Zeitschrift: Orion : Zeitschrift der Schweizerischen Astronomischen Gesellschaft
Herausgeber: Schweizerische Astronomische Gesellschaft

Band: 34 (1976)

Heft: 157

Artikel: Le probleme cosmologique et ses hypothéses lli
Autor: Dubois, Jean

DOl: https://doi.org/10.5169/seals-899531

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 28.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-899531
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

ORION

Zeitschrift der Schweizerischen Astronomischen Gesellschaft
Bulletin de la Société Astronomique de Suisse

34, Jahrgang, Seiten 143-186, Nt. 157, Dezember 1976

34e année, pages 143-186, No. 157, Décembre 1976

Le probléeme cosmologique et ses hypotheses III

par Jean Dusors, Lausanne

Hypothéses de la théorie de HOYLE e NARLIKAR

Premitre partie

Introduction

Avant d’examiner ces hypotheses, il y a lieu de
préciser que le Professeur HovLE est I’auteur, pour
autant que je sois bien informé, de deux théories. La
premiére, la théorie dite stationnaire*), est celle dont
il est encore actuellement question dans les publica-
tions de cosmologie, en général pour dire qu’elle est
réfutée par diverses observations. Oz, depuis quel-
ques années, les Professeurs HoyLE et NARLIKAR ont
élaboré une nouvelle théorie de la gravitation dont
il est possible de prendre connaissance dans des textes
publiés en 19641) et en 19662) déja et surtout dans
ceux publiés en 19713) et en 19724, 5). Aussi ce sont
les hypotheses de cette nouvelle théorie et quelques-
unes de leurs conséquences que je me propose d’exa-
miner ici. Certaines d’entre elles sont probablement
assez déconcertantes pour le physicien. Aussi je sou-
haite, par cet article, susciter chez le lecteur un inté-
rét suffisant pour qu’il étudie cette théorie dans les
articles originaux, et cela d’autant plus que les hypo-
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théses n’en sont pas faciles a déceler et que je ne pré-
tends pas y étre parvenu parfaitement bien.

Etant donné que je ne connais pas de texte en fran-
cais relatif 4 cette théorie, je donnerai une traduction
personnelle de certains termes en faisant figurer entre
parentheéses le terme original anglais. De plus ’énoncé
de quelques-unes des hypothéses, ainsi que certaines
remarques et formules, sont extraites des publications
3) 4) et 1) citées en références.

Hypothese fondamentale

L’espace-temps utilisé est un espace de RIEMANN.
Alors la «distance» ou «intervalle» entre deux points
voisins est donné par:?)

ds2 = gjidxidxj 25
gij

formule dans laquelle les fonctions gjj caractérisent
la géométrie de ’espace-temps.

Considérons une fraction 2 (xi) 2 valeurs toujours
positives et ne devenant jamais infiniment grande.
Multiplions les fonctions gjj par 2 2(xi) et supposons
qu’il existe un espace de RIEMANN caractérisé par des
fonctions gjj * telles que:

gij* = Q2(xi)gjj (26)

Alors la fonction 2 (xi) définit une transformation
d’un espace de RIEMANN dans un autre, et on patle de
transformation conforme (conformal transformation).

Il est important de ne pas confondre ce type de
transformation avec un changement de systéme de
coordonnées. Dans ce dernier cas, la «distance» entre
deux points voisins donnés n’est pas modifiée, tandis
que dans une transformation conforme la «distance»
ds devient ds* avec:

ds* = 0 (xi)ds (27)

Nous pouvons maintenant énoncer ce qui parait

étre ’hypothése fondamentale de cette théorie, soit:

Les lois de la physique doivent demenrer invariantes lors

*) Signalons que la théorie stationnaire de Bonp1 et GOLD est
différente de celle de HovLES).
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d’une transformation conforme, définie par la fonction 2,
de la géométrie de Iespace-temps.

Ce que I’on peut comprendre de la fagon suivante:
les équations de la physique doivent conserver la
méme forme lorsqu’on effectue une transformation
conforme.

On peut aussi dire que les différents espaces-temps
teliés entre eux par la relation (27) sont équivalents du
point de vue de la physique.

Et si nous considérons maintenant le probleme
cosmologique, nous voyons que dans cette théorie
la nature (sphérique, euclidienne, ou hyperbolique)
de la géométrie de ’espace-temps dans lequel nous
nous trouvons cesse de constituer un probleéme, et
que Pon peut choisir le type de géométrie le mieux
adapté 2 la nature du probléme examiné.

Hypothése no. 2:

Toutes les particules constituants Iunivers créent en
chague point de Pespace-temps un champ de masse (mass
field) de nature scalaire et d’intensité variable d’un point
a un autre.

II ne faut pas confondre ce champ avec le champ
gravifique de la théorie de NEwTON.

Hypothese no. 3:

La masse d’une particule située en un point quelcongne de
Pespace-temps est proportionnelle an champ de masse exis-
tant en ce point.

Il résulte de cette hypothése que la masse n’est pas
une propriété intrinséque d’une particule, mais est
déterminée par la présence de la matiere dans tout
lunivers.

Ainsi, si 'univers ne contenait qu’une seule parti-
cule, sa masse serait nulle.

En fait, cette hypothese est une expression précise
du principe de MacH).

Les hypothéses nos. 2 et 3 entrainent que la masse
d’une particule n’est pas constante mais est fonction
de sa position dans I’espace-temps.

A ce stade de leurs développements théoriques,
HovrE et NARLIKAR obtiennent une théotie trés gé-
nérale dont le domaine d’application s’étend de la
particule élémentaire 4 la cosmologie®). Pour ’orien-
ter vers la cosmologie, ils considerent le cas ou le
systéme physique étudié est constitué par un grand
nombre de particules identiques, par exemple un
fluide parfait, et ils obtiennent une équation tres gé-
nérale de laquelle on peut déduire celle d’EINsTEIN
si la masse des particules est supposée constante.

Dans ce cas 'intensité du champ de masse en un
point de I’espace-temps dépend, entre autres choses,
de la densité du fluide ou du nombre de particules par
unité de volume de I’espace-temps.

Il apparait alors deux possibilités.

Hypothése no. 4a:

Le nombre 0 de particules par unité de volume varie d’un
point & un autre de Uespace-temps.
Hypothése no. 4b:

Le nombre n de particules par unité de volume est cons-
tant.
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Dans cette derniere circonstance, les formules qui
définissent le champ de masse et la masse d’une parti-
cule contiennent des constantes de proportionnalité
ou de couplage. Il est fait alors ’hypothése suivante:
Hypothese no. 5:

Ces constantes sont des nombres positifs on négatifs.

Il en résulte que le champ de masse est soit positif,
soit négatif.

Afin de concilier cette théorie avec ’observation,
les hypotheses précédentes sont complétées par les
suivantes:

Hypothése no. 6:

Les régions de Iunivers o#t le champ de masse conserve un
signe constant sont grandes par rapport a la portée des ob-
servations astronomiques actuelles.

Hypothése no. 7 :

Le signe de la constante de couplage entre le champ de
masse et la masse d’une particule est tel gue la masse de la
particule est toujours positive, quelle que soit la région de
Punivers dans laquelle elle se tromve.

Tout cela signifie que 'univers est constitué de ré-
gions ou volumes de I’espace-temps ou le champ de
masse est tantOt positif, tantdt négatif, ces diverses
régions étant séparées les unes des autres par des «suz-
faces a 3 dimensions» de I’espace-temps ol le champ
de masse est nul. Et sur une telle surface, la masse
d’une particule est nulle.

Remarquons que si ’on n’admet pas ’existence de
ces deux types de régions, il faut faire I’hypothese
que la quantité de matie¢re contenue dans I"univers
est finie, sinon la masse d’une particule serait infinie
(C’est 1a une remarque propre 4 I'auteur de cet article).

Hovie et NARLIKAR ont utilisé leur théorie pour,
d’une part examiner ce que deviennent les modeles
de FRIEDMANN lors d’une transformation conforme,
et de I’autre pour imaginer de nouveaux modeles cos-
mologiques. Mais avant de les aborder il faut se pen-
cher sur un probléme, important dans cette théorie,
celui du systeme d’unités.

Choix d’un systéme d’unités

Il se trouve que les hypothéses sur lesquelles cette
théorie repose imposent un syst¢éme d’unités un peu
déroutant pour le physicien expérimentateur ou I’in-
génieur.

Il est évident qu’une grandeur munie d’une dimen-
sion est mesurée par rapport 4 une autre grandeur de
méme nature (ou étalon) et cela en un méme point de
Pespace-temps. Le résultat d’une mesure est donc un
nombre pur, sans dimension, et lors d’une transfor-
mation conforme, ce nombre doit étre conservé. Cela
n’est possible que si toute grandeur physique munie
d’une dimension (y comptis I’étalon de référence)
est modifiée par la transformation envisagée de sorte
que le rapport des deux demeure constant, et cela
toujours en un méme point de ’espace-temps.

Choisissons par exemple un intervalle ds donné par:

ds? = c2di2—dx2-dy?-dz? (28)
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c est la vitesse de la lumiere
X, y, z sont les coordonnées spatiales d’un point
t I’instant de ’observation du point

et utilisons, pour fixer les idées, le syst¢éme d’unités
C.G.S. Alors ds a la dimension d’une longueur. Soit
une transformation conforme caractérisée par la fonc-
tion 2 (xi). On a, par la définition de la transforma-
tion:
ds* = 2 (xi)ds (29)

Cela signifie que toute grandeur physique ayant la di-
mension d’une longueur devra étre multipliée par 2
(xi) pour obtenir son image par une transformation
conforme. Mais on ne sait comment procéder pour
une grandeur physique ayant une autre dimension.

Par contre, si dans les équations de la physique on
pose ¢ = 1 et sans dimension, et aussi h = 1 (cons-
tante de PLANCK) et sans dimension, alors toutes les
grandeurs de la physique peuvent étre-mesurées avec
une seule unité.

En effet, considérons la relation:

E = mqoc? (30)

mg: masse d’une particule au repos (par rapport 2
un systeme de référence inertial)
E: ¢énergie totale de la particule.

c? n’y apparait que comme une constante de propor-
tionnalité et avec notre choix, masse et énergie ont
méme valeur numérique et méme dimension.
Puis la relation:
E =hv (31)
v: fréquence de 'onde électromagnétique associée
au photon

E: énergie du photon

dans laquelle h est une constante de proportionnalité
et avec notre choix, énergie et fréquence sont mesu-
rées par le méme nombre et ont méme dimension.
En résumé:
Longueur et temps ont méme dimension,
énergie et masse ont méme dimension,
énergie et fréquence ont méme dimension.
Or la fréquence est inverse d’un temps. Donc en
adoptant comme unité la longueur L, nous voyons

que:
La dimension du temps est: L
La dimension d’une fréquence est:  L-1
La dimension d’une énergie est: T2
La dimension d’une masse est: L1
La dimension d’une force est: L2

Alors, dans toute transformation conforme, une
grandeur physique de dimension Ln devra étre mul-
tipliée par Qn(xi) afin que le résultat d’une mesure
soit conservé.

En particulier, dans le cas de la masse, nous avons:
m* = Q-1(xi)m (32)
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On constate que si la masse d’une particule est
constante lorsque le systéme physique auquel elle
appartient est décrit dans un certain type de géomé-
trie, elle deviendra variable si cette description est
effectuée dans une nouvelle géométrie obtenue par
transformation conforme de la premiere.

Transformation conforme de la géométrie des modéles de
FRIEDMANN

Pour mieux comprendre les conséquences des hy-
potheses,  examinons briévement un exemple im-
portant de transformation conforme. Parmi tous les
modeles relativistes uniformes, ceux de FRIEDMANN
(p = 0, 4 = 0) sont le plus souvent considérés car ils
sont les plus simples?). En effet, pour eux, les équa-
tions fondamentales (5) et (6) se simplifient considé-
rablement?). La géométrie des espaces-temps des
modeles relativistes uniformes est caractérisée par un
intervalle ds donné par:7)

ds? = dt2 — R2(t) [dr2 4 r2d 6% + r2sin26de?]| (33)
- (1 + kr2/4)?

que ’on appelle parfois: métrique ou élément de Ro-
BERTSON et WALKER.

HovLe et NARLIKAR ont montré4) que 'on peut
toujours trouver, pour un modéle de FRIEDMANN,
une fonction 2 (xi), telle que ’'image de la métrique
de ROBERTSON et WALKER par la transformation con-
forme considérée soit celle d’un espace-temps de
MinkowskI, donc:

ds*2 = d72 — dr*2-r2d 0% — r2sin20d¢?

c2

(34)

On constate alors que la fonction R(t), et avec elle la
singularité (R[t] = 0 pour t = 0) qui caractérise les
modéles de FRIEDMANN a dispatu. Donc I'image d’un
univers variable de FRIEDMANN est un univers a géo-
métrie indépendante du temps.

Or, selon I’hypothese fondamentale, les descrip-
tions de P'univers dans la géométrie d’un modele de
FRIEDMANN ou dans celle d’un espace-temps obtenu
aprés une transformation conforme sont physique-
ment équivalentes. Et, selon ce point de vue, la sin-
gularité des modéles de FRIEDMANN n’est plus que la
conséquence du choix d’un certain espace-temps plu-
tot que d’un autre et, par conséquent, n’a pas de
signification physique réelle.

Les calculs détaillés de la transformation effectuée
sur le modeéle d’EinsTEIN-DE SrTTER (FRIEDMANN
avec k = 0) montrent que I’image de ce modéle dans
’espace-temps de MINKOWSKI est un univers statique
car, non seulement sa géométrie est invariable au
cours du temps, mais encore la densité du fluide ma-
tériel est uniforme et constante. C’est donc un univers
infini dans le temps (ni origine, ni fin) et dans I’espace.
Dans le cas des deux autres modeles de FRIEDMANN
(k = 1 et k = -1), le comportement du fluide est plus
compliqué?).

Pour effectuer la transformation conforme, il faut
introduire une nouvelle variable temps z, définie par:
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t
dt
#= | = 35)*
| %% (5%
o .
et alors on trouve que la masse m* d’une particule,
apres la transformation conforme, est donnée par:

(36)

1
k= — 2 g2
2 4

e: constante de proportionnalité entre la masse de
la particule et le champ de masse
o: densité du fluide

donc varie proportionnellement au carré du temps.

Il y a toutefois une difficulté liée a la singularité du
modele I’EINSTEIN-DE SrTTER. La transformation ne
peut pas étre efféctuée en t = 0, car alors la fonction
2 (t) est infiniment grande. Donc on ne peut trans-
former que la partie du modele pour laquelle soit
t > 0,soit t < 0.**) Il leur correspond respectivement
un demi espace-temps de MINKOWSKI avec soit 7> 0,
soit 7< 0. Mais la différence d’avec les modeles de
FRIEDMANN réside dans ce que la jonction de I'un 2
Pautre se fait sans difficulté ent = 0. Orenz =0, la
masse m* d’une particule est nulle. Ainsi 4 la singu-
larité du modéle d’EINSTEIN-DE SITTER correspond
des régions de I’espace-temps de MINKOWSKI ol la
masse d’une particule est nulle. Selon I'hypotheése
no. 3 cela signifie que la particule se trouve sur une
surface 2 3 dimensions de I'espace-temps ou le champ
de masse est nul. Et toujours selon les hypotheéses de
la théorie, une telle surface sépare deux régions ou le
champ de masse est soit positif, soit négatif. Alors, on
peut décider arbitrairement que le demi espace-temps
dans lequel nous nous trouvons, caractérisé par v > 0,
est une région ol le champ de masse est positif.

Dans les modeles relativistes, il existe une relation
entre la luminosité apparente d’une source et son dé-
calage spectral z. HOYLE et NARLIKAR montrent qu’en
utilisant la relation (36) et le fait que la luminosité
intrinséque d’une source (énergie émise par unité de
temps) est de dimension L-2, on établi avec une
grande facilité une relation identique 2 celle que 'on
obtient dans le modele d’EinsTEIN-DE SrrreER. Clest
dans ce sens qu’il faut comprendre ’invariance des
lois de la physique lors d’une transformation confor-
me. Ce qui est modifié par contre, c’est Porigine de
cette loi. Dans les modéles relativistes, la cause en est
Pexpansion de I'univers. Dans le modeéle de HoyrLE
et NARLIKAR, la cause en est la variation de la masse
d’une particule au cours du temps.

Cela nous permet aussi de mieux comprendre la
distinction entre un fait cosmologique de nature phy-
sique et un fait pseudo-physique, mais en réalité de
nature géométrique. Ainsi la loi citée plus haut est un
fait physique. Etablie dans le cadre d’'un modgele, on
la retrouve dans tous ceux qui s’en déduisent par une
transformation conforme. Par contre, la singularité
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des modeles de FRIEDMANN a disparu apres la trans-
formation. C’est donc un fait de nature géométrique,
conséquence directe du choix du modele initial.

Notons, et ce n’est pas une remarque banale, que
cela permet de considérer le probléme important de
Porigine éventuelle de 'univers sous un jour tout 2
fait nouveau. Beaucoup de cosmologistes conside-
rent la singularité des modeles de FRIEDMANN non
pas comme une étape que l’univers doit franchir au
cours de son évolution, mais comme une origine. Ce
qui implique que les modéles de FRIEDMANN n’au-
raient pas de signification physique pour t< 0. Ce
point de vue, nous ’avons déja relevé, est extérieur a
la théorie de ces modeles?).

Mais puisque la singularité disparait lors de la
transformation conforme envisagée ici, il en est de
méme du concept origine de 'univers10).

Il est important de remarquer que ce modele satis-
fait aux hypotheses nos. 4b, 5, 6 et 7.

Du point de vue de 'observation ce modéle n’est
pas trés satisfaisant car la relation (36) entraine que
le sens de propagation des ondes électromagnétiques
n’est pas décrit correctement dans ce modele. Alors,
par ’hypothése fondamentale, cela est aussi vrai dans
le modéle d’EiNsTEIN-DE SrTTER. Et C’est I'une des
raisons qui ont conduit HoyLE et NARLIKAR 2 re-
chercher de nouveaux modeles.
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L’ouvrage cité en référence no. 5 est tout a fait remarquable
et a la portée de tout lecteur cultivé. Le Prof. HoyLE y expose
sa théotie sans faire usage de développements mathématiques,
et il y traite aussi d’auttes sujets trés intéressants.
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*) Lors de la transformation conforme, les variables 6 et @ ne
sont pas modifiées. Mais la vatiable t est remplacée pat T et r
par t*(sik = 0, r* = 1).

**) La formule (35) montre que t = 0 entraine 7 = 0.
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