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Le problème cosmologique et ses hypothèses III
par Jean Dubois, Lausanne

Hypotheses de la théorie de Hoyle et Narlikar

Première partie
Introduction

Avant d'examiner ces hypothèses, il y a lieu de

préciser que le Professeur Hoyle est l'auteur, pour
autant que je sois bien informé, de deux théories. La
première, la théorie dite stationnaire*), est celle dont
il est encore actuellement question dans les publications

de cosmologie, en général pour dire qu'elle est
réfutée par diverses observations. Or, depuis quelques

années, les Professeurs Hoyle et Narlikar ont
élaboré une nouvelle théorie de la gravitation dont
il est possible de prendre connaissance dans des textes
publiés en 19641) et en 19662) déjà et surtout dans

ceux publiés en 19713) et en 19724. 5). Aussi ce sont
les hypothèses de cette nouvelle théorie et quelques-
unes de leurs conséquences que je me propose d'examiner

ici. Certaines d'entre elles sont probablement
assez déconcertantes pour le physicien. Aussi je
souhaite, par cet article, susciter chez le lecteur un intérêt

suffisant pour qu'il étudie cette théorie dans les
articles originaux, et cela d'autant plus que les hypo-
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thèses n'en sont pas faciles à déceler et que je ne
prétends pas y être parvenu parfaitement bien.

Etant donné que je ne connais pas de texte en français

relatif à cette théorie, je donnerai une traduction
personnelle de certains termes en faisant figurer entre
parenthèses le terme original anglais. De plus l'énoncé
de quelques-unes des hypothèses, ainsi que certaines

remarques et formules, sont extraites des publications
3) 4) et u) citées en références.

Hypothèse fondamentale
L'espace-temps utilisé est un espace de Riemann.

Alors la «distance» ou «intervalle» entre deux points
voisins est donné par:7)

ds2 gijdx'dxi (25)

formule dans laquelle les fonctions gjj caractérisent
la géométrie de l'espace-temps.

Considérons une fraction Q (xi) à valeurs toujours
positives et ne devenant jamais infiniment grande.
Multiplions les fonctions gjj par û 2(xi) et supposons
qu'il existe un espace de Riemann caractérisé par des
fonctions gjj * telles que :

gij* ß2(xi)gij (26)

Alors la fonction Ü (xi) définit une transformation
d'un espace de Riemann dans un autre, et on parle de
transformation conforme (conformai transformation).

Il est important de ne pas confondre ce type de
transformation avec un changement de système de
coordonnées. Dans ce dernier cas, la «distance» entre
deux points voisins donnés n'est pas modifiée, tandis

que dans une transformation conforme la «distance»
ds devient ds* avec:

ds * 12 (xi)ds (27)

Nous pouvons maintenant énoncer ce qui paraît
être l'hypothèse fondamentale de cette théorie, soit:

Les lois de la physique doivent demeurer invariantes lors

*) Signalons que la théorie stationnaire de Bondi et Gold est
différente de celle de Hoyle6).
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d'une transformation conforme, définie par la fonction Q,
de la géométrie de /'espace-temps.

Ce que l'on peut comprendre de la façon suivante :

les équations de la physique doivent conserver la
même forme lorsqu'on effectue une transformation
conforme.

On peut aussi dire que les différents espaces-temps
reliés entre eux par la relation (27) sont équivalents du
point de vue de la physique.

Et si nous considérons maintenant le problème
cosmologique, nous voyons que dans cette théorie
la nature (sphérique, euclidienne, ou hyperbolique)
de la géométrie de l'espace-temps dans lequel nous
nous trouvons cesse de constituer un problème, et

que l'on peut choisir le type de géométrie le mieux
adapté à la nature du problème examiné.
Hypothèse no. 2:

Toutes les particules constituants l'univers créent en

chaque point de l'espace-temps un champ de masse (mass
field) de nature scalaire et d'intensité variable d'un point
à un autre.

Il ne faut pas confondre ce champ avec le champ
gravifique de la théorie de Newton.
Hypothèse no. 3:

La masse d'une particule située en un point quelconque de

l'espace-temps est proportionnelle au champ de masse existant

en ce point.
Il résulte de cette hypothèse que la masse n'est pas

une propriété intrinsèque d'une particule, mais est
déterminée par la présence de la matière dans tout
l'univers.

Ainsi, si l'univers ne contenait qu'une seule particule,

sa masse serait nulle.
En fait, cette hypothèse est une expression précise

du principe de Mach7).
Les hypothèses nos. 2 et 3 entraînent que la masse

d'une particule n'est pas constante mais est fonction
de sa position dans l'espace-temps.

A ce stade de leurs développements théoriques,
Hoyle et Narlikar obtiennent une théorie très
générale dont le domaine d'application s'étend de la
particule élémentaire à la cosmologie8). Pour l'orienter

vers la cosmologie, ils considèrent le cas où le

système physique étudié est constitué par un grand
nombre de particules identiques, par exemple un
fluide parfait, et ils obtiennent une équation très
générale de laquelle on peut déduire celle d'EiNSTEiN
si la masse des particules est supposée constante.

Dans ce cas l'intensité du champ de masse en un
point de l'espace-temps dépend, entre autres choses,
de la densité du fluide ou du nombre de particules par
unité de volume de l'espace-temps.

Il apparaît alors deux possibilités.
Hypothèse no. 4a :

Le nombre n de particules par unité de volume varie d'un
point à un autre de l'espace-temps.
Hypothèse no. 4b:

Le nombre n de particules par unité de volume est constant.

Dans cette dernière circonstance, les formules qui
définissent le champ de masse et la masse d'une particule

contiennent des constantes de proportionnalité
ou de couplage. Il est fait alors l'hypothèse suivante :

Hypothèse no. 5:
Ces constantes sont des nombres positifs ou négatifs.
Il en résulte que le champ de masse est soit positif,

soit négatif.
Afin de concilier cette théorie avec l'observation,

les hypothèses précédentes sont complétées par les
suivantes :

Hypothèse no. 6:
Les régions de l'univers où le champ de masse conserve un

signe constant sont grandes par rapport à la portée des

observations astronomiques actuelles.

Hypothèse no. 7:
Le signe de la constante de couplage entre le champ de

masse et la masse d'une particule est tel que la masse de la

particule est toujours positive, quelle que soit la région de

l'univers dans laquelle elle se trouve.
Tout cela signifie que l'univers est constitué de

régions ou volumes de l'espace-temps où le champ de
masse est tantôt positif, tantôt négatif, ces diverses
régions étant séparées les unes des autres par des «surfaces

à 3 dimensions» de l'espace-temps où le champ
de masse est nul. Et sur une telle surface, la masse
d'une particule est nulle.

Remarquons que si l'on n'admet pas l'existence de

ces deux types de régions, il faut faire l'hypothèse
que la quantité de matière contenue dans l'univers
est finie, sinon la masse d'une particule serait infinie
(c'est là une remarque propre à l'auteur de cet article).

Hoyle et Narlikar ont utilisé leur théorie pour,
d'une part examiner ce que deviennent les modèles
de Fried mann lors d'une transformation conforme,
et de l'autre pour imaginer de nouveaux modèles
cosmologiques. Mais avant de les aborder il faut se pencher

sur un problème, important dans cette théorie,
celui du système d'unités.

Choix d'un système d'unités

Il se trouve que les hypothèses sur lesquelles cette
théorie repose imposent un système d'unités un peu
déroutant pour le physicien expérimentateur ou
l'ingénieur.

Il est évident qu'une grandeur munie d'une dimension

est mesurée par rapport à une autre grandeur de

même nature (ou étalon) et cela en un même point de

l'espace-temps. Le résultat d'une mesure est donc un
nombre pur, sans dimension, et lors d'une transformation

conforme, ce nombre doit être conservé. Cela
n'est possible que si toute grandeur physique munie
d'une dimension (y compris l'étalon de référence)
est modifiée par la transformation envisagée de sorte

que le rapport des deux demeure constant, et cela

toujours en un même point de l'espace-temps.
Choisissons par exemple un intervalle ds donné par:

ds2 c2dt2-dx2-dy2-dz2 (28)
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c est la vitesse de la lumière
x, y, z sont les coordonnées spatiales d'un point
t l'instant de l'observation du point

et utilisons, pour fixer les idées, le système d'unités
C.G.S. Alors ds a la dimension d'une longueur. Soit
une transformation conforme caractérisée par la fonction

Q (xi). On a, par la définition de la transformation:

ds* Q (xi)ds (29)

Cela signifie que toute grandeur physique ayant la
dimension d'une longueur devra être multipliée par û
(xi) pour obtenir son image par une transformation
conforme. Mais on ne sait comment procéder pour
une grandeur physique ayant une autre dimension.

Par contre, si dans les équations de la physique on
pose c 1 et sans dimension, et aussi h 1 (constante

de Planck) et sans dimension, alors toutes les

grandeurs de la physique peuvent être mesurées avec
une seule unité.

En effet, considérons la relation:

E m0c2 (30)

On constate que si la masse d'une particule est
constante lorsque le système physique auquel elle
appartient est décrit dans un certain type de géométrie,

elle deviendra variable si cette description est
effectuée dans une nouvelle géométrie obtenue par
transformation conforme de la première.

Transformation conforme de la géométrie des modèles de

Friedmann
Pour mieux comprendre les conséquences des

hypothèses, examinons brièvement un exemple
important de transformation conforme. Parmi tous les
modèles relativistes uniformes, ceux de Friedmann
(p 0, A 0) sont le plus souvent considérés car ils
sont les plus simples7). En effet, pour eux, les équations

fondamentales (5) et (6) se simplifient
considérablement9). La géométrie des espaces-temps des
modèles relativistes uniformes est caractérisée par un
intervalle ds donné par:7)

ds2 dt2 - R2(t) dr2 + r2d 02 + r2sin2 0dy>2

(1 + kr2/4)2

(33)

m0: masse d'une particule au repos (par rapport à

un système de référence inertial)
E : énergie totale de la particule.

c2 n'y apparaît que comme une constante de
proportionnalité et avec notre choix, masse et énergie ont
même valeur numérique et même dimension.

Puis la relation :

E hv (31)

v: fréquence de l'onde électromagnétique associée

au photon

E: énergie du photon
dans laquelle h est une constante de proportionnalité
et avec notre choix, énergie et fréquence sont mesurées

par le même nombre et ont même dimension.
En résumé:

Longueur et temps ont même dimension,
énergie et masse ont même dimension,
énergie et fréquence ont même dimension.

Or la fréquence est l'inverse d'un temps. Donc en
adoptant comme unité la longueur L, nous voyons
que:

La dimension du temps est: L
La dimension d'une fréquence est : L-1
La dimension d'une énergie est: L-1
La dimension d'une masse est: L-1
La dimension d'une force est : L~2

Alors, dans toute transformation conforme, une
grandeur physique de dimension Ln devra être
multipliée par ßn(xi) afin que le résultat d'une mesure
soit conservé.

En particulier, dans le cas de la masse, nous avons :

m* ß-i(xi)m (32)

que l'on appelle parfois : métrique ou élément de

Robertson et Walker.
Hoyle et Narlikar ont montré4) que l'on peut

toujours trouver, pour un modèle de Friedmann,
une fonction Q (xi), telle que l'image de la métrique
de Robertson et Walker par la transformation
conforme considérée soit celle d'un espace-temps de

Minkowski, donc:

ds *2 dr2 - dr *2-r2d 02 - r2sin2 0d<p2 (34)

On constate alors que la fonction R(t), et avec elle la

singularité (R[t] 0 pour t 0) qui caractérise les
modèles de Friedmann a disparu. Donc l'image d'un
univers variable de Friedmann est un univers à
géométrie indépendante du temps.

Or, selon l'hypothèse fondamentale, les descriptions

de l'univers dans la géométrie d'un modèle de

Friedmann ou dans celle d'un espace-temps obtenu
après une transformation conforme sont physiquement

équivalentes. Et, selon ce point de vue, la
singularité des modèles de Friedmann n'est plus que la

conséquence du choix d'un certain espace-temps plutôt

que d'un autre et, par conséquent, n'a pas de

signification physique réelle.
Les calculs détaillés de la transformation effectuée

sur le modèle d'EiNSTEiN-DE Sitter (Friedmann
avec k 0) montrent que l'image de ce modèle dans

l'espace-temps de Minkowski est un univers statique
car, non seulement sa géométrie est invariable au
cours du temps, mais encore la densité du fluide
matériel est uniforme et constante. C'est donc un univers
infini dans le temps (ni origine, ni fin) et dans l'espace.
Dans le cas des deux autres modèles de Friedmann
(k 1 et k -1), le comportement du fluide est plus
compliqué4).

Pour effectuer la transformation conforme, il faut
introduire une nouvelle variable temps t, définie par:
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* / W)<35,*>

o

et alors on trouve que la masse m* d'une particule,
après la transformation conforme, est donnée par:

m* — £2 g T2 (36)

e: constante de proportionnalité entre la masse de
la particule et le champ de masse

q : densité du fluide

donc varie proportionnellement au carré du temps.
Il y a toutefois une difficulté liée à la singularité du

modèle d'EiNSTEiN-DE Sitter. La transformation ne

peut pas être efféctuée en t 0, car alors la fonction
Q (t) est infiniment grande. Donc on ne peut
transformer que la partie du modèle pour laquelle soit
t > 0, soit t < 0. **) Il leur correspond respectivement
un demi espace-temps de Minkowski avec soit r> 0,
soit t < 0. Mais la différence d'avec les modèles de
Friedmann réside dans ce que la jonction de l'un à

l'autre se fait sans difficulté en t 0. Or en r 0, la
masse m* d'une particule est nulle. Ainsi à la singularité

du modèle d'EiNSTEiN-DE Sitter correspond
des régions de l'espace-temps de Minkowski où la
masse d'une particule est nulle. Selon l'hypothèse
no. 3 cela signifie que la particule se trouve sur une
surface à 3 dimensions de l'espace-temps où le champ
de masse est nul. Et toujours selon les hypothèses de
la théorie, une telle surface sépare deux régions où le
champ de masse est soit positif, soit négatif. Alors, on
peut décider arbitrairement que le demi espace-temps
dans lequel nous nous trouvons, caractérisé par r > 0,
est une région où le champ de masse est positif.

Dans les modèles relativistes, il existe une relation
entre la luminosité apparente d'une source et son
décalage spectral 2. Hoyle et Narlikar montrent qu'en
utilisant la relation (36) et le fait que la luminosité
intrinsèque d'une source (énergie émise par unité de

temps) est de dimension L-2, on établi avec une
grande facilité une relation identique à celle que l'on
obtient dans le modèle d'EiNSTEiN-DE Sitter. C'est
dans ce sens qu'il faut comprendre l'invariance des

lois de la physique lors d'une transformation conforme.

Ce qui est modifié par contre, c'est l'origine de
cette loi. Dans les modèles relativistes, la cause en est
l'expansion de l'univers. Dans le modèle de Hoyle
et Narlikar, la cause en est la variation de la masse
d'une particule au cours du temps.

Cela nous permet aussi de mieux comprendre la
distinction entre un fait cosmologique de nature
physique et un fait pseudo-physique, mais en réalité de

nature géométrique. Ainsi la loi citée plus haut est un
fait physique. Etablie dans le cadre d'un modèle, on
la retrouve dans tous ceux qui s'en déduisent par une
transformation conforme. Par contre, la singularité

des modèles de Friedmann a disparu après la
transformation. C'est donc un fait de nature géométrique,
conséquence directe du choix du modèle initial.

Notons, et ce n'est pas une remarque banale, que
cela permet de considérer le problème important de

l'origine éventuelle de l'univers sous un jour tout à

fait nouveau. Beaucoup de cosmologistes considèrent

la singularité des modèles de Friedmann non
pas comme une étape que l'univers doit franchir au
cours de son évolution, mais comme une origine. Ce

qui implique que les modèles de Friedmann
n'auraient pas de signification physique pour t< 0. Ce

point de vue, nous l'avons déjà relevé, est extérieur à

la théorie de ces modèles7).
Mais puisque la singularité disparaît lors de la

transformation conforme envisagée ici, il en est de
même du concept origine de l'univers10).

Il est important de remarquer que ce modèle satisfait

aux hypothèses nos. 4b, 5, 6 et 7.
Du point de vue de l'observation ce modèle n'est

pas très satisfaisant car la relation (36) entraîne que
le sens de propagation des ondes électromagnétiques
n'est pas décrit correctement dans ce modèle. Alors,
par l'hypothèse fondamentale, cela est aussi vrai dans
le modèle d'EiNSTEiN-DE Sitter. Et c'est l'une des

raisons qui ont conduit Hoyle et Narlikar à

rechercher de nouveaux modèles.
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L'ouvrage cité en référence no. 5 est tout à fait remarquable
et à la portée de tout lecteur cultivé. Le Prof. Hoyle y expose
sa théorie sans faire usage de développements mathématiques,
et il y traite aussi d'autres sujets très intéressants.
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*) Lors de la transformation conforme, les variables 6 et <p ne
sont pas modifiées. Mais la variable t est remplacée par r et r
par r* (si k 0, r* r).

* *) La formule (35) montre que t 0 entraîne r ^ 0.
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