et selon la relation

(86) t donne la durée, notée t0, qui nous sépare
de l'instant où R était nul.

On trouve:
tG 12,5 • 109 années,

ce qui est tout à fait raisonnable compte tenu de ce

que nous savons de l'univers par l'observation. On

peut en déduire la valeur actuelle de la «constante» de
Hubble (voir ORION no. 156 et tableau no. 2) et on
obtient :

H0 39 km/s/Mpc.

Mpc: mégaparsec. (3.1019 km).
Etant donné l'ordre de grandeur des erreurs, ce

résultat s'accorde avec les déterminations de H par
Sandage et Tammann5) ou Kirshner et Kwan6)
qui donnent H0 55 à 60 km/s/Mpc. Remarquons
qu'une détermination récente7) tend à attribuer à H0
une valeur un peu plus élevée de l'ordre de 80 à 90

km/s/Mpc.
Enfin en calculant G'/G on obtient:

G'/G -8.10_11/année.

b) Théorie de Dirac (création multiplicative)
Comme dans le cas précédent on introduit les

valeurs observées de co'/cu et G'/G dans la formule (93).
Mais cette fois le terme M'/M n'est pas nul et vaut 2/t
(voir tableaux nos. 1 et 2). Alors on trouve:

tD 6,25.109 années,

ce qui est un peu court, et pour la «constante» de
Hubble :

H0 155 km/s/Mpc.

avec une marge d'erreur assez considérable.
Et pour G'/G le calcul donne:

G'/G -16.10-11/année.

L'accord avec l'observation est donc moins bon que
dans le cas de la théorie de Hoyle et Narlikar.

c) Théorie de Dirac (création additive)
Si l'on se réfère au tableau no. 1, nous constatons

que dans ce cas le rapport eu '/co est égal à 1 /t, donc est
positif. Or le résultat des mesures est négatif. Alors
il semble bien que cela élimine, provisoirement tout
au moins, ce modèle.

Evolution solaire et température de la terre
La théorie de la structure des étoiles montre que

leur évolution est entièrement déterminée par la
connaissance à un instant donné de la masse et de la

composition chimique de l'étoile. Dans cette théorie,
la constante G intervient, mais elle est naturellement
considérée comme une vraie constante. Entre autres
choses, la théorie nous donne une relation masse-lu-

Tableau no. 2: dérivée par rapport au temps de quelques grandeurs du tableau no. 1.

Théorie de

Hoyle et Narlikar
Théorie de Dirac,
création multiplicative

Théorie de Dirac,
création additive

G' -r2 -t-2 -r2
M' 0 2t 0

a' 1 1 -t"2
co' -2t-3 -t-2 1

R' (2t)"1/2 1 —

constante de Hubble H R'/R (2t)-1 t-1 —
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minosité contenant G et qui s'accorde avec l'observation.

Pour les étoiles de la série principale à peu près
semblables au soleil, cette relation est:

L ~ G7 M5 (94)

L: luminosité absolue de l'étoile ou énergie lumi¬
neuse rayonnée par unité de temps.

M: masse de l'étoile.

Si G varie seul, M demeurant constant, on constate

que la durée de vie d'une étoile le long de la série

principale, avant de se transformer en géante rouge,
est beaucoup plus courte que dans le cas de la théorie
classique (G constante). Cela signifie que le soleil est

beaucoup plus jeune qu'on ne le pense habituellement,

en fait beaucoup trop jeune par rapport à l'âge
du système solaire1).

Si G varie comme tr1 et M varie comme t2,
l'évolution des étoiles de la catégorie du soleil n'est que
peu modifiée par rapport à celle qui est donnée par
la théorie classique8).

On peut aussi évaluer la variation de la température

# à la surface de la terre, en négligeant l'atmosphère.

Sachant que:

L ~ T4 (95)

T : température absolue du soleil.
Nous avons alors (voir appendice no. 4)

W" (96)

et

ou encore:

t"9/4

# #o
9 j4

(98)

(99)

compte de l'effet de l'atmosphère telle qu'elle était à

cette époque, laquelle peut avoir modéré les variations

de températures à la surface de la terre et aussi
de la nature solide ou liquide de cette surface.
Finalement, nous l'avons vu plus haut, l'erreur sur tQ est
assez grande. Donc on ne peut rien conclure de façon
définitive.
b) Théorie de Dirac (création multiplicative)

G ~ t"1 M ~ t2 r — t
Dans ce cas nous l'avons dit, l'évolution du soleil

est à peu de chose près semblable à celle décrite par
la théorie classique, ce qui fait que ce modèle est très
satisfaisant, à ce sujet tout au moins.
Examinons maintenant la température. Nous avons:

L ~ t3 (100)

donc: & ~ t1/4 (101)

(102)

r: rayon de l'orbite terrestre.
Si l'on tient compte de l'atmosphère, & représentera

la température à une certaine altitude,
a) Théorie de Hoyle et Narlikar

On considère toujours le modèle où:

G ~ tr1 M constante r ~ t
Alors l'évolution du soleil et l'âge du système

solaire ne sont pas favorables à ce modèle. Quant à la
variation de la température elle se calcule à l'aide de

(94) et (96). D'où:
L ~ t-7 (97)

Un calcul analogue au précédent donne ê 280 °K,
ce qui est assez raisonnable,
c) Théorie de Dirac (création additive)

G ~ t-1 M constante r ~ tr1

En ce qui concerne l'évolution du soleil, la situation

est semblable à celle décrite pour la théorie de

Hoyle et Narlikar. Par contre, pour la température,
le résultat est différent. Nous avons en effet:

L ~ t-7 (103)

donc: & ~ t-5/4 (104)

# #o(-)
/4

(105)

Et le même calcul donne & 320 °K ce qui est encore
acceptable.

Appendices

&o : température actuelle (290 °K)
to: instant actuel, 12.109 années dans ce modèle.

Si nous calculons la température & il y a un milliard
d'années on trouve environ 350 °K ou 70 °C. Ce n'est

pas excessif mais peut-être un peu trop élevé pour
permettre, sinon l'apparition, du moins le développement

de la vie et des espèces végétales et animales.

Il y a lieu toutefois de mentionner la faculté qu'ont
les bactéries de subsister à des températures élevées

voisines de 80 à 90 °C. D'ailleurs il faudrait tenir

1) Conservation du moment cinétique dans la théorie de Hoyle et

Narlikar
Lors d'une transformation conforme caractérisée par une

fonction ß (xi) d'un espace-temps dans un autre, toute grandeur

physique A ayant, dans ce système particulier d'unité, la
dimension d'une longueur à la puissance n, soit Ln, devient A *

ßn(xi)A dans le nouvel espace-temps. (Voir ORION no.
157, p. 147).

Si n o, alors A* A. Et si A est conservé dans le premier
espace-temps, il l'est aussi dans l'autre.

Or la dimension du moment cinétique est : longueur X masse
X vitesse, donc dans ce système particulier L°.

Pour montrer que r ou a varie proportionnellement à t, on
utilise la conservation du moment cinétique, c'est-à-dire :

r2co constante

et la troisième loi de Kepler (voir plus loin)

a3co2 GM

En éliminant a> entre (106) et (107) on obtient:

r4
ö GM constante

(106)

(107)

(108)
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Le rapport r4/a3 a la dimension d'une longueur que l'on peut
désigner par d. Etant donné que l'espace-temps considéré
impose à G de varier comme t-1, la relation (108) montre que d
varie comme t et alors a et r varient aussi proportionnellement
à t, car dans l'approximation de l'orbite circulaire d r a.

En utilisant (106) on voit que eu varie proportionnellement
à t-2. Or eu 2 jt/P où P est la période ou durée d'une révolution.

Donc P augmente comme t2.

2) Accélération de la longitude de la lune

Considérons le système terre-lune. Dans le plan de l'orbite
lunaire on peut repérer la position de la lune à un instant donné
en mesurant l'angle a formé par la droite terre-lune et une
droite joignant la terre à une étoile supposée fixe sur la sphère
céleste (Fig. 1). Cet angle est par définition la longitude de la
lune. Naturellement il varie au cours du temps.

La grandeur eu introduite dans la relation (89) est la vitesse

angulaire de la lune, donc eu a', et eu' a" est l'accélération
angulaire.

Lune

Etoile

Fig. 1 : Longitude de la lune.

relation: ma Fg

ou dans l'approximation de l'orbite circulaire par:

mM

Vu2 G-

Fg : intensité de la force de gravitation.
M: masse du soleil.

m: masse de la terre.
eu : vitesse angulaire de la terre.
a: accélération de la terre.
(110) se simplifie et donne:

r3 eu2 GM

la condition de remplacer r par le demi grand axe a de l'orbite.
C'est la troisième loi de Kepler, soit:

a3 eu2 GM (112)

En prenant les logarithmes naturels des deux membres de (112),
nous obtenons:

3 log a + 2 log eu log G 4- log M
et en dérivant (113) par rapport au temps:

a' eu' G' M'
3 — + 2 — TV + VT

a tu G M

C'est la relation (93).
En introduisant jj — 2ji/P dans (112) on obtient:

a"

P2

GM
4rr2 constante

(113)

(114)

(115)

qui est la forme habituelle de la troisième loi de Kepler.

4) Luminosité du soleil et température de la terre
L'intensité de l'énergie lumineuse reçue en un point varie en

raison inverse du carré de la distance de la source au récepteur,
à la condition toutefois que le milieu ne soit pas absorbant. En
désignant par W l'énergie reçue à la surface de la terre, nous

W (116)

D'autre part, selon les lois du rayonnement noir, la température

& du rayonnement est proportionnel à la racine quatrième
de l'énergie rayonnée. Donc :

3) Troisième loi de Kepler
Le mouvement de la terre autour du soleil est décrit par la w (117)

(109) C'est la relation (96).

(110)

(111)

Cette relation est aussi correcte si la trajectoire est elliptique à
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Die Japetus-Verfinsterung vom 20. Oktober 1977

Von den 5 helleren Saturnmonden tritt Japetus weitaus

am seltensten in den Schatten des Planeten, nämlich

etwa fünfmal in 30 Jahren. So ist es dem
Besitzer eines grösseren Teleskops zu empfehlen, in der
nautischen Morgendämmerung des 20. Oktober nach
dem Ende einer solchen Finsternis Ausschau zu halten,

welche am Vorabend, für Europa unsichtbar,
begonnen haben wird. Eine weitere solche Gelegenheit,

die einzige für die nachfolgenden 14 Jahre,
wird sich im kommenden Januar ergeben und im
Sternenhimmel 1978 erwähnt sein.

Nach neuesten Rechnungen (1) endet die Finsternis

um 6 Uhr 07 MEZ, wobei aber der Zeitpunkt
mangels genauer Kenntnis der Bahnelemente um
etwa eine Viertelstunde unsicher ist. Die Abbildung
enthält alle nötigen Angaben zur Identifizierung des

Japetus, dessen Helligkeit knapp schwächer als jene
der benachbarten Dione zu erwarten ist.

Da die 4 übrigen hellen Saturnmonde ihre Bahnen
nahe der Ringebene ziehen, ereignen sich ihre
Finsternisse um die Zeit, da die Sonnenstrahlen in dieser
Ebene verlaufen, also 1980 und 1996 (2). Die Jape-
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