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Pierre Simon Laplace's «Schwarze Löcher»

von H.-U. Fuchs, Zürich

(Eingegangen am 29. Juni 1974)

Schwarze Löcher gehören heute zu den interessantesten

Studien- und Diskussionsobjekten der Astronomie

und der Physik1). Wir datieren die Geburt der
Idee auf die Dreissigerjahre dieses Jahrhunderts
zurück. Kurz nach der Entdeckung des Neutrons brachte

F. Zwicky die schwarzen Löcher in die Diskussion.

Es ist daher interessant zu entdecken, dass die Idee
von Himmelskörpern, die alle Strahlung zurückbehalten,

viel weiter zurück verfolgt werden kann.

I. Laplace's «Exposition du système du monde»

Ganz am Schluss seines 1798 erschienenen Werkes
«Über das Weltsystem»2) bespricht Pierre Simon
Laplace (1749-1827) die Welt ausserhalb des

Sonnensystems. Die wohl erstaunlichste Eigenschaft der
Sterne, nämlich sich verändern zu können, muss wohl
seine ganze Aufmerksamkeit erregt haben. Er
vermerkt besonders die Tatsache, dass es Sterne gibt,
die plötzlich aufleuchten und darauf ziemlich schnell
wieder unsichtbar werden. Man kann wohl annehmen,
dass er damit die Novae meinte. Es bleibt also das

Problem, das Unsichtbarwerden solcher Sterne zu
erklären. Die Idee, die Laplace hatte, ist in dem
erwähnten Werk dargelegt2):

«Portons maintenant nos regards au-delà du système solaire.
D'innombrables soleils qui peuvent être les foyers d'autant de

systèmes planétaires, sont répandus dans l'immensité de
l'espace, et à un éloignement de la terre, tel que le diamètre entier
de l'ombre terrestre, vu de leur centre, est insensible. Plusieurs
étoiles éprouvent dans leur couleur et dans leur clarté, des
variations périodiques très remarquables; il en est d'autres qui
ont paru tout-à-coup, et qui ont disparu après avoir, pendant
quelque temps, répandu une vive lumière. Quels prodigieux
changements ont dû s'opérer à la surface de ces grands corps,
pour être aussi sensibles à la distance qui nous en sépare; et
combien ils doivent surpasser ceux, que nous observons à la
surface du soleil? Tous ces corps devenus invisibles, sont à la
même place où ils ont été observés, puisqu'ils n'en ont point
changé, durant leur apparition; il existe donc dans les espaces
célestes, des corps obscurs aussi considérables, et peut-être en
aussi grand nombre, que les étoiles. Un astre lumineux de même
densité que la terre, et dont le diamètre serait deux cents cinquante fois
plus grand que celui du soleil, ne laisserait en vertu de son attraction,
parvenir aucun de ses rayons jusqu'à nous; il est donc possible que
les plus grands corps lumineux de l'univers, soient par cela
même, invisibles. Une étoile qui, sans être de cette grandeur,
surpasserait considérablement le soleil ; affaiblirait sensiblement
la vitesse de la lumière, et augmenterait ainsi l'étendue de son
aberration. Cette différence dans l'aberration des étoiles; un
catalogue de celles qui ne font que paraître, et leur position
observée au moment de leur éclat passager; tels seront,
relativement aux étoiles, les principaux objets de l'astronomie
future.»

Dieser Text allein gäbe sehr viel Stoff zum Spekulieren,

wie denn Laplace das gemeint haben könnte.
Zum Glück aber gab er an einem anderen Ort einen

Beweis seiner Idee, die in dem zentralen Satz «Ein
Stern von derselben Dichte wie die Erde, und einem
zweihundertfünfzigfachen Sonnendurchmesser Hesse

wegen seiner Anziehung keinen seiner Strahlen mehr
zu uns kommen» formuliert ist. Auch so noch bleibt
genug unsicher, wie er denn diesen Gedanken genau
auffasste.

Aber folgen wir dem Beweis seines Satzes.

II. Beweis des Theorems, dass die anziehende Kraft eines

schiveren Körpers so gross sein könnte, dass kein Ticht
von ihm wegfliessen könnte. Von P. S. Laplace3)
(Vom Verf. aus dem Englischen übersetzt)

(1) Wenn v die Geschwindigkeit, t die Zeit und s

der Raum, der sich während dieser Zeit gleichförmig
bewegt, ist, dann ist, wie man weiss, v s/t.

(2) Wenn die Bewegung nicht gleichförmig ist, so
muss man, um den Wert von v für jeden Zeitpunkt
zu erhalten, den durchlaufenen Raum ds und das
Zeitintervall dt durcheinander dividieren, nämlich v
ds/dt, weil die Geschwindigkeit über ein infinitesimal
kleines Intervall konstant ist, und daher die Bewegung

als gleichförmig genommen werden kann.

(3) Eine kontinuierlich wirkende Kraft wird die
Geschwindigkeit ändern. Diese Änderung der
Geschwindigkeit, nämlich dv, ist damit das natürlichste
Mass für die Geschwindigkeit. Aber weil jede Kraft
in doppelter Zeit auch den doppelten Effekt hervorruft,

müssen wir die Änderung der Geschwindigkeit
dv noch durch die Zeit dt, in der jene durch die
Kraft P hervorgebracht wird, teilen, und so erhält
man einen allgemeinen Ausdruck für die Kraft P,
nämlich

d- —
p

dv £Ü.
dt dt

Wenn nun dt konstant ist, gilt
ds d-ds dds

dt dt dt

(4) Sei die anziehende Kraft eines Körpers M;
ein zweiter Körper, z. B. ein Lichtteilchen, befinde
sich in der Entfernung r; die Wirkung der Kraft M
auf dieses Lichtteilchen ist -M/rr; das Minuszeichen
steht, weil die Wirkung von M der Bewegung des

Lichtes entgegengesetzt ist.
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I.

ABHANDLUNGEN.

i.
Beweis

des Satzes, dafs die anziehende Kraft bey einem

Weltkörper fo grofs feyn könne, dafs das

Licht davon nicht ausftrömen

kann. *)
Von

jPeter Simon La Place.

i) "W"enn v die Gefchwindigkeit, t die Zeit und
s der während diefer Zeit gleichförmig durchlaufene

Raum ift, fo ift bekanntlich v ~ -L
t

2) Ift

*3 Dielen Satz, dafs ein leuchtender Körper des Weltalls

von gleicher Dichtigkeit irrit der Erde, deflenDurchmef-

ler 2,60 mahl grölser wäre, als der der Sonne. vermöge
feiner anziehenden Kraft keinen von feinen Lichtftrahlen
bis zu uns fcliicken könne, dafs folglich gerade die gröfs-
ten Körper unteres Weltgebäudes uns unfichtbar bleiben

können, hat La Place in feiner Exvoßtion du Syftéme du

Monde Part. II P. 3o5 ohne Beweis aufgehellt; hier ift er.

Vergl. A. G. E. May 1798 S. 6Ö3 v. Z.

A. G. Eph, IWds. 1 St, 1799, A

(5) Wegen (3) ist die Kraft auch gleich ddr/dt2,
also

M ddr

r • r dt2

Multipliziert mit dr

dr • ddr

-= -M

integriert

dt2

1 dr2

- M • dr • r"2;

C + M • r""1
2 dt2

wobei C eine Konstante ist, oder

drXa

dt
2C + 2M • r"

2 Abhandlungen.

2) Ift che Bewegung nicht gleichförmig, fo muCs

man, um den Werth von v in jedem Augenblicke zu

haben, den in diefem Zeittheilchen d t durchlaufenen
ds

Raum ds in einander dividiren, nämlich v — — ;

weil die Gefchwindigkeit in einem unendlich kleinen

Zeittheilchen unveränderlich und alfo die Bewegung

gleichförmig angenommen werden kann.

3) Eine immerfort wirkende Kraft wird die

Gefchwindigkeit zu ändern ftreben. Diefe Aenderung

der Gefchwindigkeit, nämlich dv, ift das natürlich-

fte Mafs der Kraft. Da aber jede Kraft in doppelter

Zeit doppelte Wirkung hervorbringt, fo mufs man

noch die Aenderung der Gefchwindigkeit dv durch

die Zeit dt, in welcher fie von der Kraft P hervor

gebracht wurde, dividiren, und man wird dadurch

einen allgemeinen Ausdruck für die Kraft P erhalten,

d v
nämlich P — -j- —dt

d s

dt ~

dds
dft

ds

tl*
dt

d. ds

dt

Nun ift, wenn dt be-

dds
dtßändigift, d.

folglich P rr
4) Es fey die Attractions-Kraft eines Körpers ~ M ;

ein zweyter Körper z. B. ein Lichttheilchen befindet
ftch in der Entfernung r ; die Wirkung der Kraft M

M
diefes Lichttheilchen wird feyn ; das Zeichen

r r
— deswegen, weil die Wirkung von M der Bewegung

des Lichts entgegen gefetzt ift.
ddt
ü t1
folg-

j) Nun iß nach (3) diefe Kraft auch ZZ

(6) Um nun die Konstante C zu bestimmen, setzen

wir R für den Radius des anziehenden Körpers und a

für die Geschwindigkeit des Lichtes in der Distanz R,
also auf der Oberfläche des anziehenden Körpers;
dann erhält man von (5)
a2 2C + 2M/R und weiter 2C a2 - 2M/R. Setzt

man das in die obere Gleichung ein, so ergibt sich

2 • M 2 • M

Nun ist wegen (2) dr/dt die Geschwindigkeit v, also

gilt v2 2C + 2M • r"1

wobei v die Geschwindigkeit des Lichtteilchens in
der Entfernung r ist.

R r

(7) Sei R' der Radius eines andern anziehenden

Körpers, dessen Anziehungskraft gleich iM ist, und
sei die Geschwindigkeit des Lichtes in der Entfernung

r gleich v', dann gilt wie in Gleichung (6)

2iM 2iM
R' r

(8) Wenn man r unendlich gross macht, so
verschwindet der letzte Ausdruck in der vorhergehenden

Gleichung und man erhält
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folglich
M
rr

Abhandlungen.

d d r
d t2

— — M

drddr
mari multiplicire mit dr; — — — M dr r"i t

integrirt,
dr1

"dt-

dt

Mi" '1 wo c die beftän-

dige Gröfseift, oder — 2C + 2Mr—*

Nun ift nach (2) ~ der Gefchwindigkeit v
+-2 Mr 1 wo v dieGefchwin-folglich v1 rr 2 c

digkeit des Lichttheilchens in der Entfernung r ift.
6) Um nun die Confiante c zu beftimmen, fey H

der Halbmeifer des anziehenden Körpers, a die
Gefchwindigkeit des Lichts in der Entfernung .ft, folglich

an der Oberfläche des anziehenden Körpers, fo
Merhält man aus (j) aJ r 2 c •+. 2

: M
R folglich

icra! — diefs, in die vorige Gleichung

gefetzt, gibt v* ~ a1 —
M
--- 4- AA

R r
7) Eines andern anziehenden Körpers Halbmef-

fer fey R feine Attractionskraft fey iM, die Ge^
fchwin digkeit des Lichts in der Entfernung r fey v
To ift vermöge der Gleichung m (6)

2 iM 2iM
v _ a ^ h- -j-

8) Setzt man r unendlich grofs, fo verfchvvin-
det das letzte Glied der vorhergehenden Gleichung
und man erhält

_ 2iM
R

4 Abhandlungen.

Die Entfernung der Fixfterne ift fo grofs, dafs
man zu diefer Annahme berechtiget ift.

9) Die anziehende Kraft des zweyten Körpers
fey fo grofs, dafs das Licht nicht ausftrömen kann;
diefs läfst fich analytifch am bequemften fo ausdrücken:

die Gefchwindigkeit des Lichts v' ift gleich
Null. Dielen Werth von v' in der Gleichung für
v' (8) gefetzt, wird eine Gleichung geben, aus der
iich die Malle iM wird herleiten lalfen, bey welcher
diefer Umftand Statt findet. Man hat alfo

„ 2 iM 2 iM" "3 oder a* —
R' — R'

10) Um a zu beftimmen, fey der erfte anziehende
Körper die Sonne, fo wird a die Gefchwindigkeit
des Sonnenlichts an der Oberfläche der Sonne feyn.
Die anziehende Kraft der Sonne ift aber in Verglei-
chung mit der Gefchwindigkeit des Lichts fo klein,
dafs man diefe Gefchwindigkeit als gleichförmig
annehmen kann. Aus dem Phänomen der Aberration
erhellet, dafs die Erde 2o"| in ihrer Bahn durchläuft,
während das Licht von derSonnebis zur Erde kömmt,'
folglich: es fey V die mittlere Gefchwindigkeit der
Erde in ihrer Bahn, fo wird man haben

a: V — radius*) :20"± — j : tang 2o"f
11) Meiner Annahme in Expof du Sy/I. du

Monde Part. II P. -05 geraäfs, iftR-' — 2so R. Nun
verhalten lieh die Mafien, wie die Volumina der
anziehenden Körper mit den Dichtigkeiten multiplicirt;die Volumina, wie die Würfel der Halbmefler ; folglich

die Mallen, wie die Würfel der Halbmefler mit
den

Die ^ Sccunden ausgedrückt.

2iM
R' '

(9) Sei die anziehende Kraft des zweiten Körpers
so gross, dass das Licht nicht von ihm entweichen
kann; analytisch kann das folgendermassen
ausgedrückt werden: die Geschwindigkeit v' des Lichtes
ist gleich Null. Dieser Wert für v' in Gleichung (8)
eingesetzt ergibt eine Gleichung aus welcher die
Masse iM, für welche das eintritt, hergeleitet werden
kann. Es gilt also :

o a —
2iM „ 2iM

oder a
R' R'

(10) Um a zu bestimmen, sei der erste anziehende
Körper die Sonne; dann ist a die Geschwindigkeit
des Sonnenlichtes an der Oberfläche der Sonne. Die
anziehende Kraft der Sonne ist allerdings so klein,
verglichen mit der Geschwindigkeit des Lichtes, dass
man diese Geschwindigkeit als gleichförmig annehmen

kann. Wir wissen von dem Phänomen der Aber¬

ration, dass die Erde auf ihrem Weg 20%" zurücklegt,

während sich das Licht von der Sonne zur Erde
bewegt. Sei also V die mittlere Geschwindigkeit der
Erde auf ihrer Bahrt, dann gilt a : Y Radius (ausgedrückt

in Sekunden): 20%" 1: tang 20%".
(11) Meine Annahme, die ich in «Expos, du syst,

du monde», Teil II, Seite 305, gemacht habe, ist R'
250 R. Nun ändert sich die Masse wie das Volumen
des anziehenden Körpers multipliziert mit seiner
Dichte; das Volumen wie der Kubus des Radius; also
die Masse wie der Kubus des Radius multipliziert mit
der Dichte. Sei die Dichte der Sonne gleich 1 ; die des
zweiten Körpers gleich q. Dann gilt:

M : iM 1 R3 : e • R'3 1 R3 : e 2503 R3

oder 1 : i 1 : e • (250)3
oder i (250)3 q.

(12) Man setzt die Werte von i und R' in die
Gleichung a2 2iM/R' ein und erhält so

184 ORION 32. Jg. (1974) No. 144



Abhandlungen. 5 6 Abhandlungen,

den Dichtigkeiten multiplicirt. Es fey die Dichte der
Sonne ZZ 1 ; die des zweyten Körpers ZZ g fo iff

M : iM zz 1 R3 : g R'3 ZZ 1 R3 : g 2503 R3

oder 1 : i ~ 1 : p (250)3
oder i ZZ 250)3 g.

12) Man fubftituire die Werthe von i und R' in

die Gleichung a3 zz

2 — 2 2 5°)3

zi —- fo erhält man

oder

250 R
a2 R

25°) :
M
R~

2 C2Jo)2 M

13) Um ç zu haben, darf man nur noch Mbe-
ftiramen. Die Kraft der Sonne M ift in der Entfer-

M
nung D gleich — Es fey D die mittlere Entfernung

der Erde, V die mittlere Gefchwindigkeit der
V2

Erde; fo ift diefeKraft auch gleich _ (man fehe La

M V2
Lande'sAftronömieIII § 3539.) folglich __
oder M Z V'D. Diefs in die Gleichung für g in
(12) fubftituirt gibt

a1 R _—

a

w

2 (250)2 V»D (1000)

Gefchw. d. Lichts
Gefchw. d. Erde

2(f)•©
nach (10)

tang 20
" \

— wahrem Halbmelfer 0 __ {an^ mjttiern fc]iein-
D mittlem Entfernung ©
baren HalbmelTers der 0.

A 3 folg-

aa=
2 (250)3^= 2(250^

250 R

M
IT

a2 R

2(250)2V2D (1000)2

Lichtgeschw.

aY(< R\
\vJ 1

\ D /

1

folglich g ZZ 8 tang 16 ' 2"

1000 tang. 20" JY
hieraus g beynahe 4, oder fo grofs, als die Dichte der

Erde.

Also

tang 16'2"

°der 8
2 (250)2 M

(13) Um g zu erhalten, muss man immer noch M
bestimmen. Die Kraft M der Sonne ist in einer
Entfernung D gleich M/D2. Sei D die mittlere Entfernung

der Erde, V die mittlere Geschwindigkeit der

Erde; dann ist diese Kraft auch gleich V2/D (siehe
Lande's Astronomie, III, § 3539). Also ist M/D2
V2/D oder M V2D. Dies in Gleichung (12) für g

eingesetzt ergibt
a2 R

Q ;

(1000 tang 20 %")2

womit man g » 4 erhält, was etwa so gross ist, wie
die Dichte der Erde.

III. Interpretationen und Kritik
1) Was Laplace in den Punkten (1) bis (9) mühsam

ableitet, ist nichts anderes, als die Fluchtgeschwindigkeit

eines Himmelskörpers der Masse M (oder iM)
und vom Radius R (oder R'). Die Fluchtgeschwindigkeit

ist ja bekanntlich die Geschwindigkeit, die

man einem materiellen Körper an der Oberfläche
eines Gestirns erteilen muss, damit er diesen für immer
verlässt. Erfährt der Körper eine Geschwindigkeit
V < V^, so kann er nur geschlossene Bahnen

(Kreis, Ellipse) um das Gravitationszentrum
durchführen.

Diese in der NEWTON'schen Mechanik bekannte

Vorstellung überträgt Laplace also auf das Licht.
Er sagt: ist die Fluchtgeschwindigkeit eines Sterns grösser
als die Lichtgeschwindigkeit c, so kann kein Lichtstrahl
mehr den Stern verlassen. Das legt den Gedanken nahe,
dass Laplace das Licht als aus Teilchen mit Masse
bestehend behandelt. Aber dazu muss noch einiges
gesagt werden.

2) Um die mühsame Rechnung Laplace's
deutlicher zu machen, sei hier gezeigt, wie diese mit
modernen Begriffsbildungen (Energiesatz) durchgeführt

wird. Laplace kannte damals den Begriff
Energie und den Energiesatz noch nicht; zumindest

waren diese Begriffe noch nicht so geklärt, dass man
mit ihnen hätte arbeiten können.

Wir berechnen zuerst die potentielle Energie an der
Oberfläche eines Himmelskörpers mit dem Radius R
und der Masse M. Nach Definition ist diese gleich der

Arbeit, die geleistet werden muss, um einen Probekörper

mit der Masse m ins Unendliche zu befördern.

E pot / P (r) dr.
R

——wie in (10),y " \ /V Geschw. d. Erde tang 20%"

R absol. Rad. d. Sonne _ tang (mittl. scheinb.

D mittl. Entf. d. Sonne Radius d. Sonne)

Es gilt

Mit dem Gravitationsgesetz

M • m
P«

folgt für die potentielle Energie die Gleichung

M • m
E pot — — y -

R

(14)

(15)

(14a)

ORION 32. Jg. (1974) No. 144 185



Diese Energie muss also (dem Betrage nach) dem
kleinen Körper m an der Oberfläche des grossen in
Form von Bewegungsenergie (kinetische Energie)
mitgegeben werden, damit m den grossen Körper
verlassen kann; also

1

2mVc
woraus wir sofort

y M m
R~~

2 y M
R (15)

1

(17)
M
R 2 y

nicht aber M und R einzeln, bestimmt ist. D. h. dass
im Prinzip jeder Körper ein «schwarzes Loch» sein
kann, da (17) nach beliebiger Wahl der Grösse g

(Dichte) immer noch erfüllt werden kann.

4) Für uns ist die Vorhersage schwarzer Löcher
eine Folge der allgemeinen Relativitätstheorie (ART)
und der Kernphysik. Zum ersten Mal taucht die
Möglichkeit, diese Himmelskörper zu postulieren, bei
Karl Schwarzschild (1916) auf4). Allerdings wurde

diese Gelegenheit damals nicht beachtet, auch weil
noch zu wenig über Kernphysik und Sternaufbau
bekannt war.

Schwarzschilds Lösung lässt sich so beschreiben :

Die Metrik für eine stationäre, zentralsymmetrische
Massenverteilung (z. B. Sonne) kann wie folgt angesetzt

werden :

ds2 M (r) dt2 + W (r) dr2 + r2 d<r2. (18)
Dabei ist de2 die Metrik auf der Sphäre S2. Der
metrische Tensor ist diagonal. Man kann zeigen, dass
dies der allgemeinste Ansatz ist, der der physikalischen

Situation entspricht. Setzt man nun (18) in die
Feldgleichungen für den materiefreien Raum (ausserhalb

des Sterns)
Rßv 0 (19)

ein, so erhält man sofort die sogenannte Schwarz-
scHiLDlösung oder ScHWARZSCHiLDmetrik

dr2
r2 (d©2 + sin2 © d<2>2). (20)ds2 1 ^ dt2 -

1--Ï-

Die Integrationskonstante a konnte berechnet werden

5)

2yM
(21)

wobei M und R wie früher definiert wurden.
Schwarzschild glaubte noch, dass a physikalisch
unbestimmt bliebe6). Daher auch konnte er den
physikalischen Charakter der Singularität in Gl. (20) nicht
erkennen. Gl. (20) wird also für

erhalten. Hier ist voo die Fluchtgeschwindigkeit. Diese

Form entspricht genau Gleichung (9) in Laplace's
Beweis, wenn man nur v^ a setzt. Man lasse sich
nicht dadurch verwirren, dass bei Laplace die
Gravitationskonstante y fehlt. Diese fällt sowieso bei
Laplace's Herleitung heraus. Auch abgesehen von
dieser Unstimmigkeit hat Laplace die Begriffe
(z. B. Kraft) nicht einheitlich verwendet.

3) Ist also die Fluchtgeschwindigkeit v^ a
eines Sterns grösser als die Lichtgeschwindigkeit c, so
haben wir nach Laplace einen Himmelskörper vor
uns, der alles Licht zurückbehält. Gleichung (16)
zeigt uns, dass durch die Bedingung v^ c nur das
Verhältnis

a rs
2yM

(21a)

singular. rs nennt man den ScHWARZscHiLDradius.
Zieht sich ein Himmelskörper der Masse M auf einen
Radius, der kleiner ist als rs, zusammen, so «passiert»
etwas mit ihm: er wird zu einem schwarzen Loch.
(21a) legt also genau fest, wie gross der Radius eines
Sterns mit Masse M sein muss, damit dieser zu einem
schwarzen Loch wird.

5) Gleichung (21a) stimmt genau mit Gl. (9) überein.

Dies «rechtfertigt» uns, das Licht als Teilchen
mit Masse nach der klassischen Mechanik zu behandeln.

Wir ordnen einem Photon eine «Pseudomasse»
über die Beziehung

mc2 hv (22)
zu und rechnen wie Laplace (Gl. (1) bis (16)). Wenn
wir über Gl. (21a) den ScHWARZscHiLDradius der
Sonne berechnen, so erhalten wir rSQ 2.95 km.
Natürlich wäre die Fluchtgeschwindigkeit dieses
«schwarzen Loches» 300 000 km/s c.

Wo liegt denn nun aber der Unterschied zwischen
Laplace's und einer modernen Herleitung, wenn
beide Resultate genau übereinstimmen?

6) Der erste (und wesentliche) Unterschied liegt
darin, was man unter Licht versteht. Licht als Teilchen

mit Masse betrachtet lässt eine klassische
Behandlung zu. Heute aber unterwerfen wir das Licht
nicht einfach den Gesetzen der klassischen Mechanik.
Wir richten uns vielmehr nach einer wichtigen
Eigenschaft desselben. Licht bewegt sich nämlich
zwischen zwei Punkten auf der kürzesten Verbindung
dieser Punkte (sogenannte Geodäte).

Nun weiss man aus der Allgemeinen Relativitäts-
Theorie (ART), dass Massen den Raum krümmen,
und dass daher die Geodäten keine Geraden mehr
sind. Das Licht breitet sich also nicht mehr geradlinig

aus.
Zwar liefert diese neue Idee bei den schwarzen

Löchern dasselbe Ergebnis wie die klassische Rechnung.
Diese Übereinstimmung tritt aber z. B. bei der Lichtablenkung

nicht mehr ein! Die verblüffende
Übereinstimmung unserer Resultate kommt daher, dass die
Gravitationsrotverschiebung

dA

T
y M

(23)

(und damit als Grenzfall auch das Zurückhalten aller
Signale in einem schwarzen Loch) allein schon aus

186 ORION 32. Jg. (1974) No. 144



dem schwachen Àquivalen^prin^ip Äquivalenz von
schwerer und träger Masse) folgt. Damit sind diese

Effekte kein eigentlicher Beweis der ART, weil diese
auf dem starken Äquivalen^prin^ip aufbaut und darum
sehr viel weiter geht7) (z. B. Lichtablenkung, Peri-
helbewegung). Zur Definition des starken
Äquivalenzprinzips siehe z. B. Weinberg S. 687). Genau aus
diesem Grund können einige Ergebnisse der ART
auch klassisch erhalten werden. Man beachte dazu
z. B. die Herleitung der zentralen Differentialgleichung

im Artikel «Nichtstatische Weltmodelle» von
D. Wiedemann8).

7) Ein weiterer Fortschritt in der modernen Theorie

ist darin zu finden, dass einige zusätzliche Aussagen

über schwarze Löcher gemacht werden können
(nicht nur über den Schwarzschild radius). Was
bedeutet die Singularität der Gl. (20), wenn also ein
Stern einen Radius r <rs annimmt?
a) Die Raumkrümmung wird unendlich gross (das

Licht ist im ScHWARZSCHiLDradius Ereignishorizont

gefangen)
b) der Zusammenbruch des Sterns zum Schwarz-

scHiLDradius scheint für einen aussenstehenden
Beobachter unendlich lange Zeit zu dauern.

c) Wir nehmen einen Körper mit der Masse M und
dem ursprünglichen Radius R. Der Körper soll
kollabieren. Vom ersten Moment des Zusammenbruchs

an bleibt die Rotverschiebung während der
Periode

R3
1

Dichte frei. Es gilt:
3c2 1

Q

8 y M

und

ö • 7i y rs

3c0 1

32 ri y3
' W

(21b)

(21c)

klein und wächst darauf exponentiell mit der Rate
c3 / 4 y M.9)

Numerisches Beispiel: Sphäre mit M 108 Mg,
R 100 Lichtjahre. Mit diesen Werten bleibt die

Rotverschiebung von der Grössenordnung z 1(L3

währen rund 105 Jahren. Danach wächst z jeweils
innerhalb weniger Minuten um das Dreifache (genauer :

um den Faktor e). Wenn man nichtrelativistisch rechnet,

dauert es etwa 3 Stunden, bis z ~ 1, d. h. bis der

Körper nahe am Zustand eines schwarzen Loches ist.
8) Der dritte Fortschritt kommt von der Physik

der Materie. Wir können uns heute einigermassen
vorstellen, wie ein schwarzes Loch entstehen könnte.

Ein Stern, der nach seinem Ausbrennen (und nach
einer Explosion als Supernova) noch mehr Masse
besitzt, als eine gewisse Grenze angibt (rund 1.5

Sonnenmassen), wird nicht zu einem weissen Zwerg werden
können. Er zieht sich zu einem Neutronenstern (Dichte
q ä 1014 g/cm3) zusammen. Vielleicht wird er aber
noch weiter schrumpfen und zu einem schwarten Loch
werden. Ob dies allerdings auch theoretisch möglich
ist, ist heute noch nicht ganz geklärt.

Ein schwarzes Loch ist also für uns in erster Linie
ein Körper von ungeheurer Dichte, sehr kleinem
Radius und einigen wenigen Sonnenmassen. Gleichung
(21a) lässt aber wie Gl. (9) die «Konstruktion» beliebiger

schwarzer Löcher zu. Wir wählen einfach die

Sterne von einigen 10 Sonnenmassen hätten demnach

als schwarze Löcher Dichten von 1013 bis 1014

g/cm3. Laplace's «schwarzes Loch» hat eine Dichte
von ca. 5 g/cm3 bei etwa 5 • 107 Sonnenmassen. Es

wird dann und wann vermutet, dass solche schwarzen
Löcher im Zentrum von Galaxien existieren könnten1).

Vor kurzem wurden sogar «Mini-schwarze-
Löcher» postuliert10) n) mit etwa Asteroidenmasse
und einigen 10 bis 100 Â Durchmesser.

Aber wie gesagt, ob es diese interessanten Körper
im Weltall überhaupt gibt, ist immer noch fraglich.

9) Es bleibt uns noch zu klären, wie Laplace auf
die Idee kommen konnte, es gäbe Sterne, die alles

Licht zurückbehalten. Dabei muss diese Erklärung
ein Versuch bleiben.

Die Notwendigkeit, auf eine solche Idee zu
kommen, scheint gut begründet zu sein. Für
Laplace stellt sich ja das Problem, das plötzliche
Verschwinden von Sternen erklären zu müssen. Dies
geht eindeutig aus seinen Bemerkungen in «Exposition

du système du monde» hervor.
Dass er seine Hypothese dann aber auf der Basis

der klassischen Physik und mit der Annahme, die
Lichtteilchen (Photonen) hätten von Null verschiedene

Ruhemasse, zu beweisen versuchte, bedarf einer
näheren Betrachtung.

Wir müssen heute sagen, dass Laplace's Behandlung

des Themas physikalisch eindeutig falsch ist.
Photonen haben Ruhemasse Null. Sie können also
nicht einfach wie ein normales materielles Teilchen
(z. B. wie ein Satellit) im Schwerefeld eines Himmelskörpers

behandelt werden.
Nur sind wir uns heute der Modellvorstellung vom

masselosen Lichtteilchen vielleicht zu stark bewusst.
Auch wenn wir das Licht als Welle beschreiben, so
ordnen wir ihm keine Masse zu. Wir müssen also
etwas zurückblenden in die Vorgeschichte der modernen

Lichttheorien, um Laplace gerecht zu werden.
Nun wäre es ja denkbar, dass Laplace sich die

Sache folgendermassen überlegt hat: die Herleitung
gilt für beliebige, also auch für beliebig kleine Massen,
also wird sie im Grenzfall auch für massefreie Teilchen

gelten. Dann tauchte für ihn das Problem, ob

er dem Licht eine Masse zuordnen sollte oder nicht,
überhaupt nicht auf.

Allerdings können wir ebenso leicht annehmen,
dass Laplace wirklich von dem Bild ausging, dass

das Licht aus Teilchen besteht, die eine von Null
verschiedene Masse besitzen.

Der Streit um die Deutung des Lichtes war im 18.

Jahrhundert von den Anhängern Newtons im Sinne
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der Korpuskeltheorie entschieden worden12). Zwar hatten

schon Zeitgenossen von Newton, nämlich Ch.
Huygens und R. Hooke, um 1670 die Theorie von
der Wellennatur des Lichtes vertreten. Aber durchsetzen

konnte sich diese Ansicht erst gegen 1800.
Abgesehen davon, dass Laplace sich Zeit seines
Lebens nie an die Wellentheorie des Lichtes gewöhnen
konnte, kamen die entscheidenden Versuche in dieser

Richtung auch erst ein paar Jahre nach dem
Beweis, dass es «schwarze Löcher» geben könnte. Th.
Young erklärte die Farben an dünnen Schichten mit
periodischen, sich durchdringenden Wellen. Das war
zwischen 1801 und 1803. Bald darauf verstand er die
Beugung als Interferenzphänomen. Um 1808 schlössen

Young, Fresnel und Arago auf die Transversa-
lität der Lichtwellen.

Wir können also ruhig annehmen, dass Laplace
ein überzeugter Anhänger der Teilchentheorie des
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Ein Meteoriten-Museum in der DDR
von J. Classen, Pulsnitz

Im Zusammenhang mit der Errichtung einer Sternwarte

in Pulsnitz wurde dort bereits 1927 mit dem
Sammeln von Meteoriten begonnen. Ihre Beschaffung

war damals noch leicht, da sich kaum jemand für
diese «abwegigen» Naturprodukte interessierte. Die
Astronomen beobachteten meist nur die
Meteorerscheinungen am Himmel, während sich die Mineralogen

lieber mit den von der Erde stammenden und
daher geologisch interessanteren Mineralien befassten.

Gegen Ende des 2. Weltkrieges, am 27. April 1945,
geriet die Pulsnitzer Meteoritensammlung in grosse
Gefahr, da die Sternwarte, die von 1933-1945 Sitz
einer antifaschistischen Widerstandsgruppe gewesen
war, von der Gestapo geplündert wurde. Da diese
aber mit den Meteoriten wohl nichts anzufangen
wusste, entstanden nur kleinere Verluste, die inzwischen

wieder ersetzt werden konnten. Mit dem
Beginn der Weltraumflüge durch Sputnik 1, der am
4. Oktober 1957 in den Raum geschossen wurde,
stieg das Interesse an Meteoriten auf der ganzen Erde
sprunghaft an. Die Pulsnitzer Sammlung erhielt einen

eigenen Raum und wurde zu einem kleinen Museum
ausgebaut, dem bisher einzigen, das sich streng auf
Meteorite beschränkt. Dieses Museum wurde von
1960 an vom Rat des Kreises Bischofswerda zusammen

mit der Sternwarte unterstützt, was einen
erfreulichen Besucherstrom zur Folge hatte. Sternwarte
und Museum waren bis 1964 von über 30 000
Interessenten besichtigt worden. Leider wurde diese
erfreuliche Entwicklung von 1968 an durch örtliche
Intrigen gegen die Sternwarte unterbrochen, so dass

gegenwärtig ein Besuch des Pulsnitzer Meteoriten-
Museums nur ausnahmsweise möglich ist.

Die 1927 gegründete Meteoritensammlung sollte
von Anfang an der Meteoritenforschung dienen. So
konnte 1964 die erste kleinere Schrift «Beiträge %ur
Meteoritenkunde» herausgegeben werden. 1967
erschien in der Reihe der Veröffentlichungen der Sternwarte

Pulsnitz die erste grössere Arbeit «Die
Entstehung der Tektite». Weitere Veröffentlichungen folgten

1968 «Die Meteoritenforschung in der UdSSR» und
1969 «Uber Eisenmeteorite und ihre Ausbeutung durch den
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